Sebbene i dati circolari sono piuttosto speciali, si presentano in molti contesti. Esempi sono trovati nelle scienze della terra, nella meteorologia, nella biologia, nella fisica, ecc. Le usuali tecniche statistiche non possono essere usate per analizzare i dati circolari a causa della geometria circolare del loro spazio campionario. Ci sono metodi diversi per trattare tali dati come l'approccio embedding e l'approccio intrinsic con la distribuzione di von Mises. Un'alternativa è data dal cosiddetto metodo wrapping, in cui le distribuzioni circolari sono ottenute "arrotolando" le distribuzioni definite sull'asse dei reali. In questa tesi, dopo avere fatto una descrizione generale dei dati circolari, si analizza dettagliatamente l'approccio wrapping. Inerentemente la distribuzione wrapped normal, ne forniamo un'approssimazione che risulta essere molto utile ai fini inferenziali. Questa approssimazione, infatti, è direttamente usata nella procedura di stima bayesana permettendo di superare il problema di identificabilità intrinseco a tale metodo, mostrandone la flessibilità e le facilità di applicazione anche a modelli strutturalmente complessi come i modelli a errore di misura e a modelli spaziali e spatiotemporali. Il contributo principale di questo lavoro è sostanzialmente quello di fornire un metodo per poter applicare ai dati circolari le usuali tecniche e procedure applicate ai dati in linea. Per apprezzare la flessibilità e la facilità di applicazione del metodo wrapping si presentano due applicazioni originali: la prima in contesto spaziale e la seconda in un contesto spazio-temporale. Alcune osservazioni e discussioni su possibili applicazioni e sviluppi futuri concludono la tesi.
Although circular data are special, they arise in many different contexts. Examples are found in earth sciences, meteorology, biology, physics, etc. Standard statistical techniques cannot be used to analyze circular data because of circular geometry of the sample space. There are different approaches to handle circular data. In the embedding approach the directions are treated as angles, while in the most popular intrinsic approach the directions are treated as unit complex number and modeled by von Mises distribution. An alternative, and more general class of distribution models can be obtained using the so called wrapping approach, in which the circular distributions are obtained wrapping the distributions on the real line onto the unit circle. In this thesis, after giving a general overview about circular data, we deeply analyze the wrapping approach showing the main drawback and advantages of this method. Focusing on wrapped Normal distribution, we provide an approximation for this circular distribution that turns out to be very useful to improve the inferential results. This approximation, in fact, is directly used into the Bayesian inference procedure allowing to overcome the main disadvantage, the identiability problem, and to show the flexibility and ease of applicability of this approach in model with complex structure as measurement error model and high dimensional spatial and spatiotemporal model. The main contribution of this work is substantially of overcoming the identiability problem with the consequently possibility to apply the standard in line inferential procedures and methods to circular data as well. In order to appreciate the flexibility and the ease of applicability and interpretability of the wrapping approach two original applications of measurement error model for circular data are presented: the first in a spatial context and the second in a dynamic spatiotemporal context. Some remarks and discussions about future developments conclude the thesis.
The wrapping approach for circular data Bayesian modeling
FERRARI, Clarissa
2009-01-01
Abstract
Although circular data are special, they arise in many different contexts. Examples are found in earth sciences, meteorology, biology, physics, etc. Standard statistical techniques cannot be used to analyze circular data because of circular geometry of the sample space. There are different approaches to handle circular data. In the embedding approach the directions are treated as angles, while in the most popular intrinsic approach the directions are treated as unit complex number and modeled by von Mises distribution. An alternative, and more general class of distribution models can be obtained using the so called wrapping approach, in which the circular distributions are obtained wrapping the distributions on the real line onto the unit circle. In this thesis, after giving a general overview about circular data, we deeply analyze the wrapping approach showing the main drawback and advantages of this method. Focusing on wrapped Normal distribution, we provide an approximation for this circular distribution that turns out to be very useful to improve the inferential results. This approximation, in fact, is directly used into the Bayesian inference procedure allowing to overcome the main disadvantage, the identiability problem, and to show the flexibility and ease of applicability of this approach in model with complex structure as measurement error model and high dimensional spatial and spatiotemporal model. The main contribution of this work is substantially of overcoming the identiability problem with the consequently possibility to apply the standard in line inferential procedures and methods to circular data as well. In order to appreciate the flexibility and the ease of applicability and interpretability of the wrapping approach two original applications of measurement error model for circular data are presented: the first in a spatial context and the second in a dynamic spatiotemporal context. Some remarks and discussions about future developments conclude the thesis.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.