We study the error arising in the numerical approximation of FBSDEs and related PIDEs by means of a deep learning-based method. Our results focus on decoupled FBSDEs with jumps and extend the seminal work of Han and Long (2018) analyzing the numerical error of the deep BSDE solver proposed in E et al. (2017). We provide a priori and a posteriori error estimates for the finite and infinite activity case.

Convergence of a Deep BSDE solver with jumps

Alessandro Gnoatto
;
Katharina Oberpriller;Athena Picarelli
2025-01-01

Abstract

We study the error arising in the numerical approximation of FBSDEs and related PIDEs by means of a deep learning-based method. Our results focus on decoupled FBSDEs with jumps and extend the seminal work of Han and Long (2018) analyzing the numerical error of the deep BSDE solver proposed in E et al. (2017). We provide a priori and a posteriori error estimates for the finite and infinite activity case.
2025
Forward-backward SDE, Jump diffusion, Deep learning,PIDE, Neural Network
File in questo prodotto:
File Dimensione Formato  
wp2025n2.pdf

accesso aperto

Licenza: Creative commons
Dimensione 458.21 kB
Formato Adobe PDF
458.21 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1154627
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact