La Spettroscopia di Risonanza Magnetica (MRS) al protone permette di ottenere delle informazioni biochimiche in diverse patologie, attraverso lo studio delle concentrazioni dei metaboliti presenti nel tessuto analizzato. Il dato spettroscopico in vivo è affetto da artefatti del movimento, cattiva omogeneità del segnale, basso rapporto segnale-rumore e il segnale principale, l'acqua, deve essere rimosso in modo da poter osservare altri segnali la cui concentrazione nel tessuto è 1000 volte minore. Diversi sono i metodi proposti per migliorare il dato acquisito e poterne ottenere delle informazioni quantitative. Ogni metodo possiede vantaggi e svantaggi, a seconda del tipo di spettro che viene analizzato. Nel presente lavoro viene proposto un confronto tra le tecniche maggiormente utilizzate per la quantificazione del segnale MRS. Nella prima parte del lavoro, diversi algoritmi vengono applicati per lo studio degli spettri lipidici simulati, in vitro e in vivo. Questi spettri sono caratterizzati da poche componenti che si sovrappongono, ma sono ben distinguibili, il segnale dell'acqua è presente in minima parte e la linea di base è pressoché costante. La quantificazione di questi spettri così semplici permette un facile confronto tra i metodi. Nella seconda parte del lavoro, lo stesso confronto viene applicato a segnali più complessi, composti da numerosi componenti, da un basso rapporto segnale rumore e da una linea di base non costante e variabile da spettro a spettro. A questo tipo di segnali appartengono quelli del tessuto cerebrale. Lo scopo è quello di stabilire la migliore procedura sperimentale da applicare per l'analisi dei dati spettroscopici.

Proton Magnetic Resonance Spectroscopy (proton MRS) is a technique which allows to obtain biochemical information of several pathologies by studying the metabolite concentrations of the analyzed tissue. The strongest signal contribution is derived from the water, and it has to be removed during the online acquisition and the off-line post processing step. The presence and the removal of this huge signal may affect significantly the metabolites peaks and the baseline. Moreover acquisition of MRS spectra in living subjects can be affected by motion artifacts, bad shimming and low signal to noise ratio. Different post -processing techniques have been proposed to improve spectra obtained at difficult acquisition conditions, for water signal suppression and for baseline artifact correction. Nevertheless, among all the techniques proposed, it is difficult to identify the best performance and to rely on it, thus MRS quantification is still a challenge in biomedical research and not yet considered as a stable and fast routine diagnostic technique. In the present work, a comparison among the most used techniques in MRS quantification is proposed in two steps. In the first part of the thesis, different analysis technique have been applied on simple MRS signals, such as lipid spectra obtained from simulation and acquired in vivo and in vitro measurements. These spectra are characterized by a flat baseline and 11 to 12 slightly overlapping peaks, which are acquired without water suppression, so they constitute a simple field for comparison of quantification algorithms. In the second part of the thesis, these different techniques will be applied in the quantification of MRS of brain tissue. These spectra are much more complicated than lipid spectra in term of baseline and number of signals to discriminate. Under these experimental conditions, we will also compare methodologies in preclinical models of brain pathologies. Finally, the aim is to establish the best experimental procedures for both acquisition and analysis of in vivo brain spectra, to be applied first in preclinical, and subsequently in clinical research. An overview of the biological findings in both lipid and brain experimental projects will also be presented.

Acquisition and Analysis of MRS Spectra in Animal Models

MOSCONI, Elisa
2011-01-01

Abstract

Proton Magnetic Resonance Spectroscopy (proton MRS) is a technique which allows to obtain biochemical information of several pathologies by studying the metabolite concentrations of the analyzed tissue. The strongest signal contribution is derived from the water, and it has to be removed during the online acquisition and the off-line post processing step. The presence and the removal of this huge signal may affect significantly the metabolites peaks and the baseline. Moreover acquisition of MRS spectra in living subjects can be affected by motion artifacts, bad shimming and low signal to noise ratio. Different post -processing techniques have been proposed to improve spectra obtained at difficult acquisition conditions, for water signal suppression and for baseline artifact correction. Nevertheless, among all the techniques proposed, it is difficult to identify the best performance and to rely on it, thus MRS quantification is still a challenge in biomedical research and not yet considered as a stable and fast routine diagnostic technique. In the present work, a comparison among the most used techniques in MRS quantification is proposed in two steps. In the first part of the thesis, different analysis technique have been applied on simple MRS signals, such as lipid spectra obtained from simulation and acquired in vivo and in vitro measurements. These spectra are characterized by a flat baseline and 11 to 12 slightly overlapping peaks, which are acquired without water suppression, so they constitute a simple field for comparison of quantification algorithms. In the second part of the thesis, these different techniques will be applied in the quantification of MRS of brain tissue. These spectra are much more complicated than lipid spectra in term of baseline and number of signals to discriminate. Under these experimental conditions, we will also compare methodologies in preclinical models of brain pathologies. Finally, the aim is to establish the best experimental procedures for both acquisition and analysis of in vivo brain spectra, to be applied first in preclinical, and subsequently in clinical research. An overview of the biological findings in both lipid and brain experimental projects will also be presented.
2011
Magnetic Resonance Spectroscopy
La Spettroscopia di Risonanza Magnetica (MRS) al protone permette di ottenere delle informazioni biochimiche in diverse patologie, attraverso lo studio delle concentrazioni dei metaboliti presenti nel tessuto analizzato. Il dato spettroscopico in vivo è affetto da artefatti del movimento, cattiva omogeneità del segnale, basso rapporto segnale-rumore e il segnale principale, l'acqua, deve essere rimosso in modo da poter osservare altri segnali la cui concentrazione nel tessuto è 1000 volte minore. Diversi sono i metodi proposti per migliorare il dato acquisito e poterne ottenere delle informazioni quantitative. Ogni metodo possiede vantaggi e svantaggi, a seconda del tipo di spettro che viene analizzato. Nel presente lavoro viene proposto un confronto tra le tecniche maggiormente utilizzate per la quantificazione del segnale MRS. Nella prima parte del lavoro, diversi algoritmi vengono applicati per lo studio degli spettri lipidici simulati, in vitro e in vivo. Questi spettri sono caratterizzati da poche componenti che si sovrappongono, ma sono ben distinguibili, il segnale dell'acqua è presente in minima parte e la linea di base è pressoché costante. La quantificazione di questi spettri così semplici permette un facile confronto tra i metodi. Nella seconda parte del lavoro, lo stesso confronto viene applicato a segnali più complessi, composti da numerosi componenti, da un basso rapporto segnale rumore e da una linea di base non costante e variabile da spettro a spettro. A questo tipo di segnali appartengono quelli del tessuto cerebrale. Lo scopo è quello di stabilire la migliore procedura sperimentale da applicare per l'analisi dei dati spettroscopici.
File in questo prodotto:
File Dimensione Formato  
PHD_Thesis_ElisaMosconi.pdf

non disponibili

Tipologia: Tesi di dottorato
Licenza: Accesso ristretto
Dimensione 10.91 MB
Formato Adobe PDF
10.91 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/349455
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact