Introduzione: Studi precedenti condotti in un servizio psichiatrico community-based hanno evidenziato un’associazione inversa tra il SES e l’utilizzazione dei servizi per alcuni gruppi di pazienti. In generale, la letteratura evidenzia un’associazione tra status socio-economico (SES) e misure oggettive e soggettive di salute mentale ed emerge la necessità di una maggior comprensione dei fattori legati all’utilizzazione dei servizi psichiatrici al fine di migliorare l’allocazione delle risorse. Obiettivi: Lo scopo principale di questo studio è quello di valutare come l’utilizzazione di servizi psichiatrici community-based sul territorio italiano possa variare in base al SES dell’area di residenza, tenendo in considerazione anche la prossimità spaziale e le caratteristiche socio-demografiche e cliniche dei pazienti. Metodi: Sono stati inclusi nello studio tutti i pazienti (n 2.759) con diagnosi psichiatrica in base all’ICD-10 che presentavano almeno un contatto tra gennaio e giugno 2009 con tre Unità Operative (UO) Psichiatriche Italiane (Verona, Bollate-Milano, Avellino). I servizi delle UO sono state descritte utilizzando l’International Classification of Mental Health e l’European Service Mapping Schedule. Sono stati calcolati prevalenza ed incidenza trattata ed indicatori di utilizzazione specifici per l’attività di ricovero, di day-care, ambulatoriale e domiciliare, considerando per ciascun paziente tutti i contatti avuti in un periodo di sei mesi. E’ stato calcolato un indice di satus socio-economico a partire da nove variabili censuarie a livello di sezione di censimento (SC) (SC 336.788). Le caratteristiche socio demografiche e cliniche sono state raccolte utilizzando dei questionari e i dati estratti dai Sistemi Informativi; la prossimità spaziale tra il domicilio dei pazienti e la localizzazione delle sedi dei servizi è stata misurata lungo la rete stradale; l’area di residenza è stata descritta in termini di uso del suolo e disponibilità di servizi dedicati alla persona. Queste variabili sono state considerate in modelli di regressione multilevel con distribuzione di Poisson. Risultati: La prevalenza e l’incidenza trattata aumentava con un trend significativo spostandosi nelle sezioni di censimento più deprivate per Verona, ma non per gli altri centri e risultavano differenze tra le diverse categorie assistenziali community-based: emergeva un’associazione inversa tra l’indice SES e la prevalenza di day-care e ambulatoriale per Verona e per la prevalenza di ricoverati per Milano. In generale, il numero di contatti risultava maggiore per i pazienti che vivono in sezioni di censimento più affluenti e, considerando il campione totale, i modelli che consideravano tutte le variabili individuali ed ecologiche erano in grado di spiegare intorno al 20% della varianza spiegata, anche se emergevano differenze per le diverse tipologie assistenziali e tra le tre Unità Psichiatriche, che presentavano differenti caratteristiche e disponibilità di servizi. Conclusioni: Lo status socio-economico assieme ad altre caratteristiche socio-demografiche e cliniche dei pazienti possono essere utilizzate come misure utili per informare i pianificatori dei servizi sui bisogni locali e organizzare e valutare i servizi per la salute mentale. Ulteriori ricerche in quest’area saranno utili per chiarire quali interventi possono migliorare l’equità nell’accesso ai servizi e definire l’allocazione delle risorse economiche.
Introduction: Previous studies conducted in a community-based psychiatric service showed an inverse association between socio-economic status (SES) and services utilization for some group of patients. In general, literature reported evidence for an association between SES and both objective and subjective mental health outcomes and there is a need for a greater understanding of the factors related with psychiatric services utilization to improve allocation of economic resources. Objectives: The main aim of this study was to assess how the utilization of community-based psychiatric services in Italy varies according to the SES of the area of residence, adjusted for spatial proximity and patients’ socio-demographic and clinical characteristics. Methods: All patients with ICD-10 psychiatric diagnosis, who had at least one contact between January and June 2009 with one of three Italian Psychiatric Units (Verona, Bollate-Milan, Avellino) were included (2,759 pts.). Services were described by using the International Classification of Mental Health and the European Service Mapping Schedule. Treated prevalence and incidence and indicators of inpatient, day-care, outpatient and domiciliary service utilization were calculated by considering all contacts occurred for each patient in a period of six months. An ecological socio-economic status index was calculated from nine census variables at census block (CB) level (336,788 CBs). Patients’ clinical and socio-demographic characteristics were collected by using questionnaires and Information Systems data; spatial proximity between patients and facilities locations were measured along the street network; residential area characteristics was described by land characteristics and public services supply. These variables were considered in multilevel regression models with Poisson distribution. Results: General treated prevalence and incidence significantly increased in the more deprived census blocks in Verona, but not in the other centers and differences among category of community services resulted: an inverse association between SES and day care prevalence and outpatient prevalence in Verona and in-patient prevalence in Milan emerged. In general, number of contacts was greater for those living in more affluent CBs and considering the overall sample, the models which included all individual and ecological variables were able to explain around 20% of the variance in utilization; however differences resulted for inpatient, day care, outpatient and domiciliary services and among the three Italian Psychiatric Units, which presented different characteristics and supply of services. Conclusion: Socio-economic status conditions alongside other patients’ characteristics may be used as proxy measures to make planners aware of the local needs and to organize and evaluate mental health services. Further research in this area will help to clarify what interventions are required to improve equality access to mental health services and to refine allocation of economic resources.
Disuguaglianze socio-economiche e utilizzazione dei servizi psichiatrici. Uno studio multicentrico italiano.
DONISI, Valeria
2010-01-01
Abstract
Introduction: Previous studies conducted in a community-based psychiatric service showed an inverse association between socio-economic status (SES) and services utilization for some group of patients. In general, literature reported evidence for an association between SES and both objective and subjective mental health outcomes and there is a need for a greater understanding of the factors related with psychiatric services utilization to improve allocation of economic resources. Objectives: The main aim of this study was to assess how the utilization of community-based psychiatric services in Italy varies according to the SES of the area of residence, adjusted for spatial proximity and patients’ socio-demographic and clinical characteristics. Methods: All patients with ICD-10 psychiatric diagnosis, who had at least one contact between January and June 2009 with one of three Italian Psychiatric Units (Verona, Bollate-Milan, Avellino) were included (2,759 pts.). Services were described by using the International Classification of Mental Health and the European Service Mapping Schedule. Treated prevalence and incidence and indicators of inpatient, day-care, outpatient and domiciliary service utilization were calculated by considering all contacts occurred for each patient in a period of six months. An ecological socio-economic status index was calculated from nine census variables at census block (CB) level (336,788 CBs). Patients’ clinical and socio-demographic characteristics were collected by using questionnaires and Information Systems data; spatial proximity between patients and facilities locations were measured along the street network; residential area characteristics was described by land characteristics and public services supply. These variables were considered in multilevel regression models with Poisson distribution. Results: General treated prevalence and incidence significantly increased in the more deprived census blocks in Verona, but not in the other centers and differences among category of community services resulted: an inverse association between SES and day care prevalence and outpatient prevalence in Verona and in-patient prevalence in Milan emerged. In general, number of contacts was greater for those living in more affluent CBs and considering the overall sample, the models which included all individual and ecological variables were able to explain around 20% of the variance in utilization; however differences resulted for inpatient, day care, outpatient and domiciliary services and among the three Italian Psychiatric Units, which presented different characteristics and supply of services. Conclusion: Socio-economic status conditions alongside other patients’ characteristics may be used as proxy measures to make planners aware of the local needs and to organize and evaluate mental health services. Further research in this area will help to clarify what interventions are required to improve equality access to mental health services and to refine allocation of economic resources.File | Dimensione | Formato | |
---|---|---|---|
finale_tesi_valeria_donisi_giugno.pdf
non disponibili
Tipologia:
Tesi di dottorato
Licenza:
Accesso ristretto
Dimensione
3.53 MB
Formato
Adobe PDF
|
3.53 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.