Introduzione: L’applicazione delle tecniche di spettrometria di massa ha contribuito significativamente allo sviluppo della ricerca incognita di composti di rilevanza farmaco-tossicologica (PTRC). In particolare, l’approccio library search ha consentito lo sviluppo di efficaci metodi identificativi basati sul confronto automatizzato di uno spettro incognito con gli spettri contenuti in una banca dati di riferimento. Tuttavia questo approccio trova il suo limite più significativo nelle dimensioni ridotte delle banche dati di riferimento, quanto meno nel caso della LC-MS, per la quale i database disponibili generalmente non superano il migliaio di composti. La spettrometria di massa ad alta risoluzione (HRMS) consente l’identificazione della formula bruta di un composto (MF) attraverso la determinazione della massa accurata e del pattern isotopico. Tuttavia, l’identificazione di una sostanza incognita a partire dalla MF richiede strumenti addizionali quali: (a) un database in grado di associare ad ogni MF il nome dei relativi composti, e (b) una strategia per discriminare composti caratterizzati da identica MF. Scopo: Valutare le potenzialità di un nuovo approccio di tipo “metabolomico” e di tipo chemiometrico nel discriminare tra composti con uguale MF. Metodi: Campioni di urine, sangue e capelli sono stati sottoposti a screening mediante ESI-MSTOF (in modalità positiva) in abbinamento sia alla elettroforesi capillare, sia alla LC in fase inversa. I picchi incogniti (massa accurata del relativo ione pseudomolecolare) sono stati ricercati all’interno di un database di PTRC (comprendente ca. 50.500 composti e metaboliti di fase I e II), costruito a partire da PubChem Compound. Al fine di discriminare sostanze con identica MF, è stato valutato un nuovo tipo di approccio “metabolomico” basato sulla tecnica “mass shift”. A partire dal valore di massa accurata di un composto ignoto, sono stati calcolati i difetti/incrementi di massa riferiti a biotrasformazioni prestabilite (demetilazione, idrossilazione, glucuronazione, ecc.) e successivamente i corrispondenti cromatogrammi sono stati estratti dalla corrente ionica totale (TIC) così da verificare la presenza di picchi riferibili a metaboliti. L’uso del software E-Dragon (Talete srl, Milano) ha permesso di calcolare automaticamente il numero dei diversi gruppi funzionali (N,O,S-metili, ossidrili, acetili, ecc.) presenti nella struttura di ciascun composto contenuto nella lista dei candidati. Successivamente la presenza di metaboliti nel TIC è stata confrontata con i dati forniti da E-Dragon così da poter escludere tutte le strutture non compatibili con le biotrasformazioni osservate (es: perdita di un metile da una struttura che non presenta metili, glucuronazione di una molecola priva di siti suscettibili a reazioni di coniugazione). Un’ulteriore analisi è stata eseguita con un nuovo approccio di tipo chemiometrico mediante l’applicazione di un modello matematico capace di correlare il tempo di ritenzione relativo di un composto incognito con alcuni parametri chimico-fisici (tra cui il coefficiente di ripartizione ottanolo/acqua), stimati a partire dalla struttura molecolare di ogni candidato. Risultati: La procedura è stata applicata a 121 composti, tra cui droghe (es. cocaina, oppiacei, MDMA), anticonvulsivanti (es. gabapentina, carbamazepina), benzodiazepine (es. flurazepam), antidepressivi (es. citalopram, trazodone, fluoxetina, amitriptilina, venlafaxina), fenotiazine (es. clorpromazina, promazina, periciazina), antipsicotici (es. amisulpride), antistaminici (es. cetirizina), beta-bloccanti (es. bisoprololo), antiretrovirali (es. emtricitabina, tenofovir) inibitore dell’acetilcolinesterasi (es. rivastigmina), antagonisti dei recettori H2 dell’istamina (es. ranitidina), e i loro metaboliti di fase I. La lunghezza media della lista di candidati (MLL) è risultata pari a 6.71 ± 4.66 (mediana 6, range 1-28) prima dell’applicazione dell’approccio “metabolomico” qui descritto e pari a 3.94 ± 3.07 (mediana 3, range 1-17) dopo. Per i dati in RPLC-TOF, la MLL è stata ridotta da 6.02 ± 3.49 (mediana 6, range 2-21) a 3.42 ± 3.03 (mediana 3, range 1-17) dopo l’applicazione dell’approccio “metabolomico” e a 3.09 ± 2.03 (mediana 2, range 1-9) dopo l’applicazione dell’approccio chemiometrico. L’applicazione combinata dei due approcci ha permesso un’ulteriore riduzione delle MLL a 2.14 ± 1.63 (mediana 2, range 1-9). Conclusioni: La HRMS applicata alla ricerca generica di PTRC offre la possibilità di ampliare significativamente il numero di composti identificabili rispetto ad altri approcci di screening. L’applicazione combinata degli approcci qui descritti ha permesso di ridurre significativamente la lista di composti candidati isobari.
Introduction: The screening for Pharmaco/Toxicologically Relevant Compounds (PTRC) in biosamples has benefited a lot from MS techniques. The so-called library search approach has enabled the development of effective identification methods based on comparison of unknown and reference spectra. However, a downside of this approach is the limited number of reference mass spectra, particularly in the case of LC-MS where in-house/commercial databases typically include not more than one thousand compounds. High resolution MS (HRMS) enables the identification of a molecular formula (MF) through the accurate measurement of mass and isotopic pattern. However, the identification of an unknown compound starting from MF requires additional tools: (a) a database associating MFs to compound names, and (b) a way to discriminate between isomers. Aims: To evaluate the ability of combined novel “metabolomic”/chemometric approach to reduce the list of candidate isomers. Methods: Urine/blood/hair samples collected from real positive cases were submitted to a screening procedure using ESI-MSTOF (positive ion mode) combined with either capillary electrophoresis or reversed phase LC (RPLC). Detected peaks were searched against a PTRC database (ca. 50.500 compounds and phase I and II metabolites) consisting of a subset of PubChem Compound. In order to discriminate between compounds with identical MF first a filter based on a “metabolomic” approach was applied. Starting from the mass of the unknown compound, defects/increments corresponding to pre-defined biotransformations (e.g. demethylation, hydroxylation, glucuronidation, etc.) were calculated and the corresponding mass chromatograms were extracted from the total ion current (TIC) in order to search for metabolite peaks. For each candidate in the retrieved list, the number of different functional groups in the molecule (N,O,S-methyls, hydroxyls, acetyls, etc.) was automatedly calculated using E-Dragon software (Talete srl, Milan, Italy). Then, the presence of metabolites in the TIC was matched with functional groups data in order to exclude candidates whose structure was not compatible with observed biotransformations (e.g. loss of methyl from a structure not bearing methyls, glucuronidation on a structure not bearing any site susceptible to conjugation). A further filter was then applied based on a mathematic model correlating RPLC relative retention time (ISTD nalorphine) with a number of parameters estimated for each candidate compound starting from the Simplified Molecular Input Line Entry Specification (SMILES), including the predicted octanol/water partition coefficient (LogP). Results: The procedure was tested on 121 compounds detected in real positive samples, including drugs of abuse (e.g. cocaine, opiates, MDMA), anticonvulsants (e.g. gabapentin, carbamazepine), benzodiazepines (e.g. flurazepam), antidepressants (e.g. citalopram, trazodone, fluoxetine, amitriptyline, venlafaxine), phenothiazines (e.g. chlorpromazine, promazine, pericyazine), antipsychotics (e.g. amisulpride), antihistamines (e.g. cetirizine), beta-blocker (e.g. bisoprolol), anti-retroviral agents (e.g. emtricitabine, tenofovir), acetyl-cholinesterase inhibitors (e.g. rivastigmine), histamine H2-receptor antagonists (e.g. ranitidine), and their phase I metabolites. Overall, the mean list length (MLL) of compounds was 6.71 ± 4.66 (median 6, range 1-28) before the application of the metabolomic approach and was shortened to 3.94 ± 3.07 (median 3, range 1-17) after. For RPLC-HRMS data the MLL was shorted from 6.02 ± 3.49 (median 6, range 2-21) to 3.42 ± 3.03 (median 3, range 1-17) after the metabolomic filter and to 3.09 ± 2.03 (median 2, range 1-9) after the chemometric approach. The application of both filters allowed a reduction of the MLL to 2.14 ± 1.63 (median 2, range 1-9). Conclusion: HRMS allows a much broader search for PTRC than other screening approaches. The combined metabolomic/chemometric approach significantly reduces the list of candidate isomers.
Development and evaluation of new strategies for the general unknown toxicological screening in biosamples using high resolution mass spectrometry
LIOTTA, Eloisa
2010-01-01
Abstract
Introduction: The screening for Pharmaco/Toxicologically Relevant Compounds (PTRC) in biosamples has benefited a lot from MS techniques. The so-called library search approach has enabled the development of effective identification methods based on comparison of unknown and reference spectra. However, a downside of this approach is the limited number of reference mass spectra, particularly in the case of LC-MS where in-house/commercial databases typically include not more than one thousand compounds. High resolution MS (HRMS) enables the identification of a molecular formula (MF) through the accurate measurement of mass and isotopic pattern. However, the identification of an unknown compound starting from MF requires additional tools: (a) a database associating MFs to compound names, and (b) a way to discriminate between isomers. Aims: To evaluate the ability of combined novel “metabolomic”/chemometric approach to reduce the list of candidate isomers. Methods: Urine/blood/hair samples collected from real positive cases were submitted to a screening procedure using ESI-MSTOF (positive ion mode) combined with either capillary electrophoresis or reversed phase LC (RPLC). Detected peaks were searched against a PTRC database (ca. 50.500 compounds and phase I and II metabolites) consisting of a subset of PubChem Compound. In order to discriminate between compounds with identical MF first a filter based on a “metabolomic” approach was applied. Starting from the mass of the unknown compound, defects/increments corresponding to pre-defined biotransformations (e.g. demethylation, hydroxylation, glucuronidation, etc.) were calculated and the corresponding mass chromatograms were extracted from the total ion current (TIC) in order to search for metabolite peaks. For each candidate in the retrieved list, the number of different functional groups in the molecule (N,O,S-methyls, hydroxyls, acetyls, etc.) was automatedly calculated using E-Dragon software (Talete srl, Milan, Italy). Then, the presence of metabolites in the TIC was matched with functional groups data in order to exclude candidates whose structure was not compatible with observed biotransformations (e.g. loss of methyl from a structure not bearing methyls, glucuronidation on a structure not bearing any site susceptible to conjugation). A further filter was then applied based on a mathematic model correlating RPLC relative retention time (ISTD nalorphine) with a number of parameters estimated for each candidate compound starting from the Simplified Molecular Input Line Entry Specification (SMILES), including the predicted octanol/water partition coefficient (LogP). Results: The procedure was tested on 121 compounds detected in real positive samples, including drugs of abuse (e.g. cocaine, opiates, MDMA), anticonvulsants (e.g. gabapentin, carbamazepine), benzodiazepines (e.g. flurazepam), antidepressants (e.g. citalopram, trazodone, fluoxetine, amitriptyline, venlafaxine), phenothiazines (e.g. chlorpromazine, promazine, pericyazine), antipsychotics (e.g. amisulpride), antihistamines (e.g. cetirizine), beta-blocker (e.g. bisoprolol), anti-retroviral agents (e.g. emtricitabine, tenofovir), acetyl-cholinesterase inhibitors (e.g. rivastigmine), histamine H2-receptor antagonists (e.g. ranitidine), and their phase I metabolites. Overall, the mean list length (MLL) of compounds was 6.71 ± 4.66 (median 6, range 1-28) before the application of the metabolomic approach and was shortened to 3.94 ± 3.07 (median 3, range 1-17) after. For RPLC-HRMS data the MLL was shorted from 6.02 ± 3.49 (median 6, range 2-21) to 3.42 ± 3.03 (median 3, range 1-17) after the metabolomic filter and to 3.09 ± 2.03 (median 2, range 1-9) after the chemometric approach. The application of both filters allowed a reduction of the MLL to 2.14 ± 1.63 (median 2, range 1-9). Conclusion: HRMS allows a much broader search for PTRC than other screening approaches. The combined metabolomic/chemometric approach significantly reduces the list of candidate isomers.File | Dimensione | Formato | |
---|---|---|---|
PhD_Tesi Dottorato_E.Liotta.pdf
accesso aperto
Tipologia:
Tesi di dottorato
Licenza:
Dominio pubblico
Dimensione
1.16 MB
Formato
Adobe PDF
|
1.16 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.