I sistemi biologici sono gruppi di entità biologiche (es. molecole ed organismi), che interagiscono producendo specifiche dinamiche. Questi sistemi sono solitamente caratterizzati da una elevata complessità perchè coinvolgono un elevato numero di componenti con molte interconnessioni. La comprensione dei meccanismi che governano i sistemi biologici e la previsione dei loro comportamenti in condizioni normali e patologiche è una sfida cruciale della biologia dei sistemi (in inglese detta systems biology), un'area di ricerca al confine tra biologia, medicina, matematica ed informatica. In questa tesi i P sistemi metabolici, detti brevemente sistemi MP, sono stati utilizzati come modello discreto per l'analisi di dinamiche biologiche. Essi sono una classe deterministica dei P sistemi classici, che utilizzano regole di riscrittura per rappresentare le reazioni chimiche e "funzioni di regolazioni di flusso" per regolare la reattività di ciascuna reazione rispetto alla quantita' di sostanze presenti istantaneamente nel sistema. Dopo un excursus sulla letteratura relativa ad alcuni modelli convenzionali (come le equazioni differenziali ed i modelli stocastici proposti da Gillespie) e non-convenzionali (come i P sistemi ed i P sistemi metabolici), saranno presentati i risultati della mia ricerca. Essi riguardano tre argomenti principali: i) l'equivalenza tra sistemi MP e reti di Petri ibride funzionali, ii) le prospettive statistiche e di ottimizzazione nella generazione di sistemi MP a partire da dati sperimentali, iii) lo sviluppo di un laboratorio virtuale chiamato MetaPlab, un software Java basato sui sistemi MP. L'equivalenza tra i sistemi MP e le reti di Petri ibride funzionali è stata dimostrata per mezzo di due teoremi ed alcuni esperimenti al computer per il caso di studio del meccanismo regolativo del gene operone lac nella pathway glicolitica. Il secondo argomento di ricerca concerne nuovi approcci per la sintesi delle funzioni di regolazione di flusso. La regressione stepwise e le reti neurali sono state impiegate come approssimatori di funzioni, mentre algoritmi di ottimizzazione classici ed evolutivi (es. backpropagation, algoritmi genetici, particle swarm optimization ed algoritmi memetici) sono stati impiegati per l'addestramento dei modelli. Una completo workflow per l'analisi dei dati sperimentali è stato presentato. Esso gestisce ed indirizza l'intero processo di sintesi delle funzioni di regolazione, dalla preparazione dei dati alla selezione delle variabili, fino alla generazione dei modelli ed alla loro validazione. Le metodologie proposte sono state testate con successo tramite esperimenti al computer sui casi di studio dell'oscillatore mitotico negli embrioni anfibi e del non photochemical quenching (NPQ). L'ultimo tema di ricerca è infine piu' applicativo e riguarda la progettazione e lo sviluppo di una architettura Java basata su plugin e di una serie di plugin che consentono di automatizzare varie fasi del processo di modellazione con sistemi MP, come la simulazione di dinamiche, la determinazione dei flussi e la generazione delle funzioni di regolazione.
Biological systems are groups of biological entities, (e.g., molecules and organisms), that interact together producing specific dynamics. These systems are usually characterized by a high complexity, since they involve a large number of components having many interconnections. Understanding biological system mechanisms, and predicting their behaviors in normal and pathological conditions is a crucial challenge in systems biology, which is a central research area on the border among biology, medicine, mathematics and computer science. In this thesis metabolic P systems, also called MP systems, have been employed as discrete modeling framework for the analysis of biological system dynamics. They are a deterministic class of P systems employing rewriting rules to represent chemical reactions and "flux regulation functions" to tune reactions reactivity according to the amount of substances present in the system. After an excursus on the literature about some conventional (i.e., differential equations, Gillespie's models) and unconventional (i.e., P systems and metabolic P systems) modeling frameworks, the results of my research are presented. They concern three research topics: i) equivalences between MP systems and hybrid functional Petri nets, ii) statistical and optimization perspectives in the generation of MP models from experimental data, iii) development of the virtual laboratory MetaPlab, a Java software based on MP systems. The equivalence between MP systems and hybrid functional Petri nets is proved by two theorems and some in silico experiments for the case study of the lac operon gene regulatory mechanism and glycolytic pathway. The second topic concerns new approaches to the synthesis of flux regulation functions. Stepwise linear regression and neural networks are employed as function approximators, and classical/evolutionary optimization algorithms (e.g., backpropagation, genetic algorithms, particle swarm optimization, memetic algorithms) as learning techniques. A complete pipeline for data analysis is also presented, which addresses the entire process of flux regulation function synthesis, from data preparation to feature selection, model generation and statistical validation. The proposed methodologies have been successfully tested by means of in silico experiments on the mitotic oscillator in early amphibian embryos and the non photochemical quenching (NPQ). The last research topic is more applicative, and pertains the design and development of a Java plugin architecture and several plugins which enable to automatize many tasks related to MP modeling, such as, dynamics computation, flux discovery, and regulation function synthesis.
Algorithms and Software for Biological MP Modeling by Statistical and Optimization Techniques
CASTELLINI, ALBERTO
2010-01-01
Abstract
Biological systems are groups of biological entities, (e.g., molecules and organisms), that interact together producing specific dynamics. These systems are usually characterized by a high complexity, since they involve a large number of components having many interconnections. Understanding biological system mechanisms, and predicting their behaviors in normal and pathological conditions is a crucial challenge in systems biology, which is a central research area on the border among biology, medicine, mathematics and computer science. In this thesis metabolic P systems, also called MP systems, have been employed as discrete modeling framework for the analysis of biological system dynamics. They are a deterministic class of P systems employing rewriting rules to represent chemical reactions and "flux regulation functions" to tune reactions reactivity according to the amount of substances present in the system. After an excursus on the literature about some conventional (i.e., differential equations, Gillespie's models) and unconventional (i.e., P systems and metabolic P systems) modeling frameworks, the results of my research are presented. They concern three research topics: i) equivalences between MP systems and hybrid functional Petri nets, ii) statistical and optimization perspectives in the generation of MP models from experimental data, iii) development of the virtual laboratory MetaPlab, a Java software based on MP systems. The equivalence between MP systems and hybrid functional Petri nets is proved by two theorems and some in silico experiments for the case study of the lac operon gene regulatory mechanism and glycolytic pathway. The second topic concerns new approaches to the synthesis of flux regulation functions. Stepwise linear regression and neural networks are employed as function approximators, and classical/evolutionary optimization algorithms (e.g., backpropagation, genetic algorithms, particle swarm optimization, memetic algorithms) as learning techniques. A complete pipeline for data analysis is also presented, which addresses the entire process of flux regulation function synthesis, from data preparation to feature selection, model generation and statistical validation. The proposed methodologies have been successfully tested by means of in silico experiments on the mitotic oscillator in early amphibian embryos and the non photochemical quenching (NPQ). The last research topic is more applicative, and pertains the design and development of a Java plugin architecture and several plugins which enable to automatize many tasks related to MP modeling, such as, dynamics computation, flux discovery, and regulation function synthesis.File | Dimensione | Formato | |
---|---|---|---|
castelliniThesis.pdf
accesso aperto
Tipologia:
Tesi di dottorato
Licenza:
Dominio pubblico
Dimensione
76.78 MB
Formato
Adobe PDF
|
76.78 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.