Background: lo scopo di questo studio è stato quello di indagare le differenze alla base delle caratteristiche molecolari del fenotipo metastatico usando modelli cellulari derivati dalla linea di adenocarcinoma pancreatico SUIT-2: S2m (motili, non metastatiche) e S2-CP9 (motili, altamente metastatiche). Ci siamo concentrati su: 1) le vie di traduzione del segnale che regolano la motilità e la migrazione cellulare mediante l’utilizzo di peptidi inibitori degli enzimi RhoA e ζPKC, in grado di entrare all’interno della membrana cellulare; 2) identificazione delle proteine secrete dai due sottocloni cellulari. Metodi: sono stati eseguiti saggi in vitro (adesione su plastica, saggio della ferita, saggio di migrazione su membrana porosa) in presenza di peptidi inibitori di degli enzimi RhoA e ζPKC in modo da valutare il ruolo di questi ultimi sul movimento e sulla capacità metastatica dei sottoscloni cellulari. Sono stati in seguito analizzati con la Tecnologia Multidimensionale di Identificazione delle Proteine (MudPIT) i surnatanti raccolti dalle linee cellulari al termine di 18 ore di coltura in terreno privo di siero. La metodica MudPIT prevede la digestione della miscela proteica in modo da ottenere singoli peptidi, la separazione di questi ultimi tramite due colonne di micro- HPLC (a scambio cationico e in fase inversa, 2DC) e l’analisi diretta dell’eluato tramite spettrometria di massa in tandem. L’identificazione delle proteine corrispondenti ai singoli peptidi formatisi nella digestione è poi ottenuta grazie ad un database di ricerca automatico gestito da software appropriati, come l’algoritmo SEQUEST per la gestione dei dati ottenuti dallo spettro di massa. Risultati: in entrambi i sottocloni cellulari i peptidi inibitori degli enzimi RhoA e ζPKC, quando utilizzati in combinazione, inibiscono l’adesione cellulare, sebbene questo effetto sia più evidente nella linea cellulare S2-CP9. Nel saggio della ferita, abbiamo notato che la linea cellulare S2m non è in grado di chiudere i lembi della ferita anche se ilvalore di motilità è sovrapponibile a quello della linea S2-CP9. Abbiamo poi valutato il comportamento di due sottocloni cellulari in un esperimento allestito per studiare la chemiotassi, nel quale la migrazione delle cellule avviene attraverso una membrana con pori del diametro di 8 μm. Entrambe le linee hanno migrato attivamente in questo saggio sebbene con alcune differenze, e in entrambi i casi la presenza di uno dei peptidi inibitori ha notevolmente inibito questo fenomeno arrivando al quasi totale blocco della migrazione in presenza di entrambi i peptidi. Dagli studi proteomici è emersa la differente espressione di alcune proteine; tra queste Perlecan, Versican (isoforme V0 e V3), Vimentin, Thrombospondin 1, Matrix metalloproteinases 1 and 7, HSD-2, Mac25, and uPA. La differenza più eclatante tra le proteine secrete dalle due linee è l’aumento della secrezione delle metalloproteinasi e della proteina uPA da parte della linea S2-CP9, insieme a una diminuzione del rilascio di proteoglicani, Thrombospondin 1 e Vimentin. Conclusioni: la caratteristiche invasive e metastatiche sono associate all’acquisizione da parte delle cellule tumorali di anomale caratteristiche di motilità. I nostri dati dimostrano un ruolo differente degli enzimi RhoA e ζPKC nell’adesione cellulare e nel passaggio attraverso pori da 8μm di diametro. Questi risultati indicano che la motilità e la capacità metastatica attivano, seppur sovrapponibili, distinte vie di traduzione del segnale e che il clone metastatico, a differenza di quello non metastatico, appare più sensibile alla modificazione delle dinamiche citoscheletriche. I cloni cellulari dotati di capacità metastatica rilasciano all’esterno polipeptidi diversi rispetto alle cellule non metastatiche. Ulteriori e più approfondite indagini sono necessarie per determinare se questa differenza nella produzione di proteine possa avere un ruolo determinante del definire il fenotipo metastatico di questi modelli cellulari e per estendere e validare i risultati in modelli murini ed umani di malattia.
Background: the aims of this study were to gain insights on the molecular features of pancreatic cancer metastatic phenotype using a cell model derived from SUIT-2 pancreatic adenocarcinoma cell line: S2m (motile, non metastatic) and S2CP9 (motile, highly metastatic). We focused on: 1) the signaling that regulate cell motility and migration using functional interference approaches based on cell permeable inhibitory peptides of RhoA and ζPKC enzymes; 2) the identification of the proteins released by the individual subclones. Methods: we used RhoA and ζPKC inhibitory peptides in in vitro experiments (adhesion plate, wound-healing assay and transwell assay) to evaluate the role of these enzymes. We analyzed with Multidimensional Protein Identification Technology (MudPIT) small amounts of serum-free supernatant produced by cultured SUIT-2 cells. The approach involves the generation of peptides from enzymatic digestion of a complex protein mixture, their separation by means of two micro-HPLC columns (cation exchange and reversed phase, 2DC) and direct analysis of eluted peaks by tandem mass spectrometry. The identification of the corresponding proteins is then obtained through an automated database search with appropriate software, such as the SEQUEST algorithm for data handling of mass spectra. Results: in both cell lines the combination of RhoA and ζPKC inhibitory peptides inhibited cell adhesion, although this effect was more evident in S2-CP9 cell line. In wound healing assay, we noticed that S2m was unable to migrate toward both ends of the wound even if its motility score was overlapping with that of S2-CP9. We then studied how both clones behaved in an experimental setting used to study chemotaxis, where migration of the cells occurs through a 8μm pores membrane. In this case the spontaneus migration occurs, although at different extent, in both clones and was almost completely abolished by the individual treatments with RhoA and ζPKC inhibitory peptides. Several proteins were found to be differentially released in these clones: Perlecan, Versican isoforms V0 and V3, Vimentin, Thrombospondin 1, Matrix metalloproteinases 1 and 7, HSD-2, Mac25, and uPA are among these. The most remarkable difference between non metastatic and metastatic subclones was an increased secretion of Matrix metalloproteinases and uPA, together with a decrease of proteoglycans (Perlecan, Versican V0), Thrombospondin 1 and Vimentin. Conclusions: the invasive and metastatic capability of malignancies is associated with the acquisition of anomalous motile behavior by cancer cells. Our experiments demonstrate that RhoA and ζPKC enzymes are involved in different aspects related to cell adhesion, motility on a surface or through 8 μm pores in non metastatic or metastatic S2m and S2-CP9 clones. Altogether these results indicate that motility and metastatic attitude activate overlapping, yet distinct pathways and that metastatic clones appear to be more sensitive to the disruption of cytoskeletron dynamics than highly motile but non metastatic clones. The pattern of released proteins differentiate motility and metastatic attitude, as metastatic cells release a different array of polypeptides in comparison to motile clones. The role of these products in determining, detecting or influencing metastatic behaviour need further investigations.
Correlation with different motility and metastatic potential in pancreatic cancer cell lines
DELLA PERUTA, Marco
2007-01-01
Abstract
Background: the aims of this study were to gain insights on the molecular features of pancreatic cancer metastatic phenotype using a cell model derived from SUIT-2 pancreatic adenocarcinoma cell line: S2m (motile, non metastatic) and S2CP9 (motile, highly metastatic). We focused on: 1) the signaling that regulate cell motility and migration using functional interference approaches based on cell permeable inhibitory peptides of RhoA and ζPKC enzymes; 2) the identification of the proteins released by the individual subclones. Methods: we used RhoA and ζPKC inhibitory peptides in in vitro experiments (adhesion plate, wound-healing assay and transwell assay) to evaluate the role of these enzymes. We analyzed with Multidimensional Protein Identification Technology (MudPIT) small amounts of serum-free supernatant produced by cultured SUIT-2 cells. The approach involves the generation of peptides from enzymatic digestion of a complex protein mixture, their separation by means of two micro-HPLC columns (cation exchange and reversed phase, 2DC) and direct analysis of eluted peaks by tandem mass spectrometry. The identification of the corresponding proteins is then obtained through an automated database search with appropriate software, such as the SEQUEST algorithm for data handling of mass spectra. Results: in both cell lines the combination of RhoA and ζPKC inhibitory peptides inhibited cell adhesion, although this effect was more evident in S2-CP9 cell line. In wound healing assay, we noticed that S2m was unable to migrate toward both ends of the wound even if its motility score was overlapping with that of S2-CP9. We then studied how both clones behaved in an experimental setting used to study chemotaxis, where migration of the cells occurs through a 8μm pores membrane. In this case the spontaneus migration occurs, although at different extent, in both clones and was almost completely abolished by the individual treatments with RhoA and ζPKC inhibitory peptides. Several proteins were found to be differentially released in these clones: Perlecan, Versican isoforms V0 and V3, Vimentin, Thrombospondin 1, Matrix metalloproteinases 1 and 7, HSD-2, Mac25, and uPA are among these. The most remarkable difference between non metastatic and metastatic subclones was an increased secretion of Matrix metalloproteinases and uPA, together with a decrease of proteoglycans (Perlecan, Versican V0), Thrombospondin 1 and Vimentin. Conclusions: the invasive and metastatic capability of malignancies is associated with the acquisition of anomalous motile behavior by cancer cells. Our experiments demonstrate that RhoA and ζPKC enzymes are involved in different aspects related to cell adhesion, motility on a surface or through 8 μm pores in non metastatic or metastatic S2m and S2-CP9 clones. Altogether these results indicate that motility and metastatic attitude activate overlapping, yet distinct pathways and that metastatic clones appear to be more sensitive to the disruption of cytoskeletron dynamics than highly motile but non metastatic clones. The pattern of released proteins differentiate motility and metastatic attitude, as metastatic cells release a different array of polypeptides in comparison to motile clones. The role of these products in determining, detecting or influencing metastatic behaviour need further investigations.File | Dimensione | Formato | |
---|---|---|---|
TESI DI DOTTORATO Marco Della Peruta.pdf
non disponibili
Tipologia:
Tesi di dottorato
Licenza:
Accesso ristretto
Dimensione
8.33 MB
Formato
Adobe PDF
|
8.33 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.