We study the error arising in the numerical approximation of FBSDEs and related PIDEs by means of a deep learning-based method. Our results focus on decoupled FBSDEs with jumps and extend the seminal work of Han and Long (2018) analyzing the numerical error of the deep BSDE solver proposed in E et al. (2017). We provide a priori and a posteriori error estimates for the finite and infinite activity case.
Convergence of a Deep BSDE solver with jumps
Alessandro Gnoatto
;Katharina Oberpriller;Athena Picarelli
2025-01-01
Abstract
We study the error arising in the numerical approximation of FBSDEs and related PIDEs by means of a deep learning-based method. Our results focus on decoupled FBSDEs with jumps and extend the seminal work of Han and Long (2018) analyzing the numerical error of the deep BSDE solver proposed in E et al. (2017). We provide a priori and a posteriori error estimates for the finite and infinite activity case.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
wp2025n2.pdf
accesso aperto
Licenza:
Creative commons
Dimensione
458.21 kB
Formato
Adobe PDF
|
458.21 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.