Questo progetto di dottorato ha avuto come obiettivi: i) valutazione del ruolo del’auxina di derivazione batterica nella simbiosi rizobio-leguminosa, che dà origine a noduli di tipo indeterminato, ii) lo studio funzionale di MtN5, una proteina di tipo “Pathogenesis Related”, che viene indotta precocemente durante la nodulazione e che presenta omologie di sequenza con membri della famiglia delle Lipid Transfer Protein vegetali. L’auxina (acido indol-3-acetico, IAA) è un ormone vegetale implicato in molti aspetti che riguardano la vita e lo sviluppo delle piante; un suo coinvolgimento nello sviluppo del nodulo radicale era stato ipotizzato già all’inizio del secolo scorso. Studi successivi hanno dimostrato un’inibizione del trasporto acropeto di IAA nella radice a seguito dell’infezione con rizobi, con un conseguente accumulo di fitormone a livello del sito di infezione. E’ stato dimostrato che la maggior parte dei batteri della rizosfera che producono effetti di promozione sulla crescita della pianta, rizobi inclusi, possiedono vie biosintetiche per IAA. I rizobi sono in grado di sintetizzare auxina in coltura liquida e, molto probabilmente, mantengono questa capacità anche durante la nodulazione. Ad oggi, però, i dati riguardanti il ruolo dell’auxina batterica nello sviluppo dei noduli sono ancora controversi; sono stati infatti documentati sia effetti stimolatori che inibitori. Molti degli eventi che stanno alla base dell’associazione simbiotica tra rizobi e leguminose devono ancora essere chiariti. Ad esempio, la natura e la funzione dei segnali ormonali scambiati tra ospite e simbionte non sono ancora stati compresi nel dettaglio, così come le differenze e i parallelismi nella risposta delle leguminose verso il simbionte e verso i patogeni della radice. A tal riguardo, recenti osservazioni hanno dimostrato che la repressione della via di segnalazione intracellulare dell’auxina risulta in una maggiore resistenza innata delle piante verso microrganismi patogeni. Piante di Medicago truncatula, specie modello per le leguminose che producono noduli di tipo indeterminato, e Medicago sativa (erba medica), specie correlata di interesse agronomico, sono state nodulate sia con rizobi wild-type e che con rizobi in grado di iper-produrre IAA (S. meliloti IAA). I risultati ottenuti hanno dimostrato che piante nodulate con S. meliloti IAA producevano un numero maggiore di noduli (aumento del 50% in M. sativa e aumento del 100% in M. truncatula) e un apparato radicale più ramificato. Inoltre il contenuto di auxina nei noduli prodotti da rizobi IAA è mediamente 10 volte superiore alla concentrazione dei noduli prodotti da rizobi wild-type. I livelli di espressione dei geni responsabili del trasporto di auxina è stato valutato mediante RT-PCR quantitativa (qRT-PCR) e il carrier di efflusso MtPIN2 è risultato significativamente più espresso (circa 2 volte) nel tessuto radicale di piante nodulate con rizobi IAA rispetto alle radici infettate con il rizobio di controllo. Questi risultati suggeriscono che l’effetto di promozione osservato sulla nodulazione e sull’accrescimento della radice laterale siano dovuti alla produzione di IAA nel nodulo e ad una sua redistribuzione all’interno dell’apparato radicale. E’ stato ampiamente dimostrato che l’ossido nitrico (NO) agisce come secondo messaggero nell’induzione di radici laterali e avventizie stimolata da auxina. Considerando la comune organogenesi tra radici laterali e avventizie e noduli indeterminati, in questo lavoro abbiamo dimostrato che esiste un collegamento tra auxina e NO nella via di segnalazione che porta all’induzione del nodulo. Per mezzo di uno screening preliminare, condotto mediante qRT-PCR e volto ad individuare geni differenzialmente espressi in piante nodulate con rizobi IAA e piante nodulate con rizobi wild-type, fu osservato che il gene MtN5 era più espresso negli apparati radicali di piante infettate con rizobi iperproduttori di auxina. Il prodotto genico di MtN5 è stato annotato come una Lipid Transfer Protein (LTP) putativa. Le LTP vegetali sono caratterizzate dalla capacità sia di legare lipidi in vitro che di inibire la crescita di microrganismi. In questo progetto di tesi è stato dimostrato che MtN5 possiede la capacità di legare lisolipidi e che, come molti altri membri di questa famiglia di proteine, possiede attività antimicrobica in vitro, in particolare contro Fusarium semitectum, Xanthomonas campestris e S. meliloti. Lo studio del profilo di espressione conferma che MtN5 viene precocemente indotta durante la nodulazione e che è specificamente localizzata all’interno del nodulo radicale. Inoltre, l’infezione di piante con F. semitectum provoca l’accumulo di MtN5 nel tessuto radicale. La funzione di MtN5 nella nodulazione è stata studiata mediante la generazione di radici avventizie transgeniche, sia overesprimenti che silenziante per il gene di interesse. Le radici silenziate per MtN5 sviluppano circa la metà dei noduli rispetto a radici di controllo, mentre in radici transgeniche over-esprimenti MtN5 il numero di noduli è risultato incrrementato del 300% rispetto al controllo. I risultati ottenuti dimostrano che MtN5 facilita l’interazione simbiotica tra M. truncatula e S. meliloti, agendo probabilmente negli stadi precoci dell’infezione, e suggeriscono che MtN5 potrebbe avere un ruolo nella protezione dei noduli verso patogeni della radice. Ulteriori studi sono comunque necessari per ottenere una immagine più chiara del ruolo di MtN5 sia nella simbiosi che nella risposta verso i patogeni.

The present thesis has had two main focuses: i) the evaluation of the role of bacteria-derived auxin in the symbiosis between rhizobia and legumes that bear indeterminate nodules, ii) the functional study of MtN5, a pathogenesis related protein which presents sequence homology with the members of the plant Lipid Transfer Proteins (LTP) family and is precociously induced during nodulation. Auxin (indol-3-acetic acid, IAA) is a phytohormone involved in many aspects of plants growth and development; The role of auxin in the development of the rhizobia-legumes symbiosis was first hypothesised at the beginning of the twentieth century. More recent studies have demonstrated that auxin is accumulated at the site of infection as a consequence of the inhibition of the acropetal auxin transport in roots upon rhizobia inoculation. The production of IAA has also been documented in plant-associated rhizobacteria, including rhizobia, that have promoting effects on plants growth. When grown in liquid media, rhizobia can synthesize auxin and most likely they retain the same capability also during the nodule development. However, up to date, the data concerning the role of bacteria-derived auxin in the establishment of the symbiotic association are still contradictory, since both stimulatory and inhibitory effects have been documented. Thus, there are still open questions in the understanding of the events that result in the establishment of the symbiosis. First of all the nature and the function of the hormonal signal(s) exchanged between the host and the symbiont are not thoroughly unfolded, as well as the parallelisms and the differences in the responses of legumes against root pathogens and root symbiont. In these regards, recent findings have pointed out that plants innate immunity results, at least in part, from the down-regulation of the auxin signalling pathway. Medicago truncatula and Medicago sativa plants were nodulated with both wild-type and auxin hyper-synthesising rhizobia (Sinorhizobium meliloti IAA). The results obtained showed that plants nodulated with S. meliloti IAA produced a higher number of root nodules (50% more nodules in M. sativa and 100% more nodules in M. truncatula) and a more branched root apparatus. The root nodules elicited by S. meliloti IAA had a higher IAA content (at least 10-fold) when compared to control nodules. The expression levels of the auxin carriers were evaluated and the efflux facilitator MtPIN2 resulted more abundant (about 2-fold) in the root tissue of IAA plants when compared to wild-type plants These data suggested that such promoting effects on nodulation and lateral root growth might be due to the increased auxin content detected in IAA nodule produced by auxin hyper-synthesising rhizobia, as well as to a redistribution of the phytohormone in the root tissue. It has been largely demonstrated that nitric oxide (NO) acts as second messenger in the auxin-induced pathway that leads to formation of lateral and adventitious roots. Since root nodules have the same organogenetic origin of lateral and adventitious roots, the possible connection between NO and root nodule induction was investigated and we demonstrated that NO participate in the signalling pathway for root nodule induction. During a preliminary screening carried out by means of qRT-PCR, it has been found that N5 gene of M. truncatula was more abundantly expressed in roots nodulated with S. meliloti IAA with respect to roots infected by wild-type rhizobia. The gene product of MtN5 was annotated as putative Lipid Transfer Protein (LTP). LTPs are characterized by their ability to bind lipids in vitro and the majority of them exhibits antimicrobial activity. In this thesis, it has been demonstrated that the recombinant MtN5 protein is able to bind lysolipids and possesses inhibitory activity against Fusarium semitectum, Xanthomonas campestris and S. meliloti. The studies of the expression pattern of both MtN5 transcript and MtN5 protein confirmed that it is precociously induced during nodulation and revealed that it is specifically localized in the root nodule. In addition, when M. truncatula plants are infected with the root pathogenic fungus F. semitectum, MtN5 protein is accumulated in the root apparatus. The function of MtN5 in nodulation has been studied through the generation of transgenic adventitious roots, both over-expressed and silenced for the gene of interest. MtN5-silenced roots developed approximately 50% fewer nodules as compared to control roots, whereas in hairy roots over-expressing MtN5 the nodule number was increased by about 300% with respect to control roots. Collectively the data indicate that MtN5 facilitates the symbiotic interaction between M. truncatula and S. meliloti, probably acting in the early stages of rhizobia infection, and suggest that it might have a role in the protection of nodules against root pathogen. However, further studies are needed to have a clear picture of the role played by MtN5 in both symbiosis and defence response against pathogens.

Involvement of auxin and LTP proteins in the regulation of root nodule formation in Medicago truncatula - Sinorhizobium meliloti Symbiosis

PII, Youry
2009-01-01

Abstract

The present thesis has had two main focuses: i) the evaluation of the role of bacteria-derived auxin in the symbiosis between rhizobia and legumes that bear indeterminate nodules, ii) the functional study of MtN5, a pathogenesis related protein which presents sequence homology with the members of the plant Lipid Transfer Proteins (LTP) family and is precociously induced during nodulation. Auxin (indol-3-acetic acid, IAA) is a phytohormone involved in many aspects of plants growth and development; The role of auxin in the development of the rhizobia-legumes symbiosis was first hypothesised at the beginning of the twentieth century. More recent studies have demonstrated that auxin is accumulated at the site of infection as a consequence of the inhibition of the acropetal auxin transport in roots upon rhizobia inoculation. The production of IAA has also been documented in plant-associated rhizobacteria, including rhizobia, that have promoting effects on plants growth. When grown in liquid media, rhizobia can synthesize auxin and most likely they retain the same capability also during the nodule development. However, up to date, the data concerning the role of bacteria-derived auxin in the establishment of the symbiotic association are still contradictory, since both stimulatory and inhibitory effects have been documented. Thus, there are still open questions in the understanding of the events that result in the establishment of the symbiosis. First of all the nature and the function of the hormonal signal(s) exchanged between the host and the symbiont are not thoroughly unfolded, as well as the parallelisms and the differences in the responses of legumes against root pathogens and root symbiont. In these regards, recent findings have pointed out that plants innate immunity results, at least in part, from the down-regulation of the auxin signalling pathway. Medicago truncatula and Medicago sativa plants were nodulated with both wild-type and auxin hyper-synthesising rhizobia (Sinorhizobium meliloti IAA). The results obtained showed that plants nodulated with S. meliloti IAA produced a higher number of root nodules (50% more nodules in M. sativa and 100% more nodules in M. truncatula) and a more branched root apparatus. The root nodules elicited by S. meliloti IAA had a higher IAA content (at least 10-fold) when compared to control nodules. The expression levels of the auxin carriers were evaluated and the efflux facilitator MtPIN2 resulted more abundant (about 2-fold) in the root tissue of IAA plants when compared to wild-type plants These data suggested that such promoting effects on nodulation and lateral root growth might be due to the increased auxin content detected in IAA nodule produced by auxin hyper-synthesising rhizobia, as well as to a redistribution of the phytohormone in the root tissue. It has been largely demonstrated that nitric oxide (NO) acts as second messenger in the auxin-induced pathway that leads to formation of lateral and adventitious roots. Since root nodules have the same organogenetic origin of lateral and adventitious roots, the possible connection between NO and root nodule induction was investigated and we demonstrated that NO participate in the signalling pathway for root nodule induction. During a preliminary screening carried out by means of qRT-PCR, it has been found that N5 gene of M. truncatula was more abundantly expressed in roots nodulated with S. meliloti IAA with respect to roots infected by wild-type rhizobia. The gene product of MtN5 was annotated as putative Lipid Transfer Protein (LTP). LTPs are characterized by their ability to bind lipids in vitro and the majority of them exhibits antimicrobial activity. In this thesis, it has been demonstrated that the recombinant MtN5 protein is able to bind lysolipids and possesses inhibitory activity against Fusarium semitectum, Xanthomonas campestris and S. meliloti. The studies of the expression pattern of both MtN5 transcript and MtN5 protein confirmed that it is precociously induced during nodulation and revealed that it is specifically localized in the root nodule. In addition, when M. truncatula plants are infected with the root pathogenic fungus F. semitectum, MtN5 protein is accumulated in the root apparatus. The function of MtN5 in nodulation has been studied through the generation of transgenic adventitious roots, both over-expressed and silenced for the gene of interest. MtN5-silenced roots developed approximately 50% fewer nodules as compared to control roots, whereas in hairy roots over-expressing MtN5 the nodule number was increased by about 300% with respect to control roots. Collectively the data indicate that MtN5 facilitates the symbiotic interaction between M. truncatula and S. meliloti, probably acting in the early stages of rhizobia infection, and suggest that it might have a role in the protection of nodules against root pathogen. However, further studies are needed to have a clear picture of the role played by MtN5 in both symbiosis and defence response against pathogens.
2009
auxin; ltp proteins; Medicago truncatula
Questo progetto di dottorato ha avuto come obiettivi: i) valutazione del ruolo del’auxina di derivazione batterica nella simbiosi rizobio-leguminosa, che dà origine a noduli di tipo indeterminato, ii) lo studio funzionale di MtN5, una proteina di tipo “Pathogenesis Related”, che viene indotta precocemente durante la nodulazione e che presenta omologie di sequenza con membri della famiglia delle Lipid Transfer Protein vegetali. L’auxina (acido indol-3-acetico, IAA) è un ormone vegetale implicato in molti aspetti che riguardano la vita e lo sviluppo delle piante; un suo coinvolgimento nello sviluppo del nodulo radicale era stato ipotizzato già all’inizio del secolo scorso. Studi successivi hanno dimostrato un’inibizione del trasporto acropeto di IAA nella radice a seguito dell’infezione con rizobi, con un conseguente accumulo di fitormone a livello del sito di infezione. E’ stato dimostrato che la maggior parte dei batteri della rizosfera che producono effetti di promozione sulla crescita della pianta, rizobi inclusi, possiedono vie biosintetiche per IAA. I rizobi sono in grado di sintetizzare auxina in coltura liquida e, molto probabilmente, mantengono questa capacità anche durante la nodulazione. Ad oggi, però, i dati riguardanti il ruolo dell’auxina batterica nello sviluppo dei noduli sono ancora controversi; sono stati infatti documentati sia effetti stimolatori che inibitori. Molti degli eventi che stanno alla base dell’associazione simbiotica tra rizobi e leguminose devono ancora essere chiariti. Ad esempio, la natura e la funzione dei segnali ormonali scambiati tra ospite e simbionte non sono ancora stati compresi nel dettaglio, così come le differenze e i parallelismi nella risposta delle leguminose verso il simbionte e verso i patogeni della radice. A tal riguardo, recenti osservazioni hanno dimostrato che la repressione della via di segnalazione intracellulare dell’auxina risulta in una maggiore resistenza innata delle piante verso microrganismi patogeni. Piante di Medicago truncatula, specie modello per le leguminose che producono noduli di tipo indeterminato, e Medicago sativa (erba medica), specie correlata di interesse agronomico, sono state nodulate sia con rizobi wild-type e che con rizobi in grado di iper-produrre IAA (S. meliloti IAA). I risultati ottenuti hanno dimostrato che piante nodulate con S. meliloti IAA producevano un numero maggiore di noduli (aumento del 50% in M. sativa e aumento del 100% in M. truncatula) e un apparato radicale più ramificato. Inoltre il contenuto di auxina nei noduli prodotti da rizobi IAA è mediamente 10 volte superiore alla concentrazione dei noduli prodotti da rizobi wild-type. I livelli di espressione dei geni responsabili del trasporto di auxina è stato valutato mediante RT-PCR quantitativa (qRT-PCR) e il carrier di efflusso MtPIN2 è risultato significativamente più espresso (circa 2 volte) nel tessuto radicale di piante nodulate con rizobi IAA rispetto alle radici infettate con il rizobio di controllo. Questi risultati suggeriscono che l’effetto di promozione osservato sulla nodulazione e sull’accrescimento della radice laterale siano dovuti alla produzione di IAA nel nodulo e ad una sua redistribuzione all’interno dell’apparato radicale. E’ stato ampiamente dimostrato che l’ossido nitrico (NO) agisce come secondo messaggero nell’induzione di radici laterali e avventizie stimolata da auxina. Considerando la comune organogenesi tra radici laterali e avventizie e noduli indeterminati, in questo lavoro abbiamo dimostrato che esiste un collegamento tra auxina e NO nella via di segnalazione che porta all’induzione del nodulo. Per mezzo di uno screening preliminare, condotto mediante qRT-PCR e volto ad individuare geni differenzialmente espressi in piante nodulate con rizobi IAA e piante nodulate con rizobi wild-type, fu osservato che il gene MtN5 era più espresso negli apparati radicali di piante infettate con rizobi iperproduttori di auxina. Il prodotto genico di MtN5 è stato annotato come una Lipid Transfer Protein (LTP) putativa. Le LTP vegetali sono caratterizzate dalla capacità sia di legare lipidi in vitro che di inibire la crescita di microrganismi. In questo progetto di tesi è stato dimostrato che MtN5 possiede la capacità di legare lisolipidi e che, come molti altri membri di questa famiglia di proteine, possiede attività antimicrobica in vitro, in particolare contro Fusarium semitectum, Xanthomonas campestris e S. meliloti. Lo studio del profilo di espressione conferma che MtN5 viene precocemente indotta durante la nodulazione e che è specificamente localizzata all’interno del nodulo radicale. Inoltre, l’infezione di piante con F. semitectum provoca l’accumulo di MtN5 nel tessuto radicale. La funzione di MtN5 nella nodulazione è stata studiata mediante la generazione di radici avventizie transgeniche, sia overesprimenti che silenziante per il gene di interesse. Le radici silenziate per MtN5 sviluppano circa la metà dei noduli rispetto a radici di controllo, mentre in radici transgeniche over-esprimenti MtN5 il numero di noduli è risultato incrrementato del 300% rispetto al controllo. I risultati ottenuti dimostrano che MtN5 facilita l’interazione simbiotica tra M. truncatula e S. meliloti, agendo probabilmente negli stadi precoci dell’infezione, e suggeriscono che MtN5 potrebbe avere un ruolo nella protezione dei noduli verso patogeni della radice. Ulteriori studi sono comunque necessari per ottenere una immagine più chiara del ruolo di MtN5 sia nella simbiosi che nella risposta verso i patogeni.
File in questo prodotto:
File Dimensione Formato  
Tesi Dottorato Youry Pii.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: Dominio pubblico
Dimensione 4.9 MB
Formato Adobe PDF
4.9 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/337398
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact