In eukaryotes the photosynthetic antenna system is composed by subunits encoded by the light harvesting complex (Lhc) multigene family. These proteins play a key role in photosynthesis and are involved in both light harvesting and photoprotection. In particular, antenna protein of PSII, the Lhcb subunits, have been proposed to be involved in the mechanism of thermal dissipation of excitation energy in excess (NPQ, non-photochemical quenching). Elucidating the molecular details of NPQ induction in higher plants has proven to be a major challenge. In my phD work, I decided to investigate the role of Lhcbs in energy quenching by using a reverse genetic approach: I knocked out each subunit in order to understand their involvement in the mechanism. Here below the major results obtained are summarized. Section A. Mutants of monomeric Lhc and photoprotection: in- sights on the role of minor subunits in thermal energy dissipation. In this section I investigate the function of chlorophyll a/b binding antenna proteins, CP26, CP24 and CP29 in light harvesting and regulation of photosynthesis by isolating Arabidopsis thaliana knockout (ko) lines that completely lacked one or two of these proteins. In particular in Section A.1 I focused on single mutant koCP24, koCP26 and double mutant koCP24/26. All these three mutant lines have a decreased eciency of energy transfer from trimeric light-harvesting complex II (LHCII) to the reaction center of photosystem II (PSII) due to the physical disconnection of LHCII from PSII and formation of PSII reaction center depleted domains in grana partitions. We observed that photosynthetic electron transport is aected in koCP24 plants but not in plants lacking CP26: the former mutant has decreased electron transport rates, a lower pH gradient across the grana membranes, a reduced capacity for non-photochemical quenching, and a limited growth. Furthermore, the PSII particles of these plants are organized in unusual two-dimensional arrays in the grana membranes. Surprisingly, the double mutant koCP24/26, lacking both CP24 and CP26 subunits, restores overall electron transport, non-photochemical quenching, and growth rate to wild type levels. We further analysed the koCP24 phenotype to understand the reasons for the photosynthetic defection. Fluorescence induction kinetics and electron transport measurements at selected steps of the photosynthetic chain suggested that koCP24 limitation in electron transport was due to restricted electron transport between QA and QB, which retards plastoquinone diusion. We conclude that CP24 absence alters PSII organization and consequently limits plastoquinone diffusion. The limitation in plastoquinone diusion is restore in koCP24/26. In Section A.2 I characterized the function of CP29 subunits, extending the analyses to the dierent CP29 isoforms. To this aim, I have constructed knock-out mutants lacking one or more Lhcb4 isoforms and analyzed their performance in photosynthesis and photoprotection. We found that lacks of CP29 did not result in any signicant alteration in linear/cyclic electron transport rate and maximal extent of state transition, while PSII quantum eciency and capacity for NPQ were aected. Photoprotection eciency was lower in koCP29 plants with respect to either WT or mutants retaining a single Lhcb4 isoform. Interestingly, while deletion of either isoforms Lhcb4.1 or Lhcb4.2 get into a compensatory accumulation of the remaining subunit, photoprotection capacity in the double mutant Lhcb4.1/4.2 was not restored by Lhcb4.3 accumulation. Section B. Membrane dynamics and re-organization for the quench- ing events: B4 dissociation and identication of two distinct quenching sites. Antenna subunits are hypothesized to be the site of energy quenching, while the trigger of the mechanism is mediated by PsbS, a PSII subunit that is involved in detection of lumenal acidication. In this section we investigate the molecular mechanism by which PsbS regulates light harvesting eciency by studying Arabidopsis mutants specically devoid of individual monomeric Lhcbs. In Section B.1 we showed that PsbS controls the association/dissociation of a ve-subunit membrane complex, composed of two monomeric Lhcb proteins, CP29 and CP24 and the trimeric LHCII-M (namely Band 4 Complex - B4C). We demonstrated that the dissociation of this supercomplex is indispensable for the onset of non-photochemical uorescence quenching in high light. Consistently, we found that knock-out mutants lacking the two subunits participating to the B4C, namely CP24 and CP29, are strongly aected in heat dissipation. Direct observation by electron microscopy and image analysis showed that B4C dissociation leads to the redistribution of PSII within grana membranes. We interpret these results proposing that the dissociation of B4C makes quenching sites, possibly CP29 and CP24, available for the switch to an energy-quenching conformation. These changes are reversible and do not require protein synthesis/degradation, thus allowing for changes in PSII antenna size and adaptation to rapidly changing environmental conditions. In Section B.2 we studied this quenching mechanism by ultra-fast Chl uorescence analysis. Recent results based on uorescence lifetime analysis \in vivo" (Holzwarth et al., 2009) proposed that two independent quenching sites are activated during NPQ: Q1 is located in the major LHCII complexes, which are functionally detached from the PSII/RC (reaction centre) supercomplex with a mechanism that strictly requires PsbS but not Zea; Q2 is located in and connected to the PSII complex and is dependent on the Zea formation (Miloslavina et al., 2008). These two quenching events could well originate in each of the two physical domains of grana revealed by electron microscopy analysis previously reported (see Section B.1). We thus proceeded to investigate the modulation of energy quenching in knock out mutants by comparing the uorescence lifetimes under quenched and unquenched conditions in intact leaves: we obtained results that are consistent with the model of two quenching sites located, respectively, in the C2S2 domain and in the LHCII-enriched domain. Data reported suggest that Q1 site is released in the koCP24 mutant while Q2 is attenuated in the koCP29 mutant. On the bases of the results of this section, we conclude that during the establishment of NPQ in vivo the PSII supercomplex dissociates into two moieties, which segregates into distinct domain of the grana membrane and are each protected from over-excitation by the activity of quenching sites probably located in CP24 and CP29. Section C. Excitation energy transfer and membrane organiza- tion: role of PSII antenna subunit. In this section we investigated the role of individual photosynthetic antenna complexes of PSII both in membrane organization and excitation energy transfer, by using the knock out mutants previously isolated (Section A). Thylakoid membranes from wild-type and three mutants lacking lightharvesting complexes CP24, CP26 or CP29 respectively, were studied by picosecond- uorescence spectroscopy on thylakoids, using dierent combination of excitation and detection wavelengths in order to separate PSI and PSII kinetics. Spectroscopic measurements revealed that absence of CP26 did not alter PSII organization, as evidenced by very similar excitons migration times in both wild-type and koCP26 samples. In contrast, the absence of CP29 and especially CP24 lead to substantial changes in the PSII organization as evidenced by a signicant increase of the apparent migration time, demonstrating a bad connection between a signicant part of the peripheral antenna and the RCs. Section D. A mutant without minor antenna proteins: towards a solution of the dierential role of monomeric Lhcb proteins vs major LHCII in Non Photochemical Quenching. In this section we attempt to answer to the question on the localization of the quenching site(s) in the major LHCII or in monomeric Lhcb proteins. In order to verify the implication of monomeric antenna CP24, CP26 and CP29 in quenching we tried to isolate a mutant knocked out for all the three subunit. Lhcb5 (CP26) and Lhcb6 (CP24) are coded by a single gene while three isoforms of Lhcb4 (CP29) are present in the Arabidopsis genome, we thus looked for a ve-gene mutant. We tried to isolate such a mutant from the screening of two dierent populations but without success. In particular, we found that is not possible to obtain a mutant lacking both CP26 and CP29 at the same time. We veried that is not a problem of seed germination but instead a defect of the embryo development. This unexpected genetic evidence shows that, for a correct and functional organization of the PSII supercomplexes, either Lhcb5 or Lhcb4.1 must be present: probably these two subunits can replace themselves each other when one lacks, while none of the other monomeric antenna (Lhcb6, Lhcb4.2, Lhcb4.3) are able to takes their place in PSII. Two mutants obtained in these screenings allowed us to make some considerations about the role of monomeric antenna proteins in NPQ: mutants koCP29/24 which dier for the condition at the Lhcb5 locus, either homozygous WT or heterozygous. We observed a dose eect for the expression of Lhcb5, that is lower in the heterozygous since one allele only is functional. Interestingly, the amount of CP26 on thylakoid membrane strictly correlated with the quenching amplitude measured at 1200 mol photons m��2s��1 of actinic light. These results suggest that the residual quenching in koCP29/24 plants is largely due to the capacity of CP26 subunit to mediate energy quenching. This is a further indication of the primary role of monomeric Lhcb in NPQ, as recently stated by CT (charge transfer) quenching models (Avenson et al., 2008; Ahn et al., 2008).

In eukaryotes the photosynthetic antenna system is composed by subunits encoded by the light harvesting complex (Lhc) multigene family. These proteins play a key role in photosynthesis and are involved in both light harvesting and photoprotection. In particular, antenna protein of PSII, the Lhcb subunits, have been proposed to be involved in the mechanism of thermal dissipation of excitation energy in excess (NPQ, non-photochemical quenching). Elucidating the molecular details of NPQ induction in higher plants has proven to be a major challenge. In my phD work, I decided to investigate the role of Lhcbs in energy quenching by using a reverse genetic approach: I knocked out each subunit in order to understand their involvement in the mechanism. Here below the major results obtained are summarized. Section A. Mutants of monomeric Lhc and photoprotection: in- sights on the role of minor subunits in thermal energy dissipation. In this section I investigate the function of chlorophyll a/b binding antenna proteins, CP26, CP24 and CP29 in light harvesting and regulation of photosynthesis by isolating Arabidopsis thaliana knockout (ko) lines that completely lacked one or two of these proteins. In particular in Section A.1 I focused on single mutant koCP24, koCP26 and double mutant koCP24/26. All these three mutant lines have a decreased eciency of energy transfer from trimeric light-harvesting complex II (LHCII) to the reaction center of photosystem II (PSII) due to the physical disconnection of LHCII from PSII and formation of PSII reaction center depleted domains in grana partitions. We observed that photosynthetic electron transport is aected in koCP24 plants but not in plants lacking CP26: the former mutant has decreased electron transport rates, a lower pH gradient across the grana membranes, a reduced capacity for non-photochemical quenching, and a limited growth. Furthermore, the PSII particles of these plants are organized in unusual two-dimensional arrays in the grana membranes. Surprisingly, the double mutant koCP24/26, lacking both CP24 and CP26 subunits, restores overall electron transport, non-photochemical quenching, and growth rate to wild type levels. We further analysed the koCP24 phenotype to understand the reasons for the photosynthetic defection. Fluorescence induction kinetics and electron transport measurements at selected steps of the photosynthetic chain suggested that koCP24 limitation in electron transport was due to restricted electron transport between QA and QB, which retards plastoquinone diusion. We conclude that CP24 absence alters PSII organization and consequently limits plastoquinone diffusion. The limitation in plastoquinone diusion is restore in koCP24/26. In Section A.2 I characterized the function of CP29 subunits, extending the analyses to the dierent CP29 isoforms. To this aim, I have constructed knock-out mutants lacking one or more Lhcb4 isoforms and analyzed their performance in photosynthesis and photoprotection. We found that lacks of CP29 did not result in any signicant alteration in linear/cyclic electron transport rate and maximal extent of state transition, while PSII quantum eciency and capacity for NPQ were aected. Photoprotection eciency was lower in koCP29 plants with respect to either WT or mutants retaining a single Lhcb4 isoform. Interestingly, while deletion of either isoforms Lhcb4.1 or Lhcb4.2 get into a compensatory accumulation of the remaining subunit, photoprotection capacity in the double mutant Lhcb4.1/4.2 was not restored by Lhcb4.3 accumulation. Section B. Membrane dynamics and re-organization for the quench- ing events: B4 dissociation and identication of two distinct quenching sites. Antenna subunits are hypothesized to be the site of energy quenching, while the trigger of the mechanism is mediated by PsbS, a PSII subunit that is involved in detection of lumenal acidication. In this section we investigate the molecular mechanism by which PsbS regulates light harvesting eciency by studying Arabidopsis mutants specically devoid of individual monomeric Lhcbs. In Section B.1 we showed that PsbS controls the association/dissociation of a ve-subunit membrane complex, composed of two monomeric Lhcb proteins, CP29 and CP24 and the trimeric LHCII-M (namely Band 4 Complex - B4C). We demonstrated that the dissociation of this supercomplex is indispensable for the onset of non-photochemical uorescence quenching in high light. Consistently, we found that knock-out mutants lacking the two subunits participating to the B4C, namely CP24 and CP29, are strongly aected in heat dissipation. Direct observation by electron microscopy and image analysis showed that B4C dissociation leads to the redistribution of PSII within grana membranes. We interpret these results proposing that the dissociation of B4C makes quenching sites, possibly CP29 and CP24, available for the switch to an energy-quenching conformation. These changes are reversible and do not require protein synthesis/degradation, thus allowing for changes in PSII antenna size and adaptation to rapidly changing environmental conditions. In Section B.2 we studied this quenching mechanism by ultra-fast Chl uorescence analysis. Recent results based on uorescence lifetime analysis \in vivo" (Holzwarth et al., 2009) proposed that two independent quenching sites are activated during NPQ: Q1 is located in the major LHCII complexes, which are functionally detached from the PSII/RC (reaction centre) supercomplex with a mechanism that strictly requires PsbS but not Zea; Q2 is located in and connected to the PSII complex and is dependent on the Zea formation (Miloslavina et al., 2008). These two quenching events could well originate in each of the two physical domains of grana revealed by electron microscopy analysis previously reported (see Section B.1). We thus proceeded to investigate the modulation of energy quenching in knock out mutants by comparing the uorescence lifetimes under quenched and unquenched conditions in intact leaves: we obtained results that are consistent with the model of two quenching sites located, respectively, in the C2S2 domain and in the LHCII-enriched domain. Data reported suggest that Q1 site is released in the koCP24 mutant while Q2 is attenuated in the koCP29 mutant. On the bases of the results of this section, we conclude that during the establishment of NPQ in vivo the PSII supercomplex dissociates into two moieties, which segregates into distinct domain of the grana membrane and are each protected from over-excitation by the activity of quenching sites probably located in CP24 and CP29. Section C. Excitation energy transfer and membrane organiza- tion: role of PSII antenna subunit. In this section we investigated the role of individual photosynthetic antenna complexes of PSII both in membrane organization and excitation energy transfer, by using the knock out mutants previously isolated (Section A). Thylakoid membranes from wild-type and three mutants lacking lightharvesting complexes CP24, CP26 or CP29 respectively, were studied by picosecond- uorescence spectroscopy on thylakoids, using dierent combination of excitation and detection wavelengths in order to separate PSI and PSII kinetics. Spectroscopic measurements revealed that absence of CP26 did not alter PSII organization, as evidenced by very similar excitons migration times in both wild-type and koCP26 samples. In contrast, the absence of CP29 and especially CP24 lead to substantial changes in the PSII organization as evidenced by a signicant increase of the apparent migration time, demonstrating a bad connection between a signicant part of the peripheral antenna and the RCs. Section D. A mutant without minor antenna proteins: towards a solution of the dierential role of monomeric Lhcb proteins vs major LHCII in Non Photochemical Quenching. In this section we attempt to answer to the question on the localization of the quenching site(s) in the major LHCII or in monomeric Lhcb proteins. In order to verify the implication of monomeric antenna CP24, CP26 and CP29 in quenching we tried to isolate a mutant knocked out for all the three subunit. Lhcb5 (CP26) and Lhcb6 (CP24) are coded by a single gene while three isoforms of Lhcb4 (CP29) are present in the Arabidopsis genome, we thus looked for a ve-gene mutant. We tried to isolate such a mutant from the screening of two dierent populations but without success. In particular, we found that is not possible to obtain a mutant lacking both CP26 and CP29 at the same time. We veried that is not a problem of seed germination but instead a defect of the embryo development. This unexpected genetic evidence shows that, for a correct and functional organization of the PSII supercomplexes, either Lhcb5 or Lhcb4.1 must be present: probably these two subunits can replace themselves each other when one lacks, while none of the other monomeric antenna (Lhcb6, Lhcb4.2, Lhcb4.3) are able to takes their place in PSII. Two mutants obtained in these screenings allowed us to make some considerations about the role of monomeric antenna proteins in NPQ: mutants koCP29/24 which dier for the condition at the Lhcb5 locus, either homozygous WT or heterozygous. We observed a dose eect for the expression of Lhcb5, that is lower in the heterozygous since one allele only is functional. Interestingly, the amount of CP26 on thylakoid membrane strictly correlated with the quenching amplitude measured at 1200 mol photons m��2s��1 of actinic light. These results suggest that the residual quenching in koCP29/24 plants is largely due to the capacity of CP26 subunit to mediate energy quenching. This is a further indication of the primary role of monomeric Lhcb in NPQ, as recently stated by CT (charge transfer) quenching models (Avenson et al., 2008; Ahn et al., 2008).

The function of monomeric Lhcb proteins ofPhotosystem II analyzed by reverse genetic

DE BIANCHI, Silvia
2010-01-01

Abstract

In eukaryotes the photosynthetic antenna system is composed by subunits encoded by the light harvesting complex (Lhc) multigene family. These proteins play a key role in photosynthesis and are involved in both light harvesting and photoprotection. In particular, antenna protein of PSII, the Lhcb subunits, have been proposed to be involved in the mechanism of thermal dissipation of excitation energy in excess (NPQ, non-photochemical quenching). Elucidating the molecular details of NPQ induction in higher plants has proven to be a major challenge. In my phD work, I decided to investigate the role of Lhcbs in energy quenching by using a reverse genetic approach: I knocked out each subunit in order to understand their involvement in the mechanism. Here below the major results obtained are summarized. Section A. Mutants of monomeric Lhc and photoprotection: in- sights on the role of minor subunits in thermal energy dissipation. In this section I investigate the function of chlorophyll a/b binding antenna proteins, CP26, CP24 and CP29 in light harvesting and regulation of photosynthesis by isolating Arabidopsis thaliana knockout (ko) lines that completely lacked one or two of these proteins. In particular in Section A.1 I focused on single mutant koCP24, koCP26 and double mutant koCP24/26. All these three mutant lines have a decreased eciency of energy transfer from trimeric light-harvesting complex II (LHCII) to the reaction center of photosystem II (PSII) due to the physical disconnection of LHCII from PSII and formation of PSII reaction center depleted domains in grana partitions. We observed that photosynthetic electron transport is aected in koCP24 plants but not in plants lacking CP26: the former mutant has decreased electron transport rates, a lower pH gradient across the grana membranes, a reduced capacity for non-photochemical quenching, and a limited growth. Furthermore, the PSII particles of these plants are organized in unusual two-dimensional arrays in the grana membranes. Surprisingly, the double mutant koCP24/26, lacking both CP24 and CP26 subunits, restores overall electron transport, non-photochemical quenching, and growth rate to wild type levels. We further analysed the koCP24 phenotype to understand the reasons for the photosynthetic defection. Fluorescence induction kinetics and electron transport measurements at selected steps of the photosynthetic chain suggested that koCP24 limitation in electron transport was due to restricted electron transport between QA and QB, which retards plastoquinone diusion. We conclude that CP24 absence alters PSII organization and consequently limits plastoquinone diffusion. The limitation in plastoquinone diusion is restore in koCP24/26. In Section A.2 I characterized the function of CP29 subunits, extending the analyses to the dierent CP29 isoforms. To this aim, I have constructed knock-out mutants lacking one or more Lhcb4 isoforms and analyzed their performance in photosynthesis and photoprotection. We found that lacks of CP29 did not result in any signicant alteration in linear/cyclic electron transport rate and maximal extent of state transition, while PSII quantum eciency and capacity for NPQ were aected. Photoprotection eciency was lower in koCP29 plants with respect to either WT or mutants retaining a single Lhcb4 isoform. Interestingly, while deletion of either isoforms Lhcb4.1 or Lhcb4.2 get into a compensatory accumulation of the remaining subunit, photoprotection capacity in the double mutant Lhcb4.1/4.2 was not restored by Lhcb4.3 accumulation. Section B. Membrane dynamics and re-organization for the quench- ing events: B4 dissociation and identication of two distinct quenching sites. Antenna subunits are hypothesized to be the site of energy quenching, while the trigger of the mechanism is mediated by PsbS, a PSII subunit that is involved in detection of lumenal acidication. In this section we investigate the molecular mechanism by which PsbS regulates light harvesting eciency by studying Arabidopsis mutants specically devoid of individual monomeric Lhcbs. In Section B.1 we showed that PsbS controls the association/dissociation of a ve-subunit membrane complex, composed of two monomeric Lhcb proteins, CP29 and CP24 and the trimeric LHCII-M (namely Band 4 Complex - B4C). We demonstrated that the dissociation of this supercomplex is indispensable for the onset of non-photochemical uorescence quenching in high light. Consistently, we found that knock-out mutants lacking the two subunits participating to the B4C, namely CP24 and CP29, are strongly aected in heat dissipation. Direct observation by electron microscopy and image analysis showed that B4C dissociation leads to the redistribution of PSII within grana membranes. We interpret these results proposing that the dissociation of B4C makes quenching sites, possibly CP29 and CP24, available for the switch to an energy-quenching conformation. These changes are reversible and do not require protein synthesis/degradation, thus allowing for changes in PSII antenna size and adaptation to rapidly changing environmental conditions. In Section B.2 we studied this quenching mechanism by ultra-fast Chl uorescence analysis. Recent results based on uorescence lifetime analysis \in vivo" (Holzwarth et al., 2009) proposed that two independent quenching sites are activated during NPQ: Q1 is located in the major LHCII complexes, which are functionally detached from the PSII/RC (reaction centre) supercomplex with a mechanism that strictly requires PsbS but not Zea; Q2 is located in and connected to the PSII complex and is dependent on the Zea formation (Miloslavina et al., 2008). These two quenching events could well originate in each of the two physical domains of grana revealed by electron microscopy analysis previously reported (see Section B.1). We thus proceeded to investigate the modulation of energy quenching in knock out mutants by comparing the uorescence lifetimes under quenched and unquenched conditions in intact leaves: we obtained results that are consistent with the model of two quenching sites located, respectively, in the C2S2 domain and in the LHCII-enriched domain. Data reported suggest that Q1 site is released in the koCP24 mutant while Q2 is attenuated in the koCP29 mutant. On the bases of the results of this section, we conclude that during the establishment of NPQ in vivo the PSII supercomplex dissociates into two moieties, which segregates into distinct domain of the grana membrane and are each protected from over-excitation by the activity of quenching sites probably located in CP24 and CP29. Section C. Excitation energy transfer and membrane organiza- tion: role of PSII antenna subunit. In this section we investigated the role of individual photosynthetic antenna complexes of PSII both in membrane organization and excitation energy transfer, by using the knock out mutants previously isolated (Section A). Thylakoid membranes from wild-type and three mutants lacking lightharvesting complexes CP24, CP26 or CP29 respectively, were studied by picosecond- uorescence spectroscopy on thylakoids, using dierent combination of excitation and detection wavelengths in order to separate PSI and PSII kinetics. Spectroscopic measurements revealed that absence of CP26 did not alter PSII organization, as evidenced by very similar excitons migration times in both wild-type and koCP26 samples. In contrast, the absence of CP29 and especially CP24 lead to substantial changes in the PSII organization as evidenced by a signicant increase of the apparent migration time, demonstrating a bad connection between a signicant part of the peripheral antenna and the RCs. Section D. A mutant without minor antenna proteins: towards a solution of the dierential role of monomeric Lhcb proteins vs major LHCII in Non Photochemical Quenching. In this section we attempt to answer to the question on the localization of the quenching site(s) in the major LHCII or in monomeric Lhcb proteins. In order to verify the implication of monomeric antenna CP24, CP26 and CP29 in quenching we tried to isolate a mutant knocked out for all the three subunit. Lhcb5 (CP26) and Lhcb6 (CP24) are coded by a single gene while three isoforms of Lhcb4 (CP29) are present in the Arabidopsis genome, we thus looked for a ve-gene mutant. We tried to isolate such a mutant from the screening of two dierent populations but without success. In particular, we found that is not possible to obtain a mutant lacking both CP26 and CP29 at the same time. We veried that is not a problem of seed germination but instead a defect of the embryo development. This unexpected genetic evidence shows that, for a correct and functional organization of the PSII supercomplexes, either Lhcb5 or Lhcb4.1 must be present: probably these two subunits can replace themselves each other when one lacks, while none of the other monomeric antenna (Lhcb6, Lhcb4.2, Lhcb4.3) are able to takes their place in PSII. Two mutants obtained in these screenings allowed us to make some considerations about the role of monomeric antenna proteins in NPQ: mutants koCP29/24 which dier for the condition at the Lhcb5 locus, either homozygous WT or heterozygous. We observed a dose eect for the expression of Lhcb5, that is lower in the heterozygous since one allele only is functional. Interestingly, the amount of CP26 on thylakoid membrane strictly correlated with the quenching amplitude measured at 1200 mol photons m��2s��1 of actinic light. These results suggest that the residual quenching in koCP29/24 plants is largely due to the capacity of CP26 subunit to mediate energy quenching. This is a further indication of the primary role of monomeric Lhcb in NPQ, as recently stated by CT (charge transfer) quenching models (Avenson et al., 2008; Ahn et al., 2008).
2010
minor antennae photoprotection non-photochemical quenching
In eukaryotes the photosynthetic antenna system is composed by subunits encoded by the light harvesting complex (Lhc) multigene family. These proteins play a key role in photosynthesis and are involved in both light harvesting and photoprotection. In particular, antenna protein of PSII, the Lhcb subunits, have been proposed to be involved in the mechanism of thermal dissipation of excitation energy in excess (NPQ, non-photochemical quenching). Elucidating the molecular details of NPQ induction in higher plants has proven to be a major challenge. In my phD work, I decided to investigate the role of Lhcbs in energy quenching by using a reverse genetic approach: I knocked out each subunit in order to understand their involvement in the mechanism. Here below the major results obtained are summarized. Section A. Mutants of monomeric Lhc and photoprotection: in- sights on the role of minor subunits in thermal energy dissipation. In this section I investigate the function of chlorophyll a/b binding antenna proteins, CP26, CP24 and CP29 in light harvesting and regulation of photosynthesis by isolating Arabidopsis thaliana knockout (ko) lines that completely lacked one or two of these proteins. In particular in Section A.1 I focused on single mutant koCP24, koCP26 and double mutant koCP24/26. All these three mutant lines have a decreased eciency of energy transfer from trimeric light-harvesting complex II (LHCII) to the reaction center of photosystem II (PSII) due to the physical disconnection of LHCII from PSII and formation of PSII reaction center depleted domains in grana partitions. We observed that photosynthetic electron transport is aected in koCP24 plants but not in plants lacking CP26: the former mutant has decreased electron transport rates, a lower pH gradient across the grana membranes, a reduced capacity for non-photochemical quenching, and a limited growth. Furthermore, the PSII particles of these plants are organized in unusual two-dimensional arrays in the grana membranes. Surprisingly, the double mutant koCP24/26, lacking both CP24 and CP26 subunits, restores overall electron transport, non-photochemical quenching, and growth rate to wild type levels. We further analysed the koCP24 phenotype to understand the reasons for the photosynthetic defection. Fluorescence induction kinetics and electron transport measurements at selected steps of the photosynthetic chain suggested that koCP24 limitation in electron transport was due to restricted electron transport between QA and QB, which retards plastoquinone diusion. We conclude that CP24 absence alters PSII organization and consequently limits plastoquinone diffusion. The limitation in plastoquinone diusion is restore in koCP24/26. In Section A.2 I characterized the function of CP29 subunits, extending the analyses to the dierent CP29 isoforms. To this aim, I have constructed knock-out mutants lacking one or more Lhcb4 isoforms and analyzed their performance in photosynthesis and photoprotection. We found that lacks of CP29 did not result in any signicant alteration in linear/cyclic electron transport rate and maximal extent of state transition, while PSII quantum eciency and capacity for NPQ were aected. Photoprotection eciency was lower in koCP29 plants with respect to either WT or mutants retaining a single Lhcb4 isoform. Interestingly, while deletion of either isoforms Lhcb4.1 or Lhcb4.2 get into a compensatory accumulation of the remaining subunit, photoprotection capacity in the double mutant Lhcb4.1/4.2 was not restored by Lhcb4.3 accumulation. Section B. Membrane dynamics and re-organization for the quench- ing events: B4 dissociation and identication of two distinct quenching sites. Antenna subunits are hypothesized to be the site of energy quenching, while the trigger of the mechanism is mediated by PsbS, a PSII subunit that is involved in detection of lumenal acidication. In this section we investigate the molecular mechanism by which PsbS regulates light harvesting eciency by studying Arabidopsis mutants specically devoid of individual monomeric Lhcbs. In Section B.1 we showed that PsbS controls the association/dissociation of a ve-subunit membrane complex, composed of two monomeric Lhcb proteins, CP29 and CP24 and the trimeric LHCII-M (namely Band 4 Complex - B4C). We demonstrated that the dissociation of this supercomplex is indispensable for the onset of non-photochemical uorescence quenching in high light. Consistently, we found that knock-out mutants lacking the two subunits participating to the B4C, namely CP24 and CP29, are strongly aected in heat dissipation. Direct observation by electron microscopy and image analysis showed that B4C dissociation leads to the redistribution of PSII within grana membranes. We interpret these results proposing that the dissociation of B4C makes quenching sites, possibly CP29 and CP24, available for the switch to an energy-quenching conformation. These changes are reversible and do not require protein synthesis/degradation, thus allowing for changes in PSII antenna size and adaptation to rapidly changing environmental conditions. In Section B.2 we studied this quenching mechanism by ultra-fast Chl uorescence analysis. Recent results based on uorescence lifetime analysis \in vivo" (Holzwarth et al., 2009) proposed that two independent quenching sites are activated during NPQ: Q1 is located in the major LHCII complexes, which are functionally detached from the PSII/RC (reaction centre) supercomplex with a mechanism that strictly requires PsbS but not Zea; Q2 is located in and connected to the PSII complex and is dependent on the Zea formation (Miloslavina et al., 2008). These two quenching events could well originate in each of the two physical domains of grana revealed by electron microscopy analysis previously reported (see Section B.1). We thus proceeded to investigate the modulation of energy quenching in knock out mutants by comparing the uorescence lifetimes under quenched and unquenched conditions in intact leaves: we obtained results that are consistent with the model of two quenching sites located, respectively, in the C2S2 domain and in the LHCII-enriched domain. Data reported suggest that Q1 site is released in the koCP24 mutant while Q2 is attenuated in the koCP29 mutant. On the bases of the results of this section, we conclude that during the establishment of NPQ in vivo the PSII supercomplex dissociates into two moieties, which segregates into distinct domain of the grana membrane and are each protected from over-excitation by the activity of quenching sites probably located in CP24 and CP29. Section C. Excitation energy transfer and membrane organiza- tion: role of PSII antenna subunit. In this section we investigated the role of individual photosynthetic antenna complexes of PSII both in membrane organization and excitation energy transfer, by using the knock out mutants previously isolated (Section A). Thylakoid membranes from wild-type and three mutants lacking lightharvesting complexes CP24, CP26 or CP29 respectively, were studied by picosecond- uorescence spectroscopy on thylakoids, using dierent combination of excitation and detection wavelengths in order to separate PSI and PSII kinetics. Spectroscopic measurements revealed that absence of CP26 did not alter PSII organization, as evidenced by very similar excitons migration times in both wild-type and koCP26 samples. In contrast, the absence of CP29 and especially CP24 lead to substantial changes in the PSII organization as evidenced by a signicant increase of the apparent migration time, demonstrating a bad connection between a signicant part of the peripheral antenna and the RCs. Section D. A mutant without minor antenna proteins: towards a solution of the dierential role of monomeric Lhcb proteins vs major LHCII in Non Photochemical Quenching. In this section we attempt to answer to the question on the localization of the quenching site(s) in the major LHCII or in monomeric Lhcb proteins. In order to verify the implication of monomeric antenna CP24, CP26 and CP29 in quenching we tried to isolate a mutant knocked out for all the three subunit. Lhcb5 (CP26) and Lhcb6 (CP24) are coded by a single gene while three isoforms of Lhcb4 (CP29) are present in the Arabidopsis genome, we thus looked for a ve-gene mutant. We tried to isolate such a mutant from the screening of two dierent populations but without success. In particular, we found that is not possible to obtain a mutant lacking both CP26 and CP29 at the same time. We veried that is not a problem of seed germination but instead a defect of the embryo development. This unexpected genetic evidence shows that, for a correct and functional organization of the PSII supercomplexes, either Lhcb5 or Lhcb4.1 must be present: probably these two subunits can replace themselves each other when one lacks, while none of the other monomeric antenna (Lhcb6, Lhcb4.2, Lhcb4.3) are able to takes their place in PSII. Two mutants obtained in these screenings allowed us to make some considerations about the role of monomeric antenna proteins in NPQ: mutants koCP29/24 which dier for the condition at the Lhcb5 locus, either homozygous WT or heterozygous. We observed a dose eect for the expression of Lhcb5, that is lower in the heterozygous since one allele only is functional. Interestingly, the amount of CP26 on thylakoid membrane strictly correlated with the quenching amplitude measured at 1200 mol photons m��2s��1 of actinic light. These results suggest that the residual quenching in koCP29/24 plants is largely due to the capacity of CP26 subunit to mediate energy quenching. This is a further indication of the primary role of monomeric Lhcb in NPQ, as recently stated by CT (charge transfer) quenching models (Avenson et al., 2008; Ahn et al., 2008).
File in questo prodotto:
File Dimensione Formato  
Tesi dottorato_de Bianchi.pdf

non disponibili

Tipologia: Tesi di dottorato
Licenza: Accesso ristretto
Dimensione 19.24 MB
Formato Adobe PDF
19.24 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/345397
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact