La necessità di ridurre le emissioni di anidride carbonica e il consumo di petrolio ha determinato negli ultimi anni un crescente interesse verso le energie rinnovabili e i biocarburanti. Il più promettente fra questi risulta essere il bioetanolo, che presenta una combustione pulita, un elevato numero di ottano(103), è chimicamente stabile, non tossico e biodegradabile. Inoltre può essere utilizzato per la trazione o puro o in miscela; infatti in miscela non richiede specifiche modifiche al motore, mentre se utilizzato puro richiede solo piccoli interventi. L’anidride carbonica emessa dalla combustione del bioetanolo ( e simili) è considerata a basso impatto ambientale in quanto derivante da fonti rinnovabili. Così molti paesi hanno istituito politiche per la promozione e lo sviluppo di questi combustibili. L’etanolo è prodotto su base commerciale utilizzando sostanzialmente due tecnologie, utilizzando materie prime i cui zuccheri sono direttamente fermentabili, come canna da zucchero e barbabietola, o materiali di natura amidacea, come mais e frumento. Dei 51 miliardi di litri di etanolo prodotti nel 2006, la produzione statunitense basata sul mais e quella brasiliana basata sulla canna da zucchero coprono il 70% della produzione mondiale. I materiali di natura ligneo-cellulosica rappresentano la più abbondante risorsa nel mondo di biomassa e sono largamente sottoutilizzati. Il maggior problema nello sviluppo di un processo per la produzione di bio-etanolo da questi materiali è la mancanza di microorganismi in grado di fermentare zuccheri pentosi con una cinetica accettabile e i costi necessari alla preparazione del materiale di partenza alla fermentazione. Un’altra importante opzione per la produzione di bio-etanolo è l’uso di scarti di biomasse che risultino ricchi di zuccheri o di materiali amidacei. E’ stato riportato che varie frazioni della frazione organica dei rifiuti urbani presentano un elevato potenziale per la produzione di zuccheri che potrebbero eventualmente essere utilizzati per la produzione di bioetanolo. Inoltre la conversione di parte di questi residui a etanolo può rappresentare un’alternativa sostenibile alla disposizione in discarica. Questi materiali sono prodotti in grande quantità in Europa e si possono considerare una materia importante di partenza per la produzione di biocombustibili; la generazione di questi scarti si attesta sui 222 milioni di tonnellate per anno, di cui gli scarti di frutta e verdura si attestano sui 140 milioni di tonnellate per anno. In questa tesi è stato studiato il processo di fermentazione continua in condizioni non sterili di un residuo ottenuto dalla produzione di marmellata, con lo scopo di produrre bioetanolo. La fermentazione è stata condotta utilizzando un ceppo di Saccharomyces cerevisiae (EC 1118), ceppo tollerante ad elevate concentrazioni di etanolo. Sono state studiate sia la configurazione di singolo CSTR che in CSTR con ricircolo della biomassa per comprendere la cinetica del processo e i problemi connessi all’intensificazione di processo. Dai bilanci di massa condotti alle diverse condizioni operative risulta chiaro che è possibile lavorare in condizioni non sterili sia in singolo CSTR che in CSTR con ricircolo della biomassa ottenendo elevati rapporti etanolo/zuccheri utilizzati, questo utilizzando opportuni tempi di ritenzione idraulica e dei solidi. Il processo comunque risulta, dalla modellazione cinetica e dal bilancio di energia, non competitivo.
The necessity to reduce CO2 emissions and oil consumption has been determining a strong interest in bio-energy and bio-fuels in recent years. The most promising of these biobased fuels is bioethanol , which can be used with a clean combustion, has a high octane number (103), is chemically stable, no toxic and biodegradable. Further, it can be used for vehicles transport as a mixture with oil or pure; in fact, as mixture does not require specific changes on the engine, while when used pure only small changes are requested. Finally, the CO2 emission produced by the bio-ethanol combustion is “environmental friendly”, because deriving from renewable energy sources. So many countries have set up polices to promote development and use of liquid biofuels. The production of bioethanol is performed on a commercial basis by two technological roadmaps, using directly fermentable sweet feedstocks, such as sugarcane and sugar beets, or starchy feedstocks, such as corn and wheat. Of the 51 billion liters of bioethanol produced in 2006, the U.S. production based on corn and the Brazilian production based on sugarcane accounted for 70% of total production. Cellulose materials represent the most abundant global source of biomass and have been largely unutilized. The main problems to develop viable ligneocellulose-to-ethanol bioconversion processes are the lack of organisms capable of fermenting pentose sugars with a acceptable kinetic rate and the energy (and costs) required for breaking the lignocellulosic material structure. Lignocellulosic ethanol is not at large scale production as corn ethanol and sugarcane ethanol. Ethanol can be produced from lignocellulosic materials in various ways; all processes comprise the same main components: hydrolysis of the hemicellulose and the cellulose to monomer sugars, fermentation and product recovery and concentration by distillation. Another important option for the production of bio-ethanol is the use of bio-waste rich in sugars or starchy materials. Has been reported that various BMSW fractions have a vast potential for the production of sugars that eventually can be used for producing bio-ethanol. Moreover conversion of MSW to bio-ethanol can be an alternative sustainable approach to disposal of waste and reduction of the biodegradable fraction of MSW to landfill. These materials are produced in large amount in Europe and can be considered an important feedstock for bio-fuels production: the generation of food-processing waste has been estimated in 222 millions tonnes per year, vegetable and fruit being at 140 million of tonnes/year. In this thesis has been the study of the continuous fermentation process under no-sterile condition of a residue obtained from the marmalade production, with the aim of bio-ethanol fuel production. The fermentations was conducted with a Saccharomyces cerevisiae strain (EC1118) alcoholic tolerant It has been studied both the single CSTR and CSTR with biomass recycling in order to understand the process kinetics and the problems connected with the principal intensification processes utilized in ethanol fermentation. From the different mass balances conducted on the first, second and third part of this work it appears clear that is possible to work under no-sterile conditions in CSTR, and CSTR with biomass recycling obtaining high ethanol/sugars utilized ratio utilizing appropriate solid retention time and hydraulic retention time. The process nevertheless appears, from the kinetic modelling and energy balance, to not be competitive.
Continuous bioethanol production by the fermentation of food processing waste
ZANETTE, Marco
2009-01-01
Abstract
The necessity to reduce CO2 emissions and oil consumption has been determining a strong interest in bio-energy and bio-fuels in recent years. The most promising of these biobased fuels is bioethanol , which can be used with a clean combustion, has a high octane number (103), is chemically stable, no toxic and biodegradable. Further, it can be used for vehicles transport as a mixture with oil or pure; in fact, as mixture does not require specific changes on the engine, while when used pure only small changes are requested. Finally, the CO2 emission produced by the bio-ethanol combustion is “environmental friendly”, because deriving from renewable energy sources. So many countries have set up polices to promote development and use of liquid biofuels. The production of bioethanol is performed on a commercial basis by two technological roadmaps, using directly fermentable sweet feedstocks, such as sugarcane and sugar beets, or starchy feedstocks, such as corn and wheat. Of the 51 billion liters of bioethanol produced in 2006, the U.S. production based on corn and the Brazilian production based on sugarcane accounted for 70% of total production. Cellulose materials represent the most abundant global source of biomass and have been largely unutilized. The main problems to develop viable ligneocellulose-to-ethanol bioconversion processes are the lack of organisms capable of fermenting pentose sugars with a acceptable kinetic rate and the energy (and costs) required for breaking the lignocellulosic material structure. Lignocellulosic ethanol is not at large scale production as corn ethanol and sugarcane ethanol. Ethanol can be produced from lignocellulosic materials in various ways; all processes comprise the same main components: hydrolysis of the hemicellulose and the cellulose to monomer sugars, fermentation and product recovery and concentration by distillation. Another important option for the production of bio-ethanol is the use of bio-waste rich in sugars or starchy materials. Has been reported that various BMSW fractions have a vast potential for the production of sugars that eventually can be used for producing bio-ethanol. Moreover conversion of MSW to bio-ethanol can be an alternative sustainable approach to disposal of waste and reduction of the biodegradable fraction of MSW to landfill. These materials are produced in large amount in Europe and can be considered an important feedstock for bio-fuels production: the generation of food-processing waste has been estimated in 222 millions tonnes per year, vegetable and fruit being at 140 million of tonnes/year. In this thesis has been the study of the continuous fermentation process under no-sterile condition of a residue obtained from the marmalade production, with the aim of bio-ethanol fuel production. The fermentations was conducted with a Saccharomyces cerevisiae strain (EC1118) alcoholic tolerant It has been studied both the single CSTR and CSTR with biomass recycling in order to understand the process kinetics and the problems connected with the principal intensification processes utilized in ethanol fermentation. From the different mass balances conducted on the first, second and third part of this work it appears clear that is possible to work under no-sterile conditions in CSTR, and CSTR with biomass recycling obtaining high ethanol/sugars utilized ratio utilizing appropriate solid retention time and hydraulic retention time. The process nevertheless appears, from the kinetic modelling and energy balance, to not be competitive.File | Dimensione | Formato | |
---|---|---|---|
Tesi dottorato Marco Zanette.pdf
non disponibili
Tipologia:
Tesi di dottorato
Licenza:
Accesso ristretto
Dimensione
3.35 MB
Formato
Adobe PDF
|
3.35 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.