Network motifs are subgraphs of a network that occur more frequently than expected, according to some reasonable null model. They represent building blocks of complex systems such as genetic interaction networks or social networks and may reveal intriguing typical but perhaps unexpected relationships between interacting entities. The identification of network motif is a time consuming task since it subsumes the subgraph matching problem. Several algorithms have been proposed in the literature. In this paper we aim to review the motif finding problem through a systematic comparison of state-of-the-art algorithms on both real and artificial networks of different sizes. We aim to provide readers a complete overview of the performance of the various tools. As far as we know, this is the most comprehensive experimental review of motif finding algorithms to date, with respect both to the number of compared tools and to the variety and size of networks used for the experiments.

Motif Finding Algorithms: A Performance Comparison

Giugno, Rosalba;
2024-01-01

Abstract

Network motifs are subgraphs of a network that occur more frequently than expected, according to some reasonable null model. They represent building blocks of complex systems such as genetic interaction networks or social networks and may reveal intriguing typical but perhaps unexpected relationships between interacting entities. The identification of network motif is a time consuming task since it subsumes the subgraph matching problem. Several algorithms have been proposed in the literature. In this paper we aim to review the motif finding problem through a systematic comparison of state-of-the-art algorithms on both real and artificial networks of different sizes. We aim to provide readers a complete overview of the performance of the various tools. As far as we know, this is the most comprehensive experimental review of motif finding algorithms to date, with respect both to the number of compared tools and to the variety and size of networks used for the experiments.
2024
9783031552472
graph algorithm
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1161533
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact