L’immunoterapia passiva basata sull’utilizzo di anticorpi monoclonali ha recentemente migliorato la risposta terapeutica e la sopravvivenza in neoplasie ematologiche e solide. Alcuni pazienti non manifestano però risposta a questi trattamenti ed inoltre possono altresi’ insorgere meccanismi di resistenza; per questi motivi sono attualmente in studio clinico numerosi coniugati di anticorpi a molecole citotossiche o radionuclidi. Poiché nella terapia delle neoplasie la prognosi è fortemente influenzata dalla possibilità di una diagnosi precoce vi è la necessità di metodiche diagnostiche ad alta sensibilità e specificità; sono percio’ motivo di interesse nuovi protocolli basati sull’immuno-imaging. Nell’ottica quindi di implementare il trasporto a livello delle lesioni tumorali di elevate quantità di farmaco e di molecole trackers, le nanotecnologie possono offrire valide soluzioni. I nanosistemi presentano la caratteristica di concentrarsi a livello delle lesioni neoplasiche grazie all’ ”EPR Effect”; l’accumulo e la ritenzione a livello delle lesioni puo’ essere implementata coniugando le nanoparticelle con molecole veicolanti quali anticorpi o fattori di crescita. Combinando quindi la nanomedicina con la tecnologia degli anticorpi ricombinanti è possibile incrementare notevolmente la specificità dei trattamenti antitumorali, permettendo quindi anche la diminuzione delle dosi utilizzate e aumentare la sensibilità dei sistemi diagnostici attualmente in uso (MRI). Il presente lavoro di tesi, svolto in collaborazione con il gruppo del Prof. Meneghetti (Università di Padova) e con i gruppi del Prof. Mancin e del Prof Papini (Università di Padova) nell’ambito del progetto europeo Nanophoto, descrive la generazione e caratterizzazione di diverse tipologie di nanocomposti e il loro possibile impiego nell’imaging e nella terapia antitumorale. La prima parte dello studio è stata incentrata sulla sintesi e caratterizzazione di nanoparticelle metalliche, oro e ossido di Fe, non guidate. L’oro è un materiale utilizzato in medicina per la sua biocompatibilità e per le sue particolari proprietà chimiche e ottiche. Tra queste è interessante la possibilità di produrre segnale Raman, che può essere amplificato piu’ di 108 volte se caricate con molecole SERS. Abbiamo dimostrato che è possibile quantificare mediante spettroscopia Raman la quantità di NPs incorporata dalle cellule. Questo risultato pone le basi per un sistema ultrasensibile di rivelazione della quantità di nanosistemi veicolati a livello delle lesioni neoplastiche. Mediante l’applicazione di nanoparticelle di FeOX (nanoparticelle magnetiche) abbiamo evidenziato che: a) è possibile utilizzate le NP magnetiche per il sorting di popolazioni cellulari modificate (vd. Cellule caricate con FeOX-NPs adsorbite con SiRNA o cDNA) b) è possibile, mediante campi magnetici esterni, direzionare ai siti di interesse specifiche popolazioni cellulari (vd. Cellule T anti-tumore o macrofagi, caricati con FeOX-NPs). La seconda parte dello studio si è focalizzata sull’analisi del targeting di nanoparticelle d’oro e di silice, coniugate ad anticorpi monoclonali specifici per TAA, al fine di implementarne l’accumulo a livello del sito d’interesse. La specificità di legame e l’internalizzazione di questi nanocomposti è stata dimostrata “in vitro” e “ex vivo” utilizzando cellule antigene positive e negative e tessuti espiantati da modelli murini singenici (topi C57/B16 iniettati sc con cellule B16 trasfettate con gli Ags di interesse). E’ stato inoltre valutato “in vitro” il potenziale terapeutico sia di nanoparticelle d’oro caricate con un agente chemioterapico, la doxorubicina, sia di nanoparticelle di silice caricate con l’agente fotosensibilizzante Foscan. In entrambi i casi, i risultati ottenuti sono promettenti; si è evidenziata, infatti, una tossicità del 60% e 40% maggiore rispetto alle NP non caricate, utilizzando rispettivamente NP caricate con Doxorubicina e Foscan. Abbiamo inoltre dimostrato che è possibile rilevare singole cellule Ag positive ed inoltre è possibile sviluppare protocolli di imaging multi-target, mediante spettroscopia Raman e nanosistemi d’oro veicolati con diversi mAbs e caricati con molecole SERS.

The passive immunotherapy based on the use of monoclonal antibodies has recently improved the therapeutic response and survival in hematologic and solid tumor. However, some patients show no response to these treatments, moreover a resistance mechanism can rise up. For these reasons many conjugates of antibodies and radionuclides or cytotoxic molecules are currently in clinical trials. As in the cancer treatment, the prognosis is strongly influenced by the possibility of an early diagnosis; there is the neccesity of diagnostic methods with high sensitivity and specificity. Therefore in the last years new protocols based on immuno-imaging are object of interest. In order to increase the transport of a large amount of drug and tracker molecules at tumor lesions site, nanotechnology can offer effective solutions. The nanosystems have the characteristic to focus in neoplastic lesions thanks to the EPR effect; the accumulation and the retention in the injury sites can be implemented by conjugating nanoparticles with targeting moieties such as antibodies or growth factors. Combining nanomedicine together with recombinant antibody technology, it is possible to increase the specificity of cancer treatments greatly, thus allowing the decrease of therapeutic doses and increasing the sensitivity of diagnostic tools currently used (MRI). This thesis work was done in collaboration with the reaserch group of Prof. Meneghetti (University of Padua) and the groups of Prof. Mancin and Prof. Papini (University of Padua) in the context of the European project “Nanophoto”. The work describes the production and characterization of different types of nanoconjugates and their potential use in imaging and cancer therapy. The first part of the study was focused on the synthesis and characterization of metal nanoparticles, gold and iron oxide, not targeted. Gold is a material used in medicine thanks to its biocompatibility and its unique chemical and optical properties. Among these, the ability to produce Raman signal is interesting, this can be amplified more than 108 times by using SERS dies. We have shown that by Raman spectroscopy it is possible to quantify the amount of NPs uptaken by the cells. This result provides the basis for an ultrasensitive method that can detect the amount of nanocompound conveyed at neoplatic lesions. By applying FeOX-MNPs (magnetic nanoparticles) we have shown that: a) magnetic NPs can be used to sort modified cell populations (see cells loaded with FeOX-MNPs coated with siRNA or cDNA) b) it is possible to direct into the site of interest specific cell populations by external magnetic field (see anti tumor T cells or macrophage, loaded with FeOX MNPs). The second part of the study was focused on the analysis of the targeting of gold and silica nanoparticles, conjugated to monoclonal antibodies specific for TAAs, in order to increase the accumulation in the site of interest. The binding specificity and internalization of these nanocompounds has been demonstrated “in vitro” and “ex vivo” using antigen positive and negative cells and tissue harvested from syngenic mouse models (C57/B16 mice injected sc with B16 cells trasfected with the Ags of interest). It was also assessed “in vitro” the therapeutic potential of both gold nanoparticles, loaded with a chemoterapeutic agent, doxorubicin, and silica nanoparticles loaded with the photosensitiser Foscan®. In both cases the results are promising: it is highlighted a toxicity of 60% and 40% greater than not loaded NPs, using NPs loaded with doxorubicin and Foscan® respectively. We have also proved that it is possible to detect single antigen positive cells and develope multi-target methods, by using Raman spectroscopy and gold nanoparticles conjugated with different mAbs and loaded with SERS dies.

Guided nanoparticles for tumor imaging and therapy

BOSCAINI, Anita
2012-01-01

Abstract

The passive immunotherapy based on the use of monoclonal antibodies has recently improved the therapeutic response and survival in hematologic and solid tumor. However, some patients show no response to these treatments, moreover a resistance mechanism can rise up. For these reasons many conjugates of antibodies and radionuclides or cytotoxic molecules are currently in clinical trials. As in the cancer treatment, the prognosis is strongly influenced by the possibility of an early diagnosis; there is the neccesity of diagnostic methods with high sensitivity and specificity. Therefore in the last years new protocols based on immuno-imaging are object of interest. In order to increase the transport of a large amount of drug and tracker molecules at tumor lesions site, nanotechnology can offer effective solutions. The nanosystems have the characteristic to focus in neoplastic lesions thanks to the EPR effect; the accumulation and the retention in the injury sites can be implemented by conjugating nanoparticles with targeting moieties such as antibodies or growth factors. Combining nanomedicine together with recombinant antibody technology, it is possible to increase the specificity of cancer treatments greatly, thus allowing the decrease of therapeutic doses and increasing the sensitivity of diagnostic tools currently used (MRI). This thesis work was done in collaboration with the reaserch group of Prof. Meneghetti (University of Padua) and the groups of Prof. Mancin and Prof. Papini (University of Padua) in the context of the European project “Nanophoto”. The work describes the production and characterization of different types of nanoconjugates and their potential use in imaging and cancer therapy. The first part of the study was focused on the synthesis and characterization of metal nanoparticles, gold and iron oxide, not targeted. Gold is a material used in medicine thanks to its biocompatibility and its unique chemical and optical properties. Among these, the ability to produce Raman signal is interesting, this can be amplified more than 108 times by using SERS dies. We have shown that by Raman spectroscopy it is possible to quantify the amount of NPs uptaken by the cells. This result provides the basis for an ultrasensitive method that can detect the amount of nanocompound conveyed at neoplatic lesions. By applying FeOX-MNPs (magnetic nanoparticles) we have shown that: a) magnetic NPs can be used to sort modified cell populations (see cells loaded with FeOX-MNPs coated with siRNA or cDNA) b) it is possible to direct into the site of interest specific cell populations by external magnetic field (see anti tumor T cells or macrophage, loaded with FeOX MNPs). The second part of the study was focused on the analysis of the targeting of gold and silica nanoparticles, conjugated to monoclonal antibodies specific for TAAs, in order to increase the accumulation in the site of interest. The binding specificity and internalization of these nanocompounds has been demonstrated “in vitro” and “ex vivo” using antigen positive and negative cells and tissue harvested from syngenic mouse models (C57/B16 mice injected sc with B16 cells trasfected with the Ags of interest). It was also assessed “in vitro” the therapeutic potential of both gold nanoparticles, loaded with a chemoterapeutic agent, doxorubicin, and silica nanoparticles loaded with the photosensitiser Foscan®. In both cases the results are promising: it is highlighted a toxicity of 60% and 40% greater than not loaded NPs, using NPs loaded with doxorubicin and Foscan® respectively. We have also proved that it is possible to detect single antigen positive cells and develope multi-target methods, by using Raman spectroscopy and gold nanoparticles conjugated with different mAbs and loaded with SERS dies.
2012
nanoparticle; cancer therapy; raman spectroscopy; photodynamic therapy; silica nanoparticles; gold; magnetic; multiplexing; imaging
L’immunoterapia passiva basata sull’utilizzo di anticorpi monoclonali ha recentemente migliorato la risposta terapeutica e la sopravvivenza in neoplasie ematologiche e solide. Alcuni pazienti non manifestano però risposta a questi trattamenti ed inoltre possono altresi’ insorgere meccanismi di resistenza; per questi motivi sono attualmente in studio clinico numerosi coniugati di anticorpi a molecole citotossiche o radionuclidi. Poiché nella terapia delle neoplasie la prognosi è fortemente influenzata dalla possibilità di una diagnosi precoce vi è la necessità di metodiche diagnostiche ad alta sensibilità e specificità; sono percio’ motivo di interesse nuovi protocolli basati sull’immuno-imaging. Nell’ottica quindi di implementare il trasporto a livello delle lesioni tumorali di elevate quantità di farmaco e di molecole trackers, le nanotecnologie possono offrire valide soluzioni. I nanosistemi presentano la caratteristica di concentrarsi a livello delle lesioni neoplasiche grazie all’ ”EPR Effect”; l’accumulo e la ritenzione a livello delle lesioni puo’ essere implementata coniugando le nanoparticelle con molecole veicolanti quali anticorpi o fattori di crescita. Combinando quindi la nanomedicina con la tecnologia degli anticorpi ricombinanti è possibile incrementare notevolmente la specificità dei trattamenti antitumorali, permettendo quindi anche la diminuzione delle dosi utilizzate e aumentare la sensibilità dei sistemi diagnostici attualmente in uso (MRI). Il presente lavoro di tesi, svolto in collaborazione con il gruppo del Prof. Meneghetti (Università di Padova) e con i gruppi del Prof. Mancin e del Prof Papini (Università di Padova) nell’ambito del progetto europeo Nanophoto, descrive la generazione e caratterizzazione di diverse tipologie di nanocomposti e il loro possibile impiego nell’imaging e nella terapia antitumorale. La prima parte dello studio è stata incentrata sulla sintesi e caratterizzazione di nanoparticelle metalliche, oro e ossido di Fe, non guidate. L’oro è un materiale utilizzato in medicina per la sua biocompatibilità e per le sue particolari proprietà chimiche e ottiche. Tra queste è interessante la possibilità di produrre segnale Raman, che può essere amplificato piu’ di 108 volte se caricate con molecole SERS. Abbiamo dimostrato che è possibile quantificare mediante spettroscopia Raman la quantità di NPs incorporata dalle cellule. Questo risultato pone le basi per un sistema ultrasensibile di rivelazione della quantità di nanosistemi veicolati a livello delle lesioni neoplastiche. Mediante l’applicazione di nanoparticelle di FeOX (nanoparticelle magnetiche) abbiamo evidenziato che: a) è possibile utilizzate le NP magnetiche per il sorting di popolazioni cellulari modificate (vd. Cellule caricate con FeOX-NPs adsorbite con SiRNA o cDNA) b) è possibile, mediante campi magnetici esterni, direzionare ai siti di interesse specifiche popolazioni cellulari (vd. Cellule T anti-tumore o macrofagi, caricati con FeOX-NPs). La seconda parte dello studio si è focalizzata sull’analisi del targeting di nanoparticelle d’oro e di silice, coniugate ad anticorpi monoclonali specifici per TAA, al fine di implementarne l’accumulo a livello del sito d’interesse. La specificità di legame e l’internalizzazione di questi nanocomposti è stata dimostrata “in vitro” e “ex vivo” utilizzando cellule antigene positive e negative e tessuti espiantati da modelli murini singenici (topi C57/B16 iniettati sc con cellule B16 trasfettate con gli Ags di interesse). E’ stato inoltre valutato “in vitro” il potenziale terapeutico sia di nanoparticelle d’oro caricate con un agente chemioterapico, la doxorubicina, sia di nanoparticelle di silice caricate con l’agente fotosensibilizzante Foscan. In entrambi i casi, i risultati ottenuti sono promettenti; si è evidenziata, infatti, una tossicità del 60% e 40% maggiore rispetto alle NP non caricate, utilizzando rispettivamente NP caricate con Doxorubicina e Foscan. Abbiamo inoltre dimostrato che è possibile rilevare singole cellule Ag positive ed inoltre è possibile sviluppare protocolli di imaging multi-target, mediante spettroscopia Raman e nanosistemi d’oro veicolati con diversi mAbs e caricati con molecole SERS.
File in questo prodotto:
File Dimensione Formato  
phD tesi Anita Boscaini rid.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: Dominio pubblico
Dimensione 2.43 MB
Formato Adobe PDF
2.43 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/395541
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact