Il coinvolgimento delle molecole idrofobiche nelle reazioni che avvengono in un ambiente acquoso richiede che siano rese solubili e trasportate attraverso diversi compartimenti. Il meccanismo sviluppato dall’evoluzione è quello di legare queste sostanze a delle proteine solubili in acqua. Questo lavoro di tesi è focalizzato sullo studio strutturale di tre proteine che legano molecole idrofobiche appartenenti a famiglie differenti: La “Odorant-Binding Protein Porcina” (OBP) appartiene alla famiglia ben nota delle lipocaline, che include la “Retinol-Binding Protein” e la β Lattoglobulina, caratterizzate da una struttura a botte beta anti-parallela, che circonda il sito di legame; La “Fatty Acid-Binding Protein (basica) da Fegato di Pollo” (CbFABP) è strutturalmente correlata con le lipocaline, con 10 anziché 8 foglietti a struttura beta; La “Folate-Binding Protein” (FBP), è molto simile in sequenza ai recettori cellulari dell’acido folico umani ed è strettamente collegata alla “Riboflavin-Binding Protein“ dall’ albume d'uovo, una proteina molto ben caratterizzata con una nuova struttura. È una struttura α-β interrotta da lunghe anse, tenute assieme dalla presenza di nove ponti disolfuro intramolecolari. OBP Porcina Le Odorant-Binding Proteins (OBPs) sono abbondanti proteine solubili a basso peso molecolare (< 20 kDa) secrete dall' epitelio olfattivo nel muco nasale dei vertebrati. Anche se differenti in struttura primaria, si suppone che tutte svolgano funzioni simili: possono fungere da solubilizzanti e trasportatori delle molecole odoranti lipofile nel muco acquoso verso i recettori; possono comportarsi come filtro periferico nella distinzione degli odori legando selettivamente determinate classi di odoranti; possono presentare le sostanze in un modo particolare alle proteine del recettore per facilitarne la traduzione del segnale; possono liberare lo spazio perirecettoriale dai residui indesiderabili e tossici; possono disattivare velocemente gli odoranti dopo la stimolazione dei recettori. Queste proteine legano reversibilmente le sostanze odoranti con costanti di dissociazione nella gamma del micromolare. Sono state identificate in una varietà di specie animali, compreso il maiale, il coniglio, il topo ed il ratto a partire dalla scoperta della prima OBP di vertebrato isolata dalla mucosa nasale bovina. Differenti sottotipi di OBP sono stati segnalati essere presenti simultaneamente nella stessa specie animale: quattro nel topo, tre nel coniglio ed almeno otto nel porcospino. Mostrano una significativa somiglianza di sequenza con una super famiglia di proteine solubili di trasporto chiamate lipocaline e un’ analisi a raggi X ha rivelato che le OBPs bovina e porcina sono piegate nella tipica struttura a barile β delle lipocaline. In base alla loro struttura quaternaria, le OBPs sono state classificate come monomeri, omodimeri ed eterodimeri. La OBP porcina si è creduta a lungo essere un monomero in condizioni fisiologiche ma ci sono dati recenti che sostengono l'esistenza di un equilibrio del monomero-dimero in soluzione. In cromatografia d'esclusione questa proteina sembra essere omodimerica in condizioni fisiologiche (pH 6-7, 0.1 M NaCl). L'equilibrio dimero-monomero si sposta verso una forma monomerica prevalente a pH < 4,5. La proteina ha un' affinità per le sostanze odoranti che è molto simile a quella della OBP bovina e una sequenza di 157amminoacidi. I due residui di cisteina, presenti nella struttura primaria nelle posizioni 63 e 155, sono coinvolti in un ponte disolfuro intramolecolare. Il confronto di sequenza con altre lipocaline ha rivelato una buona somiglianza con la OBP bovina (42% identiche). Durante il primo e il secondo anno di Dottorato abbiamo determinato la struttura cristallografica d'una forma monoclina di OBP porcina ed abbiamo trovato che le molecole troncate, che mancano dei primi 8 amminoacidi, si impacchettano nella cella elementare come dimeri che sembrano avere rilevanza fisiologica. Siamo stati convinti che i primi 8 amminoacidi mancano effettivamente e non sono disordinati nel cristallo dal modo particolare in cui le molecole si impaccano in questi cristalli, formando dimeri in cui l’N terminale di un monomero è situato in una fessura che conduce alla cavità centrale dell' altro. La presenza nelle mappe di densità elettronica per un ligando endogeno ci ha anche permesso di identificare la catena laterale degli amminoacidi che sono coinvolti nel sito di legame. In più, una via alternativa di accesso alla cavità centrale che lega il substrato è suggerita dall’impacchettamento particolare delle molecole in questa cella unitaria. CbFABP Le Fatty Acid-Binding Proteins (FABPs) sono membri di una superfamiglia di proteine a basso peso molecolare. Le FABPs sono state isolate dai tessuti di diversi mammiferi e non mammiferi. La Fatty Acid-Binding Protein Basica (bFABP) è una di queste; è stato dimostrato che può legare e solubilizzare gli acidi grassi e può partecipare così nel loro trasporto intracellulare e/o nell’immagazzinamento, così come l'albumina fa a livello extracellulare. Anche se attualmente conosciamo la struttura tridimensionale, rivelataci dagli studi di diffrazione di raggi X su cristallo singolo di più di 11 membri di questa famiglia di proteine, la loro funzione o funzioni fisiologiche devono ancora essere stabilite. Le differenti Fatty Acid-Binding Proteins sono associate generalmente al tessuto da cui sono state estratte ma in alcuni tessuti è riconosciuto essere presente più di una FABP. In particolare, nel fegato di pollo, è dimostrato che sono presenti almeno due diverse FABPs che sono facilmente distinguibili dai loro punti isoelettrici, 7.0 e 9.0, e composizione amminoacidica. La bFABP è presente ad alte concentrazioni nel fegato di pollo e la relativa sequenza amminoacidica, la struttura a raggi X a 2,7 Å e le proprietà di legame sono state studiate ma la funzione della molecola è ancora sconosciuta. La struttura a raggi X della FABP di fegato di ratto (che in questa specie ha un punto isoelettrico di 7,0) ha confermato le osservazioni che hanno attribuito a questa proteina la caratteristica interessante di legare 2 molecole di acido grasso per molecola della proteina. La bFABP da fegato di pollo d'altra parte, sembra avere un sito di legame capace di accomodare soltanto una molecola di acido grasso. Per spiegare il ruolo fisiologico della bFABP durante i tre anni di Dottorato abbiamo preparato alcuni nuovi esperimenti di cristallizzazione per migliorare la risoluzione dei dati e per studiare i migliori ligandi nel sito attivo. Per raggiungere questo obiettivo abbiamo portato a termine i seguenti esperimenti: Cocristallizzazione della Olo-bFABP legata con acido oleico o palmitico; Cristallizzazione della proteina Apo e successivo “soaking” dei cristalli con differenti acidi grassi, anche sostituiti con Br e I, per aumentare il picco di densità elettronica per localizzare l'orientamento del ligando nel sito; Abbiamo anche spedito la nostra proteina sulla Stazione Spaziale Internazionale, per provare a migliorare la qualità dei cristalli in assenza di gravità. Set di dati completi su cristalli di buona qualità, messi in “soaking” con acido oleico e acido 2-Br palmitico, sono stati raccolti usando una fonte di luce di sincrotrone (Elettra Trieste), un rilevatore Mar ad “imaging plate” e lavorando a bassa temperatura. I dati vengono attualmente usati per tentare di definire il sito di legame. Per i cristalli cresciuti in assenza di gravità dobbiamo attendere fino a metà settembre, quando raccoglieremo ancora nuovi dati a Trieste, a causa della mancanza di un sistema di rilevazione completo nel nostro laboratorio di raggi X.
The participation of hydrophobic molecules in reactions that are carried out in a water environment requires that they become soluble and transported through several compartments. The mechanism developed by evolution is binding of these ligands to a water soluble protein. This thesis is focalized on the structural study of three hydrophobic ligand-binding proteins belonging to different families: Pig Odorant-Binding Protein (Pig OBP) belongs to the well known protein family of the lipocalins, which includes Retinol-Binding Protein and β Lactoglobulin, characterized by an anti-parallel beta barrel, surrounding the ligand-binding site; Chichen Liver (basic) Fatty Acid-Binding Protein (CbFABP) is structurally related to the lipocalins, with 10 instead of 8 strands of beta structure; Folate-Binding Protein (FBP) is very similar in sequence to the Human Folic Acid Cellular Receptors and it is also strictly related to egg white Riboflavin-Binding Protein, a well characterized protein with a new fold. It is an α-β structure interrupted by long loops, tightly restrained by the presence of nine disulphide bridges. PIG OBP In order to reach their membrane receptors embedded in the membrane of the olfactory neurons, airborne odorants, which are commonly hydrophobic molecules, have to be conveyed through the aqueous nasal mucus by carriers. The Odorant-binding proteins (OBPs) which are abundant low-molecular mass soluble proteins (< 20 kDa) secreted by the olfactory epithelium in the nasal mucus of vertebrates, have been thought to play such a role. Although different in primary structure, they are supposed to serve similar functions: may act as solubilizers and carriers of the lipophilic odorants in the aqueous mucus; may act in addition as peripheral filters in odor discrimination by selectively binding certain classes of odorants; may present the stimulus molecule in a particular way to the receptor proteins to facilitate signal transduction; may clean the perireceptor space from unwanted and toxic compounds; may rapidly deactivate odorants after stimulation of the receptors. These proteins reversibly bind odorants with dissociation constants in the micromolar range. They have been identified in a variety of species, including pig, rabbit, mouse and rat since the discovery of the first vertebrate OBP isolated from the bovine nasal mucosa. Different OBP subtypes have been reported to occur simultaneously in the same animal species, two in pig, four in mouse, three in rabbit and at least eight in porcupine. They show significant sequence similarity with a super family of soluble carrier proteins called lipocalins and an X-ray analysis has revealed that bovine and porcine OBPs are folded in the typical lipocalin β-barrel structure. On the basis of their quaternary structure, the OBPs have been classified as monomers, homodimers and heterodimers. Porcine OBP was believed for a long time to be a monomer under physiological conditions but there are recent data that support the existence of a monomer-dimer equilibrium. In gel filtration this protein appears to be homodimeric under physiologic conditions (pH 6-7, 0.1 M NaCl). The dimer-monomer equilibrium shifts toward a prevalent monomeric form at pH < 4.5. The protein has an affinity for odorants that is very similar to that of bovine OBP and a 157-amino-acid-long sequence. The two cysteine residues, occurring in the primary structure at positions 63 and 155, are involved in an intramolecular disulphide bridge. Sequence comparison with other lipocalins revealed a good similarity with bovine odorant-binding protein (42% identical), the only member of this class which does not contain disulphide bonds We have determined the crystal structure of a monoclinic form of porcine OBP and found that the truncated molecules, that lack the first 8 amino acids, pack in the cell as dimers that appear to have physiological relevance. We were convinced that the first 8 amino acids are indeed missing and are not disordered in the crystals by the particular way in which the molecules pack in these crystals, forming dimers in which the N terminus of one monomer is located in a crevice that leads to the central cavity of the other. The presence in the maps of electron density for an endogenous ligand has also let us identify the side chain of the amino acids that are at the ligand-binding site. In addition, an alternative way of access to the central cavity that binds the ligands is suggested by the particular packing of the molecules in this unit cell. CbFABP The fatty acid-binding proteins (FABPs) are members of a superfamily of low-molecular-mass molecules. The FABPs have been isolated from different mammalian and non-mammalian tissues. Basic fatty acid-binding protein (bFABP) is one of these; it has been shown that it can bind and solubilize fatty acids and may thus participate in their intracellular transport and/or storage, much like albumin does extracellularly. Although we currently know the three-dimensional structure, revealed by X-ray diffraction studies of single crystals, of 11 members of this protein family, their physiological function or functions still remain to be established. Different fatty acid-binding proteins are generally associated to the tissue from which they have been extracted but in some tissues more than one FABP is known to be present. In particular, in chicken liver, it is known that at least two different FABPs are present which are easily distinguishable by their isoelectric points, 7.0 and 9.0, and amino acid composition. bFABP is present at high concentrations in chicken liver and its amino acid sequence, X-ray structure to 2.7 Å and ligand binding properties have been studied but the function of the molecule is still unknown The X-ray structure of rat liver FABP (which has an isoelectric point of 7.0) has confirmed observations that attributed to this protein the interesting peculiarity of binding 2 molecules of fatty acid per protein molecule. bFABP on the other hand, appears to have a binding site capable to accommodate only one fatty acid molecule. In order to explain the physiological role of bFABP we have set some new crystallization experiments to improve data resolution and to study the best binding molecules in the active site. To reach this goal we have undertaken the following experiments: Cocrystallization of Holo-bFABP with bound oleic or palmitic acid. Crystallization of the Apo protein and subsequent soaking of crystals with different fatty acids, also substituted with Br and I, to enhance the peak of electron density in order to localize the substance orientation in the binding site. We have also sent our protein on the International Space Station, trying to improve crystal quality in the absence of gravity. Complete datasets on good quality crystals, soaked with oleic and 2-Br palmitic acid, were collected using a synchrotron light source (Elettra Trieste), a Mar imaging plate detector and working at low temperature. The data are currently being used to attempt to define the ligand-binding site. For the crystals grown in the absence of gravity we have to wait until September, when we will collect new data again in Trieste, due to the lack of a complete detection system in our X-ray laboratory.
Structural Studies on Hydrophobic Molecule-Binding Proteins
PERDUCA, Massimiliano
2002-01-01
Abstract
The participation of hydrophobic molecules in reactions that are carried out in a water environment requires that they become soluble and transported through several compartments. The mechanism developed by evolution is binding of these ligands to a water soluble protein. This thesis is focalized on the structural study of three hydrophobic ligand-binding proteins belonging to different families: Pig Odorant-Binding Protein (Pig OBP) belongs to the well known protein family of the lipocalins, which includes Retinol-Binding Protein and β Lactoglobulin, characterized by an anti-parallel beta barrel, surrounding the ligand-binding site; Chichen Liver (basic) Fatty Acid-Binding Protein (CbFABP) is structurally related to the lipocalins, with 10 instead of 8 strands of beta structure; Folate-Binding Protein (FBP) is very similar in sequence to the Human Folic Acid Cellular Receptors and it is also strictly related to egg white Riboflavin-Binding Protein, a well characterized protein with a new fold. It is an α-β structure interrupted by long loops, tightly restrained by the presence of nine disulphide bridges. PIG OBP In order to reach their membrane receptors embedded in the membrane of the olfactory neurons, airborne odorants, which are commonly hydrophobic molecules, have to be conveyed through the aqueous nasal mucus by carriers. The Odorant-binding proteins (OBPs) which are abundant low-molecular mass soluble proteins (< 20 kDa) secreted by the olfactory epithelium in the nasal mucus of vertebrates, have been thought to play such a role. Although different in primary structure, they are supposed to serve similar functions: may act as solubilizers and carriers of the lipophilic odorants in the aqueous mucus; may act in addition as peripheral filters in odor discrimination by selectively binding certain classes of odorants; may present the stimulus molecule in a particular way to the receptor proteins to facilitate signal transduction; may clean the perireceptor space from unwanted and toxic compounds; may rapidly deactivate odorants after stimulation of the receptors. These proteins reversibly bind odorants with dissociation constants in the micromolar range. They have been identified in a variety of species, including pig, rabbit, mouse and rat since the discovery of the first vertebrate OBP isolated from the bovine nasal mucosa. Different OBP subtypes have been reported to occur simultaneously in the same animal species, two in pig, four in mouse, three in rabbit and at least eight in porcupine. They show significant sequence similarity with a super family of soluble carrier proteins called lipocalins and an X-ray analysis has revealed that bovine and porcine OBPs are folded in the typical lipocalin β-barrel structure. On the basis of their quaternary structure, the OBPs have been classified as monomers, homodimers and heterodimers. Porcine OBP was believed for a long time to be a monomer under physiological conditions but there are recent data that support the existence of a monomer-dimer equilibrium. In gel filtration this protein appears to be homodimeric under physiologic conditions (pH 6-7, 0.1 M NaCl). The dimer-monomer equilibrium shifts toward a prevalent monomeric form at pH < 4.5. The protein has an affinity for odorants that is very similar to that of bovine OBP and a 157-amino-acid-long sequence. The two cysteine residues, occurring in the primary structure at positions 63 and 155, are involved in an intramolecular disulphide bridge. Sequence comparison with other lipocalins revealed a good similarity with bovine odorant-binding protein (42% identical), the only member of this class which does not contain disulphide bonds We have determined the crystal structure of a monoclinic form of porcine OBP and found that the truncated molecules, that lack the first 8 amino acids, pack in the cell as dimers that appear to have physiological relevance. We were convinced that the first 8 amino acids are indeed missing and are not disordered in the crystals by the particular way in which the molecules pack in these crystals, forming dimers in which the N terminus of one monomer is located in a crevice that leads to the central cavity of the other. The presence in the maps of electron density for an endogenous ligand has also let us identify the side chain of the amino acids that are at the ligand-binding site. In addition, an alternative way of access to the central cavity that binds the ligands is suggested by the particular packing of the molecules in this unit cell. CbFABP The fatty acid-binding proteins (FABPs) are members of a superfamily of low-molecular-mass molecules. The FABPs have been isolated from different mammalian and non-mammalian tissues. Basic fatty acid-binding protein (bFABP) is one of these; it has been shown that it can bind and solubilize fatty acids and may thus participate in their intracellular transport and/or storage, much like albumin does extracellularly. Although we currently know the three-dimensional structure, revealed by X-ray diffraction studies of single crystals, of 11 members of this protein family, their physiological function or functions still remain to be established. Different fatty acid-binding proteins are generally associated to the tissue from which they have been extracted but in some tissues more than one FABP is known to be present. In particular, in chicken liver, it is known that at least two different FABPs are present which are easily distinguishable by their isoelectric points, 7.0 and 9.0, and amino acid composition. bFABP is present at high concentrations in chicken liver and its amino acid sequence, X-ray structure to 2.7 Å and ligand binding properties have been studied but the function of the molecule is still unknown The X-ray structure of rat liver FABP (which has an isoelectric point of 7.0) has confirmed observations that attributed to this protein the interesting peculiarity of binding 2 molecules of fatty acid per protein molecule. bFABP on the other hand, appears to have a binding site capable to accommodate only one fatty acid molecule. In order to explain the physiological role of bFABP we have set some new crystallization experiments to improve data resolution and to study the best binding molecules in the active site. To reach this goal we have undertaken the following experiments: Cocrystallization of Holo-bFABP with bound oleic or palmitic acid. Crystallization of the Apo protein and subsequent soaking of crystals with different fatty acids, also substituted with Br and I, to enhance the peak of electron density in order to localize the substance orientation in the binding site. We have also sent our protein on the International Space Station, trying to improve crystal quality in the absence of gravity. Complete datasets on good quality crystals, soaked with oleic and 2-Br palmitic acid, were collected using a synchrotron light source (Elettra Trieste), a Mar imaging plate detector and working at low temperature. The data are currently being used to attempt to define the ligand-binding site. For the crystals grown in the absence of gravity we have to wait until September, when we will collect new data again in Trieste, due to the lack of a complete detection system in our X-ray laboratory.File | Dimensione | Formato | |
---|---|---|---|
PhD Tesi.pdf
non disponibili
Tipologia:
Tesi di dottorato
Licenza:
Accesso ristretto
Dimensione
3.66 MB
Formato
Adobe PDF
|
3.66 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.