Il mieloma multiplo (MM) è un disordine clonale delle plasmacellule, che rappresenta approssimativamente il 10% di tutte le neoplasie ematologiche. Lo sviluppo del MM dipende dalle interazioni con il microambiente del midollo osseo (BM), che supporta la crescita, la sopravvivenza e la resistenza ai farmaci delle plasmacellule attraverso l’adesione cellula-cellula e il rilascio di un grande numero di fattori di crescita, come l’interleuchina-6 (IL-6) e il fattore di crescita dell’endotelio vascolare (VEGF). Alcuni eventi patogenetici cruciali nel MM, come la neoangiogenesi e l’osteolisi, sono indotti all’interno del BM dalle stesse cellule di MM. Nonostante la chemioterapia standard sia spesso efficace nel ridurre la malattia, la remissione completa è raggiungibile solo in una minoranza di pazienti e le risposte cliniche sono raramente persistenti. Studi recenti mostrano che un numero altamente significativo di pazienti può ottenere buone risposte cliniche con protocolli terapeutici basati sull’utilizzo di agenti anti-angiogenici o biologici, come la talidomide, lenalidomide e il bortezomib, specialmente quando utilizzati in combinazione con il desametasone. Nonostante ciò, il MM rimane ancora una patologia incurabile e perciò l’identificazione di nuovi obiettivi molecolari è cruciale per lo sviluppo di strategie terapeutiche innovative, che dovrebbero non solo avere effetti diretti sulle cellule neoplastiche, ma anche indiretti agendo sul microambiente midollare che supporta il MM. A questo scopo, l’utilizzo di modelli murini con un microambiente di sviluppo della malattia molto simile a quello umano risulta utile per prevedere gli effetti clinici nei pazienti. Tra questi, il 5TMM è di particolare interesse, in quanto origina da un MM sviluppato spontaneamente in topi anziani del ceppo C57BL/KalwRij. Le caratteristiche di tale modello, che comprendono la localizzazione midollare delle cellule di MM, la presenza della componente monoclonale nel siero, l’induzione di osteolisi e la neoangiogenesi nel midollo, lo rendono molto simile al MM umano. In questo studio, sono stati esaminati gli effetti in vitro di diversi nuovi farmaci in fase di sviluppo della Ditta Novartis su linee cellulari umane e murine e sono state testate queste molecole in vivo nel modello 5T33MM. La molecola T8 induce una riduzione dell’attività cellulare solo per alte concentrazioni, con un valore di IC50 di 4315 nM dopo 48 ore di incubazione; per questa ragione non è stato utilizzato negli studi successivi. Come atteso, la molecola N80 non mostra alcuna attività citotossica sulle cellule trattate rispetto ai controlli. Comunque, quando è stato testata in vivo per un trattamento preventivo e curativo, è stata dimostrata un’immediata tossicità e la riduzione del carico tumorale. Non si evidenziano differenze nei livelli di IgG2b monoclonale nel siero dei topi trattati con N80 utilizzando il protocollo terapeutico rispetto ai controlli, mentre il protocollo preventivo induce una riduzione statisticamente significativa nei livelli di IgG2b. L9, N0 e N2 sono in grado d’inibire l’attività delle cellule di MM in vitro. Si sono dimostrati i composti più potenti, con valori nanomolari di IC50 e in grado di indurre una riduzione della vitalità cellulare, correlata con l’apoptosi cellulare in vitro. Queste molecole riducono la produzione della componente monoclonale e i livelli sierici di VEGF in vivo. Quindi, queste molecole sono in grado di ridurre il carico tumorale, sebbene non modifichino la sopravvivenza dei topi nel modello 5T33vtMM con gli attuali protocolli terapeutici utilizzati.

Multiple myeloma (MM) is a clonal plasma cell disorder accounting for approximately 10% of all haematological malignancies. MM development dramatically depends on plasma cell interactions with bone marrow (BM) microenvironment, which supports plasma cell growth, survival and drug resistance through cell-cell adhesion and release of a large number of growth factors, including interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF). Some crucial pathogenetic events in MM, such as neoangiogenesis and osteolysis, are ignited inside BM by MM cells themselves. Although standard chemotherapy is usually effective in lowering the disease burden, complete remission is achievable only in a minority of patients, and clinical responses are rarely persistent. Recent studies showed that a significantly higher number of patients may achieve clinical major responses when treated with therapeutic schedules based on the use of anti-angiogenic or biological agents, such as thalidomide, lenalidomide and bortezomib, especially when employed in combination with dexamethasone. However, MM still remains an incurable disease. Therefore, the identification of new key targets is crucial for the development of innovative therapeutic strategies, which should have not only direct effects on MM cells, but also interfering effects on MM-supporting BM microenvironment. To this aim, the use of mouse models that may closely resemble human MM development are mostly useful to foresee the clinical effects in patients. Some kinds of murine MM, such as 5TMM, originate from spontaneously developed MM in elderly mice of C57BL/KalwRij strain. The characteristics of these models, including the localization of the MM cells in the BM, the presence of serum M-component, the induction of osteolytic bone disease and neo-angiogenesis in the BM, are similar to human MM. In this study, we examined the effects of several new drugs in different murine and human myeloma cell lines and we tested these molecules in vivo in the murine 5T33MM model. T8 induced a reduction in cell activity only for high concentrations of molecule, with IC50 value of 4315 nM after 48 hours of incubation; for this reason it was not used for further studies. As expected, N80 did not show any cytotoxic activity on treated cells as compared to controls. However, when tested in vivo for a preventive and curative treatment, N80 showed immediate toxicity and reduction of the tumor burden. There were not differences in IgG2b levels in serum of mice treated with N80 using the therapeutical schedule as compared to controls, while the preventive schedule induced a statistically significant reduction in IgG2b levels. L9, N0 and N2 were able to inhibit the activity of MM cells in vitro. They appeared the most potent compounds, with nanomolar IC50 values, capable of reducing cell viability, in correlation with cell apoptosis in vitro. These molecules reduced the M-component and VEGF serum levels in vivo and eventually the tumor burden, although they did not modify significantly, with the treatment schedules employed, the overall survival in 5T33vtMM model.

Study of the efficacy of new drugs in a mouse model of multiple myeloma

TINELLI, Martina
2012-01-01

Abstract

Multiple myeloma (MM) is a clonal plasma cell disorder accounting for approximately 10% of all haematological malignancies. MM development dramatically depends on plasma cell interactions with bone marrow (BM) microenvironment, which supports plasma cell growth, survival and drug resistance through cell-cell adhesion and release of a large number of growth factors, including interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF). Some crucial pathogenetic events in MM, such as neoangiogenesis and osteolysis, are ignited inside BM by MM cells themselves. Although standard chemotherapy is usually effective in lowering the disease burden, complete remission is achievable only in a minority of patients, and clinical responses are rarely persistent. Recent studies showed that a significantly higher number of patients may achieve clinical major responses when treated with therapeutic schedules based on the use of anti-angiogenic or biological agents, such as thalidomide, lenalidomide and bortezomib, especially when employed in combination with dexamethasone. However, MM still remains an incurable disease. Therefore, the identification of new key targets is crucial for the development of innovative therapeutic strategies, which should have not only direct effects on MM cells, but also interfering effects on MM-supporting BM microenvironment. To this aim, the use of mouse models that may closely resemble human MM development are mostly useful to foresee the clinical effects in patients. Some kinds of murine MM, such as 5TMM, originate from spontaneously developed MM in elderly mice of C57BL/KalwRij strain. The characteristics of these models, including the localization of the MM cells in the BM, the presence of serum M-component, the induction of osteolytic bone disease and neo-angiogenesis in the BM, are similar to human MM. In this study, we examined the effects of several new drugs in different murine and human myeloma cell lines and we tested these molecules in vivo in the murine 5T33MM model. T8 induced a reduction in cell activity only for high concentrations of molecule, with IC50 value of 4315 nM after 48 hours of incubation; for this reason it was not used for further studies. As expected, N80 did not show any cytotoxic activity on treated cells as compared to controls. However, when tested in vivo for a preventive and curative treatment, N80 showed immediate toxicity and reduction of the tumor burden. There were not differences in IgG2b levels in serum of mice treated with N80 using the therapeutical schedule as compared to controls, while the preventive schedule induced a statistically significant reduction in IgG2b levels. L9, N0 and N2 were able to inhibit the activity of MM cells in vitro. They appeared the most potent compounds, with nanomolar IC50 values, capable of reducing cell viability, in correlation with cell apoptosis in vitro. These molecules reduced the M-component and VEGF serum levels in vivo and eventually the tumor burden, although they did not modify significantly, with the treatment schedules employed, the overall survival in 5T33vtMM model.
2012
myeloma; drug; mouse
Il mieloma multiplo (MM) è un disordine clonale delle plasmacellule, che rappresenta approssimativamente il 10% di tutte le neoplasie ematologiche. Lo sviluppo del MM dipende dalle interazioni con il microambiente del midollo osseo (BM), che supporta la crescita, la sopravvivenza e la resistenza ai farmaci delle plasmacellule attraverso l’adesione cellula-cellula e il rilascio di un grande numero di fattori di crescita, come l’interleuchina-6 (IL-6) e il fattore di crescita dell’endotelio vascolare (VEGF). Alcuni eventi patogenetici cruciali nel MM, come la neoangiogenesi e l’osteolisi, sono indotti all’interno del BM dalle stesse cellule di MM. Nonostante la chemioterapia standard sia spesso efficace nel ridurre la malattia, la remissione completa è raggiungibile solo in una minoranza di pazienti e le risposte cliniche sono raramente persistenti. Studi recenti mostrano che un numero altamente significativo di pazienti può ottenere buone risposte cliniche con protocolli terapeutici basati sull’utilizzo di agenti anti-angiogenici o biologici, come la talidomide, lenalidomide e il bortezomib, specialmente quando utilizzati in combinazione con il desametasone. Nonostante ciò, il MM rimane ancora una patologia incurabile e perciò l’identificazione di nuovi obiettivi molecolari è cruciale per lo sviluppo di strategie terapeutiche innovative, che dovrebbero non solo avere effetti diretti sulle cellule neoplastiche, ma anche indiretti agendo sul microambiente midollare che supporta il MM. A questo scopo, l’utilizzo di modelli murini con un microambiente di sviluppo della malattia molto simile a quello umano risulta utile per prevedere gli effetti clinici nei pazienti. Tra questi, il 5TMM è di particolare interesse, in quanto origina da un MM sviluppato spontaneamente in topi anziani del ceppo C57BL/KalwRij. Le caratteristiche di tale modello, che comprendono la localizzazione midollare delle cellule di MM, la presenza della componente monoclonale nel siero, l’induzione di osteolisi e la neoangiogenesi nel midollo, lo rendono molto simile al MM umano. In questo studio, sono stati esaminati gli effetti in vitro di diversi nuovi farmaci in fase di sviluppo della Ditta Novartis su linee cellulari umane e murine e sono state testate queste molecole in vivo nel modello 5T33MM. La molecola T8 induce una riduzione dell’attività cellulare solo per alte concentrazioni, con un valore di IC50 di 4315 nM dopo 48 ore di incubazione; per questa ragione non è stato utilizzato negli studi successivi. Come atteso, la molecola N80 non mostra alcuna attività citotossica sulle cellule trattate rispetto ai controlli. Comunque, quando è stato testata in vivo per un trattamento preventivo e curativo, è stata dimostrata un’immediata tossicità e la riduzione del carico tumorale. Non si evidenziano differenze nei livelli di IgG2b monoclonale nel siero dei topi trattati con N80 utilizzando il protocollo terapeutico rispetto ai controlli, mentre il protocollo preventivo induce una riduzione statisticamente significativa nei livelli di IgG2b. L9, N0 e N2 sono in grado d’inibire l’attività delle cellule di MM in vitro. Si sono dimostrati i composti più potenti, con valori nanomolari di IC50 e in grado di indurre una riduzione della vitalità cellulare, correlata con l’apoptosi cellulare in vitro. Queste molecole riducono la produzione della componente monoclonale e i livelli sierici di VEGF in vivo. Quindi, queste molecole sono in grado di ridurre il carico tumorale, sebbene non modifichino la sopravvivenza dei topi nel modello 5T33vtMM con gli attuali protocolli terapeutici utilizzati.
File in questo prodotto:
File Dimensione Formato  
Tinelli PhD thesis per UGov.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: Dominio pubblico
Dimensione 2.31 MB
Formato Adobe PDF
2.31 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/392754
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact