A causa della mancanza di tecniche efficienti per la trasformazione di vite, non sono ancora stati sviluppati protocolli per studi su larga scala di genomica funzionale in Vitis ssp. I primi tentativi di trasformazione stabile in vite sono stati effettuati da alcuni gruppi di ricerca attraverso co-coltivazione con Agrobacterium tumefaciens e successiva rigenerazione, sia per embriogenesi somatica che per organogenesi. Tuttavia, questi approcci mostrano, nella maggior parte dei casi, variabilità nell’efficienza di trasformazione e di rigenerazione; inoltre, richiedendo tempi troppo lunghi, non risultano compatibili con le esigenze dell'analisi genomica funzionale. All’interno dei nostri studi, abbiamo quindi tentato lo sviluppo di quattro diverse tecniche basate sul silenziamento genico post-trascrizionale per lo studio di funzione genica in Vitis riparia cv. Gloire de Montpellier. Essendo questa specie resistente a molti patogeni (tra cui Plasmopara viticola) queste tecniche potrebbero consentire di individuare e caratterizzare in modo rapido ed efficace i geni associati alle risposte di difesa della vite contro i patogeni. La prima strategia sviluppata è basata sulla somministrazione diretta di piccoli RNA interferenti (siRNAs) di lunghezza diversa e di RNA a doppio filamento (dsRNA) a foglie di V. riparia e N. benthamiana per valutare la loro efficacia nella repressione dei geni di interesse. In particolare, popolazioni diverse di piccoli RNA (sRNAs) disegnati contro la famiglia genica che codifica per le proteine di patogenesi PR-10 sono stati somministrati a foglie di V. riparia mentre altri, disegnati contro il gene che codifica per l’enzima fitoene desaturasi (PDS), sono stati somministrati a foglie di N. benthamiana. Inoltre, siRNA oppure siRNA sintetici (lunghi 21 nucleotidi e che presentano una 2’-O-metilazione) disegnati contro il gene che codifica per la GFP sono stati somministrati a piante transgeniche di N. benthamiana che esprimono stabilmente il gene marcatore GFP (GFP16C), per valutare la loro efficacia nell’induzione del silenziamento genico. Sfortunatamente, la somministrazione diretta di diverse popolazioni di RNA a piante di V. riparia e N. benthamiana ha fornito risultati contrastanti e non facilmente interpretabili. Saranno necessari ulteriori esperimenti per determinare quali debbano essere le caratteristiche dei siRNA, la loro concentrazione e la strategia adatta di somministrazione, nell’induzione del silenziamento genico post-trascrizionale in pianta. Lo scopo del secondo approccio è di verificare se il segnale di silenziamento è in grado di diffondere sistemicamente dalle radici di vite trasformate con A. rhizogenes e causare il silenziamento del gene in esame nelle parti aeree della pianta. La diffusione sistemica del segnale di silenziamento agli apici non transgenici di piante trasformate è stata osservata in v Lotus japonica, Medicago truncatula e Arabidopsis thaliana sebbene il silenziamento osservato nelle foglie non sia stato completo. Radici trasformate di Vitis vinifera sono state ottenute ma non sono ancora stati effettuati esperimenti volti a delucidare se la diffusione sistemica del segnale di silenziamento avvenga anche in vite. Nei nostri studi, foglie, talee e plantule di Vitis riparia sono state infettate con A. rhizogenes ARqua1 trasformato con il vettore pRedRoot che contiene un costrutto “hairpin” per il silenziamento del gene codificante la PDS di vite per valutare l’insorgenza di eventuali alterazioni fenotipiche causate dall’induzione di un meccanismo di silenziamento genico contro questo gene. Il terzo approccio è basato sulla trasformazione transiente di foglie di V. riparia attraverso l’applicazione del vuoto mediato da siringa. Esperimenti preliminari sono stati condotti utilizzando il ceppo EHA105 di A. tumefaciens trasformato con un vettore pBin19 che porta una sequenza “hairpin” contro il gene codificante la PDS di Vitis riparia oppure con un vettore pBin19 vuoto, come controllo negativo. Dopo il trattamento si sono osservati gravi danni meccanici in tutte le foglie infiltrate; per valutare se il danno era correlato al genotipo di vite utilizzato oppure alla tecnica, si sono agroinfiltrate diverse varietà di V. vinifera applicando il vuoto con una siringa oppure con una pompa. Sono stati usati due ceppi diversi di A. tumefaciens (EHA105 and C58C1) trasformati con un vettore pBin61 che porta una cassetta di espressione transiente per il gene GUS. Questo esperimento ha permesso di valutare le condizioni ottimali di trasformazione, la diversa efficienza utilizzando ceppi diversi e il grado di suscettibilità di diverse Vitis. L’ultimo approccio consiste nello sviluppo di un sistema VIGS utilizzando un vettore basato sul GALV (Grapevine algerian latent virus). Infezioni preliminari condotte utilizzando RNA virali prodotti in vitro hanno rivelato che trascritti infettivi di GALV sembrano in grado di infettare e di diffondere sistemicamente in vite. Considerando che la procedura di infezione con trascritti prodotti in vitro non è risultata affidabile per scarsa efficienza di infezione, abbiamo deciso di standardizzare il modo di trasferimento virale alla pianta producendo un vero vettore VIGS che verrà fornito attraverso agroinfezioni. La strategia di manipolazione molecolare per la produzione di un vettore VIGS basato su GALV è stata quindi sviluppata. Tutte queste strategie rappresentano un contributo alle tecniche già disponibili per lo studio genico funzionale di una coltura preziosa come la vite. Inoltre, esse aprono la strada a nuovi possibili studi ed approfondimenti che possono essere svolti in futuro.
Establishment of functional genomics in Vitis ssp. is still challenging, due to the lack of reliable high-throughput tools for grapevine transformation. For instance, A. tumefaciens-mediated stable transformation is possible, but it is time consuming and the transformation efficiency is rather low. The aim of this work is the development of four different post-transcriptional gene silencing strategies for functional genomics in Vitis riparia cv. Gloire de Montpellier for future studies on the function of genes putatively related to pathogen resistance, being this species resistant to many pathogens such as Plasmopara viticola. The first strategy is based on the direct administration of small interfering RNAs (siRNAs), different in length, and dsRNAs to V. riparia and N. benthamiana leaves, to test their effectiveness in downregulation of target genes. In particular, different populations of short RNAs (sRNAs) against the PR-10 gene family were supplied to V. riparia leaves while others designed against the phytoene desaturase gene (PDS) were administered to N. benthamiana leaves. In addition, siRNAs or 2’-O-methylated synthetic siRNAs against the Green Fluorescent Protein (GFP) gene were delivered to N. benthamiana plants stably transformed with the GFP marker gene (GFP16C plants), to test their activity in gene silencing induction against this gene. Unfortunately, results obtained by direct delivery of different small RNAs to V. riparia and N. benthamiana plants were controversial and not easily interpretable. More evidences are still needed to determine the role of siRNA characteristics and concentration, and to find the best delivery strategy for the induction of post-transcriptional gene silencing in plants. The second approach aimed to test whether the silencing signal can spread systemically from grapevine hairy roots to the aerial parts of the plant, resulting in the downregulation of the target gene. Some systemic spreading of the silencing signal to the non-transgenic shoots of transformed plants was already observed in Lotus japonica, Medicago truncatula and Arabidopsis thaliana plants, though the silencing in the leaves was not complete. V. vinifera hairy roots have been obtained by A. rhizogenes infection; the ability of the silencing signal to spread to shoots has not been investigated in grape. In our study, V. riparia leaves, cuttings and plantlets were infected with A. rhizogenes ARqua1, transformed with a pRedRoot vector harbouring a marker gene encoding the red fluorescence protein (DsRed1), to find the optimal transformation conditions and to evaluate V. riparia susceptibility. Then, V. riparia infections were carried out using A. rhizogenes strain ARqua1 transformed with a pRedRoot vector containing a 35S hairpin construct against the grapevine PDS gene to evaluate possible plant phenotypic alterations. iii The third approach is based on transient transformation of V. riparia leaves through syringemediated vacuum application. Preliminary experiments were conducted using the A. tumefaciens EHA105 strain transformed either with a pBin19 vector harbouring a hairpin sequence against the Vitis riparia PDS gene (35S:PDShp) or with an empty pBin19 vector, as a negative control. Severe mechanical damage was observed in all infiltrated leaves; to evaluate if this damage was related to the Vitis genotype or to the technique, agroinfiltrations were performed in leaves and plantlets of different V. vinifera cultivars. Two different A. tumefaciens strains (EHA105 and C58C1) transformed with pBin61 vector carrying a GUSi expression cassette (35S:GUSi) were used for transient transformation by syringe or pump-mediated vacuum application. This experiment permitted the evaluation of the optimal transformation conditions, difference in efficiency between the bacterial strains and Vitis susceptibility. The last approach consists in the development of a VIGS system using a GALV (Grapevine algerian latent virus)-based vector. Preliminary infections carried out with in vitro-produced viral RNAs revealed that GALV infective transcripts could infect and spread systemically. Considering that the procedure of infection with in vitro transcripts was not reliable enough due to low infection efficiency we decided to consider the standardization of viral delivery to the plants by agroinfection, producing a true VIGS vector. The molecular manipulation strategy for the production of a GALV-based VIGS vector was then developed. All these four strategies contributed to the pool of available in vivo tools for functional genomics of the valuable grapevine crop. They also opened several exciting research avenues to pursue in the near future.
Development of transient gene silencing tools in grapevine
LOVATO, Arianna
2012-01-01
Abstract
Establishment of functional genomics in Vitis ssp. is still challenging, due to the lack of reliable high-throughput tools for grapevine transformation. For instance, A. tumefaciens-mediated stable transformation is possible, but it is time consuming and the transformation efficiency is rather low. The aim of this work is the development of four different post-transcriptional gene silencing strategies for functional genomics in Vitis riparia cv. Gloire de Montpellier for future studies on the function of genes putatively related to pathogen resistance, being this species resistant to many pathogens such as Plasmopara viticola. The first strategy is based on the direct administration of small interfering RNAs (siRNAs), different in length, and dsRNAs to V. riparia and N. benthamiana leaves, to test their effectiveness in downregulation of target genes. In particular, different populations of short RNAs (sRNAs) against the PR-10 gene family were supplied to V. riparia leaves while others designed against the phytoene desaturase gene (PDS) were administered to N. benthamiana leaves. In addition, siRNAs or 2’-O-methylated synthetic siRNAs against the Green Fluorescent Protein (GFP) gene were delivered to N. benthamiana plants stably transformed with the GFP marker gene (GFP16C plants), to test their activity in gene silencing induction against this gene. Unfortunately, results obtained by direct delivery of different small RNAs to V. riparia and N. benthamiana plants were controversial and not easily interpretable. More evidences are still needed to determine the role of siRNA characteristics and concentration, and to find the best delivery strategy for the induction of post-transcriptional gene silencing in plants. The second approach aimed to test whether the silencing signal can spread systemically from grapevine hairy roots to the aerial parts of the plant, resulting in the downregulation of the target gene. Some systemic spreading of the silencing signal to the non-transgenic shoots of transformed plants was already observed in Lotus japonica, Medicago truncatula and Arabidopsis thaliana plants, though the silencing in the leaves was not complete. V. vinifera hairy roots have been obtained by A. rhizogenes infection; the ability of the silencing signal to spread to shoots has not been investigated in grape. In our study, V. riparia leaves, cuttings and plantlets were infected with A. rhizogenes ARqua1, transformed with a pRedRoot vector harbouring a marker gene encoding the red fluorescence protein (DsRed1), to find the optimal transformation conditions and to evaluate V. riparia susceptibility. Then, V. riparia infections were carried out using A. rhizogenes strain ARqua1 transformed with a pRedRoot vector containing a 35S hairpin construct against the grapevine PDS gene to evaluate possible plant phenotypic alterations. iii The third approach is based on transient transformation of V. riparia leaves through syringemediated vacuum application. Preliminary experiments were conducted using the A. tumefaciens EHA105 strain transformed either with a pBin19 vector harbouring a hairpin sequence against the Vitis riparia PDS gene (35S:PDShp) or with an empty pBin19 vector, as a negative control. Severe mechanical damage was observed in all infiltrated leaves; to evaluate if this damage was related to the Vitis genotype or to the technique, agroinfiltrations were performed in leaves and plantlets of different V. vinifera cultivars. Two different A. tumefaciens strains (EHA105 and C58C1) transformed with pBin61 vector carrying a GUSi expression cassette (35S:GUSi) were used for transient transformation by syringe or pump-mediated vacuum application. This experiment permitted the evaluation of the optimal transformation conditions, difference in efficiency between the bacterial strains and Vitis susceptibility. The last approach consists in the development of a VIGS system using a GALV (Grapevine algerian latent virus)-based vector. Preliminary infections carried out with in vitro-produced viral RNAs revealed that GALV infective transcripts could infect and spread systemically. Considering that the procedure of infection with in vitro transcripts was not reliable enough due to low infection efficiency we decided to consider the standardization of viral delivery to the plants by agroinfection, producing a true VIGS vector. The molecular manipulation strategy for the production of a GALV-based VIGS vector was then developed. All these four strategies contributed to the pool of available in vivo tools for functional genomics of the valuable grapevine crop. They also opened several exciting research avenues to pursue in the near future.File | Dimensione | Formato | |
---|---|---|---|
tesi Lovato.pdf
non disponibili
Tipologia:
Abstract
Licenza:
Accesso ristretto
Dimensione
8.08 MB
Formato
Adobe PDF
|
8.08 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.