Nonostante la notevole rilevanza delle logiche temporali in molti campi dell'informatica, la loro analisi teorica non è certo da ritenersi conclusa. In particolare, molti sono i punti ancora aperti nell'ambito della teoria della dimostrazione, specialmente se consideriamo le logiche temporali di tipo branching. Il principale contributo di questa tesi consiste nella presentazione di un approccio modulare per la definizione di sistemi di deduzione naturale etichettata per un'ampia gamma di logiche temporali. Viene innanzitutto proposto un sistema per la logica temporale minimale di Prior; si mostra quindi come estenderlo in maniera modulare allo scopo di trattare logiche più complesse, quali ad esempio LTL. Viene infine proposta un'estensione al caso delle logiche branching, concentrando l'attenzione sulle logiche con semantica di tipo Ockhamist e bundled. Per i sistemi proposti, viene condotta una dettagliata analisi dal punto di vista della teoria della dimostrazione. In particolare, nel caso delle logiche del tempo discreto, per le quali si richiedono regole che modellino un principio di induzione, viene definita una procedura di normalizzazione ispirata da quelle dei sistemi per l'Aritmetica di Heyting. Come conseguenza, si ottiene una dimostrazione puramente sintattica della consistenza dei sistemi.

Despite the great relevance of temporal logics in many applications of computer science, their theoretical analysis is far from being concluded. In particular, we still lack a satisfactory proof theory for temporal logics and this is especially true in the case of branching-time logics. The main contribution of this thesis consists in presenting a modular approach to the definition of labeled (natural) deduction systems for a large class of temporal logics. We start by proposing a system for the basic Priorean tense logic and show how to modularly enrich it in order to deal with more complex logics, like LTL. We also consider the extension to the branching case, focusing on the Ockhamist branching-time logics with a bundled semantics. A detailed proof-theoretical analysis of the systems is performed. In particular, in the case of discrete-time logics, for which rules modeling an induction principle are required, we define a procedure of normalization inspired to those of systems for Heyting Arithmetic. As a consequence of normalization, we obtain a purely syntactical proof of the consistency of the systems.

Labeled natural deduction for temporal logics

VOLPE, Marco
2010-01-01

Abstract

Despite the great relevance of temporal logics in many applications of computer science, their theoretical analysis is far from being concluded. In particular, we still lack a satisfactory proof theory for temporal logics and this is especially true in the case of branching-time logics. The main contribution of this thesis consists in presenting a modular approach to the definition of labeled (natural) deduction systems for a large class of temporal logics. We start by proposing a system for the basic Priorean tense logic and show how to modularly enrich it in order to deal with more complex logics, like LTL. We also consider the extension to the branching case, focusing on the Ockhamist branching-time logics with a bundled semantics. A detailed proof-theoretical analysis of the systems is performed. In particular, in the case of discrete-time logics, for which rules modeling an induction principle are required, we define a procedure of normalization inspired to those of systems for Heyting Arithmetic. As a consequence of normalization, we obtain a purely syntactical proof of the consistency of the systems.
2010
Formal Methods for Computer Science; Logic for Computer Science; Temporal Logic; Proof Theory; Natural Deduction
Nonostante la notevole rilevanza delle logiche temporali in molti campi dell'informatica, la loro analisi teorica non è certo da ritenersi conclusa. In particolare, molti sono i punti ancora aperti nell'ambito della teoria della dimostrazione, specialmente se consideriamo le logiche temporali di tipo branching. Il principale contributo di questa tesi consiste nella presentazione di un approccio modulare per la definizione di sistemi di deduzione naturale etichettata per un'ampia gamma di logiche temporali. Viene innanzitutto proposto un sistema per la logica temporale minimale di Prior; si mostra quindi come estenderlo in maniera modulare allo scopo di trattare logiche più complesse, quali ad esempio LTL. Viene infine proposta un'estensione al caso delle logiche branching, concentrando l'attenzione sulle logiche con semantica di tipo Ockhamist e bundled. Per i sistemi proposti, viene condotta una dettagliata analisi dal punto di vista della teoria della dimostrazione. In particolare, nel caso delle logiche del tempo discreto, per le quali si richiedono regole che modellino un principio di induzione, viene definita una procedura di normalizzazione ispirata da quelle dei sistemi per l'Aritmetica di Heyting. Come conseguenza, si ottiene una dimostrazione puramente sintattica della consistenza dei sistemi.
File in questo prodotto:
File Dimensione Formato  
volpe-phd-thesis.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: Dominio pubblico
Dimensione 1.86 MB
Formato Adobe PDF
1.86 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/343939
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact