La protezione dei corpi d’acqua superficiali dagli scarichi urbani e industriali richiede una legislazione che ponga dei limiti sia sugli inquinanti convenzionali che sui microiqnuinanti prioritari, oltre all’uso delle migliori tecnologie disponibili. A tal proposito, conoscere quail sono i limiti che tali tecnologie permettono di raggiungere è particolarmente importante nel caso in cui standard di qualità molto elevati e limiti a livello di μg/L or pg/L debbano essere raggiunti. Ad oggi la tecnologia dei bioreattori a membrane è stata proposta come una delle migliori tecnologie disponibili nel trattamento di scarichi industriali (permettendo anche il riutilizzo delle acque) e ha conosciuto una grande applicazione nell’ultimo decennio. Un campo relativamente nuovo per l’applicazione degli MBR è il trattamento di acque petrolchimiche e di raffineria. Nel presente lavoro di tesi è stato preso in esame un caso di studio reale del trattamento di acque reflue petrolchimiche: la ricerca è stata effettuata sia a livello dell’impianto reale in piena scala, sia attraverso sperimentazione su scala pilota. In particolare le acque reflue sono originate da una area petrolchimica molto ampia situata ai bordi della Laguna di Venezia, uno dei corpi idrici più sensibili presenti al mondo. In accordo con i limiti imposti dalla speciale legislazione emanata per la protezione della Laguna, il bioreattore a membrane deve garantire le migliori rimozioni sia nel trattamento di inquinanti convenzionali che prioritari (ad esempio metalli pesanti, cianuri e PCB). Inoltre negli ultimi anni il bioreattore a membrane è soggetto a bassi ma variabili carichi influenti imputabili alla crisi e alla variabilità delle produzioni chimiche nell’area di interesse. Il lavoro sperimentale è stato condotto perlopiù a scala pilota, su un bioreattore a membrane del volume di 4.2 m3, operate in parallelo con l’impianto MBR in piena scala. Il primo obiettivo di tale lavoro è stato studiare l’effetto dei bassi e variabili carichi al bioreattore, il cui volume è adeguato per carico idraulico da trattare ma over dimensinato per quanto oncerne i carichi di massa influenti. In particolare sono state valutate le conseguenze della bassa attività metabolica della biomassa fino a trovare le configurazioni del reattore MBR più adatte ai carichi da trattare. A tale scopo, una volta validato l’impianto pilota come rappresentativo dell’impianto piena scala, quattro periodi sperimentali sono stati eseguiti con l’obiettivo di: aumentare la frazione di biomassa attiva del fango attivo (Run II e Run III), eliminare i volume superflui presenti nel bioreattore (Run IV and Run V). Inoltre studi specifici sono stati affrontati sulla potenziale inibizione di alcuni flussi e su una possible soluzione operativa per aumentare il potenziale di nitrificazione dell’impianto. Per quanto riguarda lo studio degli inquinanti non convenzionali l’attenzione è stata focalizzata su due inquinanti come cianuri e PCB e sulle massime potenzialità del bioreattore a membrane nella loro rimozione, intesa come limiti raggiungibili da una BAT nel trattamento di acque petrolchimiche con le caratteristiche del caso di studio analizzato. Oltre alla presenza e alla loro speciazione nelle acque reflue in esame, sono stati studiati i meccanismi e le efficienze di rimozione nell’unità di trattamento chimico fisica e nel bioreattore a membrana. Per quanto riguarda la sperimentazione su scala pilota, è stato invece valutato l’effetto delle diverse condizioni di esercizio sui meccanismi di biodegradazione e bioassorbimento. I risultati dell’attività sperimentale sull’ impianto pilota hanno mostrato il positive effetto dell’deguato carico organico sull’aumento della frazione di biomassa attiva: di consequenza lo studio è stato volto a ottimizzare il rapporto F/M al bioreattore. In particolare il run V ha visto il raddoppio dei carichi influenti, simulando così le condizioni di riduzione di una linea di trattamento nell’impianto piena scala. In questo casoanche l’attività di nitrificazione è raddoppiata dimostrando che l’attività autotrofa è solitamente substrato-limitata. Tuttavia, allo scopo di far fronte alle variazioni di carico azotato e al possible incremento di flussi inibenti come quello di spent caustico (che ha dimostrato riduzione nella nitrificazione fino al 60%) o l’alimentazione di nuovi flussi (ad esempio quello di raffineria), un approccio più adatto è quello dell’arricchimento con nitrificanti ottenuti dalla crescita in batch che hanno permesso di incrementare il potenziale del bioreattore pari di 0.1 gN/kgVSS*h in 10-15 giorni. Il fango arricchito di nitrificanti, alimentato al bioreattore a membrane, ha infatti dimostrato di riuscire a trattare carichi fino a NLR di 0.022 kgN/m3*d (contro NLR di 0.008 kgN/m3*d in condizioni normali). Lo studio della rimozione di cianuri nell’impianto pilota e piena scala ha dimostrato come I cianuri liberi siano completamente biodegradati fino a raggiungere limiti inferiori o vicini al limite di quantificazione di 2 μg/L. Dall’altro lato complessi forti del cianuro (probabilemnte nella forma di ferrocianuri) risultano inerti al trattamento biologico e sono soggetti a bioassorbimento solo per il 10% della concentrazione influente. Questi risultati sono stati confermati da test batch condotti a scala laboratorio. Tuttavia bilanci di massa nell’impianto pilota hanno dimostrato come le velocità di rimozione per cianuri liberi è un ordine di grandezza inferiore rispetto a quella osservata nei test batch (6-11 μgCN/gVSS/h). Quessto può trovare spiegazione nel fatto che le basse concentrazioni influenti al bioreattore hanno influenzato le cinetiche di biodegradazione (vicine ai valori di semisaturazione) stimate nell’intorno di 0.65 μgCN/gVSS/h. Dall’altro lato i dosaggi di substrato organico durante l’attività sperimentale su impianto pilota hanno dimostrato miglioramenti nella rimozione di cianuri totali probabilmente dovuti alla maggiore attività della biomassa in termini di biodegradabilità e bioassorbimentoe e impattando positivamente sui fenomeni di cometabolismo ad essi legati. Per quanto riguarda lo studio dei PCB, buone efficienze di rimozione sono ottentute sia nel trattamento primario (60-70%) sia in quello biologico (50-60%) permettendo così all’impianto piena scala di raggiungere rimozioni totali nell’intorno dell’ 80%. In particolare l’efficienza di rimozione nel trattamento primario dipende dalla frazione di particolato nelle acque influenti, mentre una rimozione lineare può essere osservata nel bioreattore a membrane in relazione alle concentrazioni influenti al reattore. Inoltre le concentrazioni effluenti si trovano in un range stabile di concentrazione che varia a seconda del singolo congenere e che possono quindi essere assunte come limite inferiore raggiungibile dall’MBR. Infine è stato oggetto di studio il ruolo del fango “clogging” nella rimozione dei metalli: il contenuto di metalli in questa biomassa è stato paragonato alle rimozione che si ottengono nella biomassa sospesa del bioreattore a membrane. Possibili meccanismi di bioaccumulo-bioprecipitazione sono stati ipotizzati per alcuni metalli il cui contenuto nel fango di clogging appare superiore in confronto ai livelli riscontrati nel fango attivo convenzionale. In particolare i metalli più accumulati sono, in ordine decrescente, As>Ni>Cd>Fe. Il possible rilascio di tali metalli durante i lavaggi chimici della membrana è stato studiato con test di laboratorio: i risultati mostrano che tale rilascio è solitamente nell’ordine del 5-10% del contentuto del singolo metallo nel fango di clogging ma le specie di metalli maggiormente rilasciate non sono in correlazione con le specie per cui si sono osservati i meccanismi di bioaccumulo.

The protection of sensitive water bodies is today claiming for stricter legislation to protect the environment from discharge of conventional and priority pollutants present in industrial and urban wastewaters. The use of the Best Available Techniques (BAT) is advised by national and international regulation: at this regard the knowledge of the limits achievable by the different technologies is of great importance especially where high quality of effluent wastewaters is required, including concentrations of discharged nonconventional pollutants in the order of some μg/L or pg/L. To date membrane bioreactors (MBR) have been presented as one of the BAT in the treatment of certain industrial discharges (allowing also for water reuse) and have known a widespread applications in the last decade. A relatively new area for large MBRs concerns the treatment of the wastewaters from oil refineries and petrochemical industries. This work presents the treatment of real petrochemical wastewater taking into account both pilot scale experimental research and full scale investigations. In particular, the wastewater came from a large petrochemical area located in the Venice area, one of the world's most sensitive water bodies. Even in accordance to the special laws for the protection of the Lagoon, the membrane bioreactor is called for the best removal of conventional and nonconventional pollutants, such as heavy metals, cyanides and PCB. In addition, over the last decades the MBR is subject to low, but very changeable, loading related to the crisis and unsteadiness of the chemical productions. The main experimental work was carried out by a pilot MBR with reaction volume of 4.2 m3, operating in parallel with the full scale MBR. The first objective of the experimental work was to study the effect of low and changeable loadings on a membrane bioreactor, adequate for hydraulic loadings but very oversized for mass loadings. In particular, the consequences of the slower metabolic activity of the biomass were evaluated, even to find the best reactor configuration adequate to the real influent loadings. For this purpose, once validated the pilot MBR as representative for the full scale plant, four experimental runs were carried out aiming at: increase the fraction of active biomass within the activated sludge (Run II and Run III); better use the excess bioreaction volume (Run IV and Run V) by finally creating an hybrid MBR, which realizes the sequencing enrichment of nitrifying biomass in the continuous WWTP. In addition, specific studies concerned the inhibitory effect of petrochemical (i.e. caustic spent) fluxes on nitrifying activity and on feasible solution to increase the nitrification potential of the plant. As far as nonconventional pollutants are concerned, the work focused on cyanide and PCB compounds and the maximal treatment potentials, intended as the actual limit achievable by the MBR as a BAT for petrochemical wastewater treatment. Besides the occurrence and chemical-physical forms in the petrochemical wastewater; the mechanisms and removal efficiencies of the initial clariflocculation and membrane bioreactor were studied. As far as concern the pilot plant, the effects of different operating conditions to enhance the mechanism of biodegradation and bioadsorption were assessed and the feasibility at full scale was studied. Results from experimental pilot plant activity showed the effect of the proper organic loading on the fraction of the active biomass. Therefore, the study was addressed towards the study of the best feasible approaches to increase the F/M . In particular, the best use of surplus volumes of the biological unit (run IV), then the doubling of the load applied at the biological reactor (run V) (that corresponds to the elimination of one line of treatment in the full scale plant). In this last case the nitrification activity was also doubled, so as to demonstrate that the autotrophic activity is currentlysubstrate-limited and not influenced by inhibition. However in order to cope with nitrogen variability, possible increase of inhibiting fluxes (i.e. spent caustic that reveals to produce nitrification inhibition up to 60%) or collection of new fluxes (i.e. refinery wastewater), a more feasible approach was the enrichment of the reactor with nitrifiers obtained in the batch growth. An increase of 0.1 gN/kgVSS*h in the nitrification potential of the overall biomass in the reactor could be achieved within 10-15 days. Sludge enriched with nitrifiers, moved to the continuously fed MBR, demonstrated an increase of nitrification potential up to a NLR of 0.022 kgN/m3*d (versus a NLR of 0.008 kgN/m3*d applied in normal operation), increased proportionally with the added nitrifiers. Removal of free cyanide in pilot and full scale MBR showed that free cyanides are biodegraded up to the the limit of quantification (2 μg/L). On the other hand strong complex cyanide (probably in the form of ferricyanide) are inert to the biodegration and undergo event to low adsorption (10%). These results were confirmed by specific lab-scale batch tests.. However mass balance in the pilot MBR shows rates of removal of free cyanides one order of magnitude lower of the one found in the batch test (6-11 μgCN/gVSS/h). This can be explained with the lower concentrations influent to the bioreactor that influenced the biodegradation kinetics (being close to the semisaturational constrant) estimated in the around of 0.65 μgCN/gVSS/h. On the other side the dosage of organic substrate to the aerobic compartment during the experimental activity improved the removal of total cyanide probably due to increased activity of biomass (biodegradation and bioadsorption potential) and related co-metabolism processes. As far as concern treatment of PCB good efficiency of removal are obtained in both primary (60-70%) and secondary treatment (50-60%) obtaining an overall efficiency of about 80%. In particular an efficiency of removal in clariflocculation depends on the particulate fraction in the influent wastewater, while a linear removal in the biological treatment is obtained in relation to the influent concentrations at the reactor. In addition, the effluent concentration was always within a stable range of concentration that varies depending on the single congener and that can be assumed as the lower limit value achievable by the MBR. This shows that the membrane bioreactor have an additional effect on the removal of PCB up to a certain concentration which can be assumed as actual limit of the BAT-MBR. Finally the role of the clogging sludge of a membrane in the removal of metals was investigated, and compared with the removal that occurs in the activated sludge of the biological plant. Possible enhancement of bioaccumulation-bioprecipitation mechanisms in this layer was proposed. In particular heavy metals more accumulated in the clogging sludge are in the order As>Ni>Cd>Fe. The release of the metals present in the clogging sludge during acid and oxidazing chemical cleaning was evaluated trough batch test: results show that release of the metals is usually in the range of 5-10% of the metal content of the clogging sludge, but it is not directly related with the biosorption in/on the clogging sludge.

Membrane bioreactors for advanced treatment of wastewater from a large petrochemical industrial area

DI FABIO, Silvia
2011-01-01

Abstract

The protection of sensitive water bodies is today claiming for stricter legislation to protect the environment from discharge of conventional and priority pollutants present in industrial and urban wastewaters. The use of the Best Available Techniques (BAT) is advised by national and international regulation: at this regard the knowledge of the limits achievable by the different technologies is of great importance especially where high quality of effluent wastewaters is required, including concentrations of discharged nonconventional pollutants in the order of some μg/L or pg/L. To date membrane bioreactors (MBR) have been presented as one of the BAT in the treatment of certain industrial discharges (allowing also for water reuse) and have known a widespread applications in the last decade. A relatively new area for large MBRs concerns the treatment of the wastewaters from oil refineries and petrochemical industries. This work presents the treatment of real petrochemical wastewater taking into account both pilot scale experimental research and full scale investigations. In particular, the wastewater came from a large petrochemical area located in the Venice area, one of the world's most sensitive water bodies. Even in accordance to the special laws for the protection of the Lagoon, the membrane bioreactor is called for the best removal of conventional and nonconventional pollutants, such as heavy metals, cyanides and PCB. In addition, over the last decades the MBR is subject to low, but very changeable, loading related to the crisis and unsteadiness of the chemical productions. The main experimental work was carried out by a pilot MBR with reaction volume of 4.2 m3, operating in parallel with the full scale MBR. The first objective of the experimental work was to study the effect of low and changeable loadings on a membrane bioreactor, adequate for hydraulic loadings but very oversized for mass loadings. In particular, the consequences of the slower metabolic activity of the biomass were evaluated, even to find the best reactor configuration adequate to the real influent loadings. For this purpose, once validated the pilot MBR as representative for the full scale plant, four experimental runs were carried out aiming at: increase the fraction of active biomass within the activated sludge (Run II and Run III); better use the excess bioreaction volume (Run IV and Run V) by finally creating an hybrid MBR, which realizes the sequencing enrichment of nitrifying biomass in the continuous WWTP. In addition, specific studies concerned the inhibitory effect of petrochemical (i.e. caustic spent) fluxes on nitrifying activity and on feasible solution to increase the nitrification potential of the plant. As far as nonconventional pollutants are concerned, the work focused on cyanide and PCB compounds and the maximal treatment potentials, intended as the actual limit achievable by the MBR as a BAT for petrochemical wastewater treatment. Besides the occurrence and chemical-physical forms in the petrochemical wastewater; the mechanisms and removal efficiencies of the initial clariflocculation and membrane bioreactor were studied. As far as concern the pilot plant, the effects of different operating conditions to enhance the mechanism of biodegradation and bioadsorption were assessed and the feasibility at full scale was studied. Results from experimental pilot plant activity showed the effect of the proper organic loading on the fraction of the active biomass. Therefore, the study was addressed towards the study of the best feasible approaches to increase the F/M . In particular, the best use of surplus volumes of the biological unit (run IV), then the doubling of the load applied at the biological reactor (run V) (that corresponds to the elimination of one line of treatment in the full scale plant). In this last case the nitrification activity was also doubled, so as to demonstrate that the autotrophic activity is currentlysubstrate-limited and not influenced by inhibition. However in order to cope with nitrogen variability, possible increase of inhibiting fluxes (i.e. spent caustic that reveals to produce nitrification inhibition up to 60%) or collection of new fluxes (i.e. refinery wastewater), a more feasible approach was the enrichment of the reactor with nitrifiers obtained in the batch growth. An increase of 0.1 gN/kgVSS*h in the nitrification potential of the overall biomass in the reactor could be achieved within 10-15 days. Sludge enriched with nitrifiers, moved to the continuously fed MBR, demonstrated an increase of nitrification potential up to a NLR of 0.022 kgN/m3*d (versus a NLR of 0.008 kgN/m3*d applied in normal operation), increased proportionally with the added nitrifiers. Removal of free cyanide in pilot and full scale MBR showed that free cyanides are biodegraded up to the the limit of quantification (2 μg/L). On the other hand strong complex cyanide (probably in the form of ferricyanide) are inert to the biodegration and undergo event to low adsorption (10%). These results were confirmed by specific lab-scale batch tests.. However mass balance in the pilot MBR shows rates of removal of free cyanides one order of magnitude lower of the one found in the batch test (6-11 μgCN/gVSS/h). This can be explained with the lower concentrations influent to the bioreactor that influenced the biodegradation kinetics (being close to the semisaturational constrant) estimated in the around of 0.65 μgCN/gVSS/h. On the other side the dosage of organic substrate to the aerobic compartment during the experimental activity improved the removal of total cyanide probably due to increased activity of biomass (biodegradation and bioadsorption potential) and related co-metabolism processes. As far as concern treatment of PCB good efficiency of removal are obtained in both primary (60-70%) and secondary treatment (50-60%) obtaining an overall efficiency of about 80%. In particular an efficiency of removal in clariflocculation depends on the particulate fraction in the influent wastewater, while a linear removal in the biological treatment is obtained in relation to the influent concentrations at the reactor. In addition, the effluent concentration was always within a stable range of concentration that varies depending on the single congener and that can be assumed as the lower limit value achievable by the MBR. This shows that the membrane bioreactor have an additional effect on the removal of PCB up to a certain concentration which can be assumed as actual limit of the BAT-MBR. Finally the role of the clogging sludge of a membrane in the removal of metals was investigated, and compared with the removal that occurs in the activated sludge of the biological plant. Possible enhancement of bioaccumulation-bioprecipitation mechanisms in this layer was proposed. In particular heavy metals more accumulated in the clogging sludge are in the order As>Ni>Cd>Fe. The release of the metals present in the clogging sludge during acid and oxidazing chemical cleaning was evaluated trough batch test: results show that release of the metals is usually in the range of 5-10% of the metal content of the clogging sludge, but it is not directly related with the biosorption in/on the clogging sludge.
2011
membrane bioreactors; biological treatment; petrochemical wastewater
La protezione dei corpi d’acqua superficiali dagli scarichi urbani e industriali richiede una legislazione che ponga dei limiti sia sugli inquinanti convenzionali che sui microiqnuinanti prioritari, oltre all’uso delle migliori tecnologie disponibili. A tal proposito, conoscere quail sono i limiti che tali tecnologie permettono di raggiungere è particolarmente importante nel caso in cui standard di qualità molto elevati e limiti a livello di μg/L or pg/L debbano essere raggiunti. Ad oggi la tecnologia dei bioreattori a membrane è stata proposta come una delle migliori tecnologie disponibili nel trattamento di scarichi industriali (permettendo anche il riutilizzo delle acque) e ha conosciuto una grande applicazione nell’ultimo decennio. Un campo relativamente nuovo per l’applicazione degli MBR è il trattamento di acque petrolchimiche e di raffineria. Nel presente lavoro di tesi è stato preso in esame un caso di studio reale del trattamento di acque reflue petrolchimiche: la ricerca è stata effettuata sia a livello dell’impianto reale in piena scala, sia attraverso sperimentazione su scala pilota. In particolare le acque reflue sono originate da una area petrolchimica molto ampia situata ai bordi della Laguna di Venezia, uno dei corpi idrici più sensibili presenti al mondo. In accordo con i limiti imposti dalla speciale legislazione emanata per la protezione della Laguna, il bioreattore a membrane deve garantire le migliori rimozioni sia nel trattamento di inquinanti convenzionali che prioritari (ad esempio metalli pesanti, cianuri e PCB). Inoltre negli ultimi anni il bioreattore a membrane è soggetto a bassi ma variabili carichi influenti imputabili alla crisi e alla variabilità delle produzioni chimiche nell’area di interesse. Il lavoro sperimentale è stato condotto perlopiù a scala pilota, su un bioreattore a membrane del volume di 4.2 m3, operate in parallelo con l’impianto MBR in piena scala. Il primo obiettivo di tale lavoro è stato studiare l’effetto dei bassi e variabili carichi al bioreattore, il cui volume è adeguato per carico idraulico da trattare ma over dimensinato per quanto oncerne i carichi di massa influenti. In particolare sono state valutate le conseguenze della bassa attività metabolica della biomassa fino a trovare le configurazioni del reattore MBR più adatte ai carichi da trattare. A tale scopo, una volta validato l’impianto pilota come rappresentativo dell’impianto piena scala, quattro periodi sperimentali sono stati eseguiti con l’obiettivo di: aumentare la frazione di biomassa attiva del fango attivo (Run II e Run III), eliminare i volume superflui presenti nel bioreattore (Run IV and Run V). Inoltre studi specifici sono stati affrontati sulla potenziale inibizione di alcuni flussi e su una possible soluzione operativa per aumentare il potenziale di nitrificazione dell’impianto. Per quanto riguarda lo studio degli inquinanti non convenzionali l’attenzione è stata focalizzata su due inquinanti come cianuri e PCB e sulle massime potenzialità del bioreattore a membrane nella loro rimozione, intesa come limiti raggiungibili da una BAT nel trattamento di acque petrolchimiche con le caratteristiche del caso di studio analizzato. Oltre alla presenza e alla loro speciazione nelle acque reflue in esame, sono stati studiati i meccanismi e le efficienze di rimozione nell’unità di trattamento chimico fisica e nel bioreattore a membrana. Per quanto riguarda la sperimentazione su scala pilota, è stato invece valutato l’effetto delle diverse condizioni di esercizio sui meccanismi di biodegradazione e bioassorbimento. I risultati dell’attività sperimentale sull’ impianto pilota hanno mostrato il positive effetto dell’deguato carico organico sull’aumento della frazione di biomassa attiva: di consequenza lo studio è stato volto a ottimizzare il rapporto F/M al bioreattore. In particolare il run V ha visto il raddoppio dei carichi influenti, simulando così le condizioni di riduzione di una linea di trattamento nell’impianto piena scala. In questo casoanche l’attività di nitrificazione è raddoppiata dimostrando che l’attività autotrofa è solitamente substrato-limitata. Tuttavia, allo scopo di far fronte alle variazioni di carico azotato e al possible incremento di flussi inibenti come quello di spent caustico (che ha dimostrato riduzione nella nitrificazione fino al 60%) o l’alimentazione di nuovi flussi (ad esempio quello di raffineria), un approccio più adatto è quello dell’arricchimento con nitrificanti ottenuti dalla crescita in batch che hanno permesso di incrementare il potenziale del bioreattore pari di 0.1 gN/kgVSS*h in 10-15 giorni. Il fango arricchito di nitrificanti, alimentato al bioreattore a membrane, ha infatti dimostrato di riuscire a trattare carichi fino a NLR di 0.022 kgN/m3*d (contro NLR di 0.008 kgN/m3*d in condizioni normali). Lo studio della rimozione di cianuri nell’impianto pilota e piena scala ha dimostrato come I cianuri liberi siano completamente biodegradati fino a raggiungere limiti inferiori o vicini al limite di quantificazione di 2 μg/L. Dall’altro lato complessi forti del cianuro (probabilemnte nella forma di ferrocianuri) risultano inerti al trattamento biologico e sono soggetti a bioassorbimento solo per il 10% della concentrazione influente. Questi risultati sono stati confermati da test batch condotti a scala laboratorio. Tuttavia bilanci di massa nell’impianto pilota hanno dimostrato come le velocità di rimozione per cianuri liberi è un ordine di grandezza inferiore rispetto a quella osservata nei test batch (6-11 μgCN/gVSS/h). Quessto può trovare spiegazione nel fatto che le basse concentrazioni influenti al bioreattore hanno influenzato le cinetiche di biodegradazione (vicine ai valori di semisaturazione) stimate nell’intorno di 0.65 μgCN/gVSS/h. Dall’altro lato i dosaggi di substrato organico durante l’attività sperimentale su impianto pilota hanno dimostrato miglioramenti nella rimozione di cianuri totali probabilmente dovuti alla maggiore attività della biomassa in termini di biodegradabilità e bioassorbimentoe e impattando positivamente sui fenomeni di cometabolismo ad essi legati. Per quanto riguarda lo studio dei PCB, buone efficienze di rimozione sono ottentute sia nel trattamento primario (60-70%) sia in quello biologico (50-60%) permettendo così all’impianto piena scala di raggiungere rimozioni totali nell’intorno dell’ 80%. In particolare l’efficienza di rimozione nel trattamento primario dipende dalla frazione di particolato nelle acque influenti, mentre una rimozione lineare può essere osservata nel bioreattore a membrane in relazione alle concentrazioni influenti al reattore. Inoltre le concentrazioni effluenti si trovano in un range stabile di concentrazione che varia a seconda del singolo congenere e che possono quindi essere assunte come limite inferiore raggiungibile dall’MBR. Infine è stato oggetto di studio il ruolo del fango “clogging” nella rimozione dei metalli: il contenuto di metalli in questa biomassa è stato paragonato alle rimozione che si ottengono nella biomassa sospesa del bioreattore a membrane. Possibili meccanismi di bioaccumulo-bioprecipitazione sono stati ipotizzati per alcuni metalli il cui contenuto nel fango di clogging appare superiore in confronto ai livelli riscontrati nel fango attivo convenzionale. In particolare i metalli più accumulati sono, in ordine decrescente, As>Ni>Cd>Fe. Il possible rilascio di tali metalli durante i lavaggi chimici della membrana è stato studiato con test di laboratorio: i risultati mostrano che tale rilascio è solitamente nell’ordine del 5-10% del contentuto del singolo metallo nel fango di clogging ma le specie di metalli maggiormente rilasciate non sono in correlazione con le specie per cui si sono osservati i meccanismi di bioaccumulo.
File in questo prodotto:
File Dimensione Formato  
Silvia Di Fabio_Tesi Dottorato.pdf

non disponibili

Tipologia: Tesi di dottorato
Licenza: Accesso ristretto
Dimensione 5.97 MB
Formato Adobe PDF
5.97 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/351392
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact