L’iperossaluria primaria di tipo 1 (PH1) è una malattia autosomica recessiva rara caratterizzata dal deposito di cristalli insolubili di ossalato di calcio prima nei reni e nel tratto urinario ed in seguito, in assenza di un appropriato trattamento, in tutto il resto del corpo. PH1 è causata da un deficit funzionale di alanina:gliossilato aminotransferasi umana (AGT), un enzima piridossal 5’-fosfato (PLP) dipendente che converte il gliossilato in glicina, prevenendo in tal modo la ossidazione del gliossilato ad ossalato e quindi la formazione di cristalli insolubili di ossalato di calcio. L’AGT normale è codificato dal gene AGXT che esiste nella popolazione umana in 2 varianti polimorfiche: l’allele maggiore (AGT-Ma) e l’allele minore (AGT-Mi), quest’ultimo caratterizzato da due mutazioni puntiformi, che portano alla sostituzione della prolina 11 con una leucina e della isoleucina 340 con una metionina, e da una duplicazione di 74 paia di basi nell’introne 1. Sebbene la presenza dell’allele minore non sia in sè patogenica, questa rende però l’enzima più suscettibile all’effetto di alcune mutazioni che non sarebbero patogeniche se associate all’allele minore. Perciò, c’è un grande interesse nel definire le proprietà dell’AGT-Mi, in quanto punto di partenza per capire il meccanismo molecolare alla base del sinergismo tra l’AGT-Mi e le mutazioni patogeniche che cosegregano con esso. In questo lavoro, tramite un approccio “in vitro” su proteine purificate, sono stati studiati gli effetti delle 2 mutazioni combinate polimorfiche proprie dell’allele minore, sulle caratteristiche biochimiche dell’AGT, così come di 2 mutazioni che provacono PH1 se associate all’allele minore: F152I e G170R. I dati ottenuti hanno evidenziato che: 1) AGT-Mi mostra caratteristiche spettroscopiche, parametri cinetici, e affinità per il PLP simili a quelle di AGT-Ma. Tuttavia, la sua struttura dimerica è caratterizzata da una bassa resistenza allo stress sia chimico che termico. Questi effetti sembrano essere dovuti alla mutazione P11L dal momento che tale variante mostra un profilo di denaturazione comparabile con quello di AGT-Mi; 2) La mutazione patgenica F152I porta ad una diminuzione di ca. 200 volte nell’affinità dell’AGT per la piridossamina 5-fosfato (PMP) e quando associata all’allele minore, anche ad una inattivazione tempo dipendente ed ad una aggregazione a temperatura fisiologica.; 3) La mutazione patogenica G170R non incide né sulle proprietà spettroscopiche né su quelle cinetiche dell’AGT-Mi in condizioni native. D’altro canto, rende la struttura dimerica dell’apoG170R-Mi più sucettibile alla dissociazione rispetto al corrispondente apoAGT-Mi. Riassumendo i dati ottenuti: (i) rivelano le differenze tra AGT-Ma e AGT-Mi; (ii) gettano luce sul difetto molecolare associato alle varianti F152I-Mi e G170R-Mi; (iii) permettono di fare ipotesi sulla risposta alla terapia con piridossina osservata nei pazienti recanti queste 2 mutazioni.
Primary hyperoxaluria type 1 (PH1) is a rare autosomal recessive disorder characterized by the deposition of insoluble calcium oxalate crystals at first in the kidneys and urinary tract and then, in the absence of appropriate treatments, in the whole body. PH1 is caused by the deficiency of human liver peroxisomal alanine:glyoxylate aminotransferase (AGT), a pyridoxal 5'-phosphate (PLP)-dependent enzyme that converts glyoxylate to glycine, thus preventing glyoxylate oxidation to oxalate and therefore the formation of calcium oxalate. Normal human AGT is encoded by the AGXT gene that exists in human populations in two polymorphic forms: the major allele (AGT-Ma) and the minor allele (AGT-Mi), which is characterized by two point mutations, leading to the Pro11Leu and Ile340Met substitutions, and a 74 bp-duplication in intron 1. Although the presence of the minor allele polymorphism is not pathogenic “per se”, it makes AGT more susceptible to the effect of some PH1-causing mutation that are expected to be not pathogenic when associated with the major allele. Thus, there is a great interest in defining the properties of AGT-Mi, as the base to unravel the molecular mechanism underlying the synergism between AGT-Mi and the pathogenic mutations that cosegregate with it. In this work, by an “in vitro” approach on purified proteins, we studied the effects on the biochemical features of AGT of the two combined polymorphic mutations typical of the minor allele as well as of two PH1-causing mutations associated with the minor allele, Phe152Ile and Gly170Arg. The data obtained have shown that: 1) AGT-Mi displays spectral features, kinetic parameters, and PLP binding affinity similar to those of AGT-Ma. However, its dimeric structure is characterized by a low resistance to both chemical and thermal stress. This appears to be due to the P11L mutation since the P11L variant exhibits a denaturation pattern comparable to that of AGT-Mi; 2) The PH1-causing F152I mutation leads to a ~200 fold decrease in the affinity of AGT for pyridoxamine 5’-phosphate and, when associated with the minor allele polymorphism, to a time-dependent inactivation and aggregation at physiological temperature; 3) The pathogenic mutation G170R does not affect neither the spectroscopic nor the kinetic properties of AGT-Mi under native conditions. However, it makes the dimeric structure of apoG170R-Mi more susceptible to dissociation than the corresponding apoAGT-Mi. Overall, the obtained data: (i) reveal the biochemical differences between AGT-Ma and AGT-Mi; (ii) allow to shed light on the molecular defect associated with the F152-Mi and the G170R-Mi variants; (iii) permit to speculate on the responsiveness to pyridoxine therapy of the patients bearing these mutations.
SHEDDING LIGHT ON THE MOLECULAR DEFECT OF TWOALANINE:GLYOXYLATE AMINOTRANSFERASE PATHOGENIC VARIANTS:A BIOCHEMICAL APPROACH.
LORENZETTO, Antonio
2011-01-01
Abstract
Primary hyperoxaluria type 1 (PH1) is a rare autosomal recessive disorder characterized by the deposition of insoluble calcium oxalate crystals at first in the kidneys and urinary tract and then, in the absence of appropriate treatments, in the whole body. PH1 is caused by the deficiency of human liver peroxisomal alanine:glyoxylate aminotransferase (AGT), a pyridoxal 5'-phosphate (PLP)-dependent enzyme that converts glyoxylate to glycine, thus preventing glyoxylate oxidation to oxalate and therefore the formation of calcium oxalate. Normal human AGT is encoded by the AGXT gene that exists in human populations in two polymorphic forms: the major allele (AGT-Ma) and the minor allele (AGT-Mi), which is characterized by two point mutations, leading to the Pro11Leu and Ile340Met substitutions, and a 74 bp-duplication in intron 1. Although the presence of the minor allele polymorphism is not pathogenic “per se”, it makes AGT more susceptible to the effect of some PH1-causing mutation that are expected to be not pathogenic when associated with the major allele. Thus, there is a great interest in defining the properties of AGT-Mi, as the base to unravel the molecular mechanism underlying the synergism between AGT-Mi and the pathogenic mutations that cosegregate with it. In this work, by an “in vitro” approach on purified proteins, we studied the effects on the biochemical features of AGT of the two combined polymorphic mutations typical of the minor allele as well as of two PH1-causing mutations associated with the minor allele, Phe152Ile and Gly170Arg. The data obtained have shown that: 1) AGT-Mi displays spectral features, kinetic parameters, and PLP binding affinity similar to those of AGT-Ma. However, its dimeric structure is characterized by a low resistance to both chemical and thermal stress. This appears to be due to the P11L mutation since the P11L variant exhibits a denaturation pattern comparable to that of AGT-Mi; 2) The PH1-causing F152I mutation leads to a ~200 fold decrease in the affinity of AGT for pyridoxamine 5’-phosphate and, when associated with the minor allele polymorphism, to a time-dependent inactivation and aggregation at physiological temperature; 3) The pathogenic mutation G170R does not affect neither the spectroscopic nor the kinetic properties of AGT-Mi under native conditions. However, it makes the dimeric structure of apoG170R-Mi more susceptible to dissociation than the corresponding apoAGT-Mi. Overall, the obtained data: (i) reveal the biochemical differences between AGT-Ma and AGT-Mi; (ii) allow to shed light on the molecular defect associated with the F152-Mi and the G170R-Mi variants; (iii) permit to speculate on the responsiveness to pyridoxine therapy of the patients bearing these mutations.File | Dimensione | Formato | |
---|---|---|---|
Antonio Lorenzetto - Tesi Dottorato.pdf
non disponibili
Tipologia:
Tesi di dottorato
Licenza:
Dominio pubblico
Dimensione
2.49 MB
Formato
Adobe PDF
|
2.49 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.