La vita sulla terra dipende dall’energia solare. La fotosintesi è il processo biologico che permette la conversione della luce in energia chimica: piante, cianobatteri e alghe verdi catturano la radiazione solare e convertono l’energia in una forma più stabile, utilizzabile in momenti successivi per i processi biologici, in particolare la sintesi di zuccheri a partire dall’anidride carbonica. Per svolgere queste reazioni, gli organismi fotosintetici necessitano di uno specifico apparato, che è localizzato all’interno delle cellule in organelli dedicati, detti cloroplasti; l’apparato fotosintetico è composto da proteine che coordinano i pigmenti responsabili della cattura della luce e del trasferimento di energia. Dal momento che le piante non sono in grado di allontanarsi fisicamente da condizioni a loro avverse, nel corso dell’evoluzione hanno dovuto sviluppare meccanismi adattativi che permettano loro non solo di sopravvivere, ma anche di continuare a crescere e riprodursi quando le condizioni climatiche rappresentano una fonte di stress. Ogni variazione ambientale si ripercuote sulla capacità di catturare l’energia luminosa e quindi l’apparato fotosintetico risulta essere tra i primi obiettivi dei cambiamenti messi in atto per fronteggiare tali variazioni: in particolare risultano coinvolte le proteine e i pigmenti localizzati nelle antenne dei fotosistemi, la cui sintesi e degradazione è stata oggetto di studio di questa tesi. Nella prima parte del lavoro è stato analizzato il comportamento delle diverse subunità appartenenti alla famiglia multigenica degli Lhcb, in risposta a diverse condizioni di crescita in mais (Zea mays). La ridondanza di queste sequenze, infatti, ha suggerito un possibile ruolo specifico di ogni prodotto genico nella cattura della luce e nella fotoprotezione, in base alle condizioni ambientali. La piante sono state cresciute in diverse condizioni di luce e temperatura, per poi isolarne i tilacoidi al fine di testare l’accumulo delle proteine antenna (lhc). Significative differenze sono state riscontrate nell’accumulo delle antenne, sia maggiori (LHCII) che minori, del Fotosistema II (PSII) e, in particolare, la temperatura ha giocato un importante ruolo, poiché il rapporto LHCII/antenne minori ha mostrato un aumento con la diminuzione della temperatura. Inoltre, piante cresciute in condizioni diverse hanno mostrato una diversa composizione in pigmenti, diverse proprietà spettroscopiche dei complessi antenna e diversi valori di quenching non fotochimico. Questi risultati hanno confermato l’esistenza di diversi ruoli per le diverse antenne del Fotosistema II. Nella seconda parte di questa tesi, la regolazione secondo le condizioni ambientali dei polipeptidi che costituiscono l’antenna fotosintetica è stata analizzata usando un mutante di orzo (Hordeum vulgare), viridis zb63, che manca del Fotosistema I, per mimare la sovra-eccitazione cronica del Fotosistema II. In primo luogo, il mutante è stato analizzato dettagliatamente, evidenziando una riduzione dell'antenna del PSII ad una unità minima non ulteriormente riducibile. Metodi biochimici e microscopia elettronica hanno permesso di evidenziare che questa antenna minima consiste di un dimero del centro di reazione del PSII circondato da un Lhcb4, da un Lhcb5 e da un trimero di LHCII, con l'assenza completa di Lhcb6. Questa unità minima del Fotosistema II in vivo ha mostrato un’organizzazione regolare, probabilmente per aumentare l'efficienza di distribuzione di energia e la fotoprotezione. Il mutante ha mostrato una riduzione cronica del plastochinone, anche a intensità di luce molto bassa, mentre il livello di stress ossidativo nelle cellule era paragonabile al wild type, indicando la presenza di due vie di regolazione distinte attivate dalla luce in eccesso assorbita dal PSII: la prima, dipendente dallo stato redox della catena di trasporto degli elettroni, è coinvolta nella regolazione della dimensione dell'antenna, mentre la seconda, più direttamente collegata al livello di stress ossidativo percepito dalla cellula, partecipa alla regolazione della biosintesi dei carotenoidi. L'effetto dello stato redox del plastoquinone sulla regolazione delle antenne è stato analizzato sia a livello trascrizionale che post-trascrizionale. Il livello di mRNA dei geni che codificano le proteine antenna è risultato inalterato nel mutante rispetto al wild type; questa stabilità del livello del messaggero si estende a tutti i geni fotosintetici, mentre, al contrario, l'analisi dell’accumulo delle corrispondenti proteine attraverso elettroforesi bidimensionale ha indicato che il mutante subisce una riduzione forte della dimensione dell’antenna antenna, con i diversi prodotti genici fortemente inibiti. In conclusione, lo stato redox del plastochinone ha mostrato di svolgere un ruolo importante nella regolazione a lungo termine dell'espressione delle proteine del cloroplasto, ma questo tipo di modulazione è attivo al livello post-trascrizionale.

Life on earth depends on solar energy. Photosynthesis is the biological process that allows the conversion of sunlight into chemical energy: plants, cyanobacteria and green algae capture solar radiation and convert the energy in a stable form that can be used in later times for biochemical processes, in particular to synthesise sugars starting from carbon dioxide. To carry out these reactions photosynthetic organisms need a specific apparatus which is located within the cells in dedicated organelles called chloroplasts; the photosynthetic apparatus is composed by proteins coordinating pigments, responsible for solar radiation absorption and energy transfer. Since plants cannot move far away from adverse conditions, during evolution they needed to develop adaptative mechanisms which allowed not only the survival but also to keep on growing and reproducing when climate conditions represent a source of stress. Any environmental change influences the capacity of light energy harvesting, so the photosynthetic apparatus is one of the firsts targets of changes raised to face those variations: in particular, proteins and pigments belonging to photosystems antennae are much more involved and, for this reason, their synthesis and degradation was the object of this thesis. In the first part of the work the behaviour of different light harvesting complex (Lhc) subunits, belonging to a highly conserved multigenic family, was analysed in response to different growing conditions in Zea mays. The redundancy of these sequences suggested, in fact, a possible specific role of each gene product in light harvesting and photoprotection, depending on environmental conditions. Plants were grown in different conditions of light and temperature and thylakoid membranes were isolated in order to test the accumulation of Lhc proteins. Significant differences were found in the accumulation of both major (LHCII) and minor antennae of Photosystem II (PSII) and, in particular, temperature seemed to play an important role, since the LHCII/minor antenna ratio increased with decreasing temperature. In addition, plants grown in different conditions showed different pigment composition, spectroscopic properties of antenna complexes and value of Non Photochemical Quenching. These results confirmed the suggested specific role of different antennae in the organization of the Photosystem II and photoprotection. In the second part of this thesis, the modulation of antenna polypeptides following environmental conditions was analysed using a barley (Hordeum vulgare) mutant, viridis zb63, which lacks Photosystem I, to mimic extreme and chronic over-excitation of Photosystem II. First of all, the mutant was analysed in detail, showing a reduction of PSII antenna to a minimal size, which was not further reducible. Biochemical methods and electron microscopy showed that this minimal antenna consist of a dimeric PSII reaction centre core surrounded by monomeric Lhcb4, Lhcb5 and trimeric light harvesting complex II antenna proteins, with the complete absence of Lhcb6. This minimal Photosystem II unit was shown to form arrays in vivo, possibly to increase the efficiency of energy distribution and provide photoprotection. The mutant showed a chronic reduction of plastoquinone, also at very low light intensities, but the level of oxidative stress in the cells was comparable to wild type, indicating the presence of two distinct signalling pathways activated by excess light absorbed by Photosystem II: one, dependent on the redox state of the electron transport chain, is involved in the regulation of antenna size, and the second, more directly linked to the level of photoinhibitory stress perceived by the cell, participates in regulating carotenoid biosynthesis. The effect of the plastoquinone redox state on the regulation of the light-harvesting antenna size was analysed at transcriptional and post-transcriptional levels. The mRNA level of genes encoding antenna proteins was almost unaffected in the mutant; this stability of messenger level extended to all photosynthesis-related genes, while, in contrast, analysis of protein accumulation by two-dimensional PAGE showed that the mutant undergoes strong reduction of its antenna size, with individual gene products having different levels of accumulation. Then, the plastoquinone redox state was shown to play an important role in the long term regulation of chloroplast protein expression and its modulation is active at the post-transcriptional rather than transcriptional level.

Plant response to abiotic stress: analysis of changes in the photosynthetic apparatus at both gene and protein level

FRIGERIO, Sara
2008-01-01

Abstract

Life on earth depends on solar energy. Photosynthesis is the biological process that allows the conversion of sunlight into chemical energy: plants, cyanobacteria and green algae capture solar radiation and convert the energy in a stable form that can be used in later times for biochemical processes, in particular to synthesise sugars starting from carbon dioxide. To carry out these reactions photosynthetic organisms need a specific apparatus which is located within the cells in dedicated organelles called chloroplasts; the photosynthetic apparatus is composed by proteins coordinating pigments, responsible for solar radiation absorption and energy transfer. Since plants cannot move far away from adverse conditions, during evolution they needed to develop adaptative mechanisms which allowed not only the survival but also to keep on growing and reproducing when climate conditions represent a source of stress. Any environmental change influences the capacity of light energy harvesting, so the photosynthetic apparatus is one of the firsts targets of changes raised to face those variations: in particular, proteins and pigments belonging to photosystems antennae are much more involved and, for this reason, their synthesis and degradation was the object of this thesis. In the first part of the work the behaviour of different light harvesting complex (Lhc) subunits, belonging to a highly conserved multigenic family, was analysed in response to different growing conditions in Zea mays. The redundancy of these sequences suggested, in fact, a possible specific role of each gene product in light harvesting and photoprotection, depending on environmental conditions. Plants were grown in different conditions of light and temperature and thylakoid membranes were isolated in order to test the accumulation of Lhc proteins. Significant differences were found in the accumulation of both major (LHCII) and minor antennae of Photosystem II (PSII) and, in particular, temperature seemed to play an important role, since the LHCII/minor antenna ratio increased with decreasing temperature. In addition, plants grown in different conditions showed different pigment composition, spectroscopic properties of antenna complexes and value of Non Photochemical Quenching. These results confirmed the suggested specific role of different antennae in the organization of the Photosystem II and photoprotection. In the second part of this thesis, the modulation of antenna polypeptides following environmental conditions was analysed using a barley (Hordeum vulgare) mutant, viridis zb63, which lacks Photosystem I, to mimic extreme and chronic over-excitation of Photosystem II. First of all, the mutant was analysed in detail, showing a reduction of PSII antenna to a minimal size, which was not further reducible. Biochemical methods and electron microscopy showed that this minimal antenna consist of a dimeric PSII reaction centre core surrounded by monomeric Lhcb4, Lhcb5 and trimeric light harvesting complex II antenna proteins, with the complete absence of Lhcb6. This minimal Photosystem II unit was shown to form arrays in vivo, possibly to increase the efficiency of energy distribution and provide photoprotection. The mutant showed a chronic reduction of plastoquinone, also at very low light intensities, but the level of oxidative stress in the cells was comparable to wild type, indicating the presence of two distinct signalling pathways activated by excess light absorbed by Photosystem II: one, dependent on the redox state of the electron transport chain, is involved in the regulation of antenna size, and the second, more directly linked to the level of photoinhibitory stress perceived by the cell, participates in regulating carotenoid biosynthesis. The effect of the plastoquinone redox state on the regulation of the light-harvesting antenna size was analysed at transcriptional and post-transcriptional levels. The mRNA level of genes encoding antenna proteins was almost unaffected in the mutant; this stability of messenger level extended to all photosynthesis-related genes, while, in contrast, analysis of protein accumulation by two-dimensional PAGE showed that the mutant undergoes strong reduction of its antenna size, with individual gene products having different levels of accumulation. Then, the plastoquinone redox state was shown to play an important role in the long term regulation of chloroplast protein expression and its modulation is active at the post-transcriptional rather than transcriptional level.
2008
Plant response; abiotic stress; photosynthetic apparatus
La vita sulla terra dipende dall’energia solare. La fotosintesi è il processo biologico che permette la conversione della luce in energia chimica: piante, cianobatteri e alghe verdi catturano la radiazione solare e convertono l’energia in una forma più stabile, utilizzabile in momenti successivi per i processi biologici, in particolare la sintesi di zuccheri a partire dall’anidride carbonica. Per svolgere queste reazioni, gli organismi fotosintetici necessitano di uno specifico apparato, che è localizzato all’interno delle cellule in organelli dedicati, detti cloroplasti; l’apparato fotosintetico è composto da proteine che coordinano i pigmenti responsabili della cattura della luce e del trasferimento di energia. Dal momento che le piante non sono in grado di allontanarsi fisicamente da condizioni a loro avverse, nel corso dell’evoluzione hanno dovuto sviluppare meccanismi adattativi che permettano loro non solo di sopravvivere, ma anche di continuare a crescere e riprodursi quando le condizioni climatiche rappresentano una fonte di stress. Ogni variazione ambientale si ripercuote sulla capacità di catturare l’energia luminosa e quindi l’apparato fotosintetico risulta essere tra i primi obiettivi dei cambiamenti messi in atto per fronteggiare tali variazioni: in particolare risultano coinvolte le proteine e i pigmenti localizzati nelle antenne dei fotosistemi, la cui sintesi e degradazione è stata oggetto di studio di questa tesi. Nella prima parte del lavoro è stato analizzato il comportamento delle diverse subunità appartenenti alla famiglia multigenica degli Lhcb, in risposta a diverse condizioni di crescita in mais (Zea mays). La ridondanza di queste sequenze, infatti, ha suggerito un possibile ruolo specifico di ogni prodotto genico nella cattura della luce e nella fotoprotezione, in base alle condizioni ambientali. La piante sono state cresciute in diverse condizioni di luce e temperatura, per poi isolarne i tilacoidi al fine di testare l’accumulo delle proteine antenna (lhc). Significative differenze sono state riscontrate nell’accumulo delle antenne, sia maggiori (LHCII) che minori, del Fotosistema II (PSII) e, in particolare, la temperatura ha giocato un importante ruolo, poiché il rapporto LHCII/antenne minori ha mostrato un aumento con la diminuzione della temperatura. Inoltre, piante cresciute in condizioni diverse hanno mostrato una diversa composizione in pigmenti, diverse proprietà spettroscopiche dei complessi antenna e diversi valori di quenching non fotochimico. Questi risultati hanno confermato l’esistenza di diversi ruoli per le diverse antenne del Fotosistema II. Nella seconda parte di questa tesi, la regolazione secondo le condizioni ambientali dei polipeptidi che costituiscono l’antenna fotosintetica è stata analizzata usando un mutante di orzo (Hordeum vulgare), viridis zb63, che manca del Fotosistema I, per mimare la sovra-eccitazione cronica del Fotosistema II. In primo luogo, il mutante è stato analizzato dettagliatamente, evidenziando una riduzione dell'antenna del PSII ad una unità minima non ulteriormente riducibile. Metodi biochimici e microscopia elettronica hanno permesso di evidenziare che questa antenna minima consiste di un dimero del centro di reazione del PSII circondato da un Lhcb4, da un Lhcb5 e da un trimero di LHCII, con l'assenza completa di Lhcb6. Questa unità minima del Fotosistema II in vivo ha mostrato un’organizzazione regolare, probabilmente per aumentare l'efficienza di distribuzione di energia e la fotoprotezione. Il mutante ha mostrato una riduzione cronica del plastochinone, anche a intensità di luce molto bassa, mentre il livello di stress ossidativo nelle cellule era paragonabile al wild type, indicando la presenza di due vie di regolazione distinte attivate dalla luce in eccesso assorbita dal PSII: la prima, dipendente dallo stato redox della catena di trasporto degli elettroni, è coinvolta nella regolazione della dimensione dell'antenna, mentre la seconda, più direttamente collegata al livello di stress ossidativo percepito dalla cellula, partecipa alla regolazione della biosintesi dei carotenoidi. L'effetto dello stato redox del plastoquinone sulla regolazione delle antenne è stato analizzato sia a livello trascrizionale che post-trascrizionale. Il livello di mRNA dei geni che codificano le proteine antenna è risultato inalterato nel mutante rispetto al wild type; questa stabilità del livello del messaggero si estende a tutti i geni fotosintetici, mentre, al contrario, l'analisi dell’accumulo delle corrispondenti proteine attraverso elettroforesi bidimensionale ha indicato che il mutante subisce una riduzione forte della dimensione dell’antenna antenna, con i diversi prodotti genici fortemente inibiti. In conclusione, lo stato redox del plastochinone ha mostrato di svolgere un ruolo importante nella regolazione a lungo termine dell'espressione delle proteine del cloroplasto, ma questo tipo di modulazione è attivo al livello post-trascrizionale.
File in questo prodotto:
File Dimensione Formato  
Tesi Sara Frigerio.pdf

non disponibili

Tipologia: Tesi di dottorato
Licenza: Accesso ristretto
Dimensione 6.85 MB
Formato Adobe PDF
6.85 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/337627
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact