This paper investigates the relationship between the views expressed in the minutes of the meetings of the Central Bank of Brazil’s Monetary Policy Committee (COPOM) and the real economy. It applies various computational linguistic machine learning algorithms to construct measures of the minutes of the COPOM. First, we create measures of the content of the paragraphs of the minutes using Latent Dirichlet Allocation (LDA). Second, we build an uncertainty index for the minutes using Word Embedding and K-Means. Then, we combine these indices to create two topic-uncertainty indices. The first one is constructed from paragraphs with a higher probability of topics related to “general economic conditions”. The second topic-uncertainty index is constructed from paragraphs that have a higher probability of topics related to “inflation” and the “monetary policy discussion”. Finally, we employ a structural VAR model to explore the lasting effects of these uncertainty indices on certain Brazilian macroeconomic variables. Our results show that greater uncertainty leads to a decline in inflation, the exchange rate, industrial production and retail trade in the period from January 2000 to July 2019.

‘Making text talk’: the minutes of the Central Bank of Brazil and the real economy

Carlos Moreno Pérez
Writing – Original Draft Preparation
;
Marco Minozzo
Writing – Original Draft Preparation
2022-01-01

Abstract

This paper investigates the relationship between the views expressed in the minutes of the meetings of the Central Bank of Brazil’s Monetary Policy Committee (COPOM) and the real economy. It applies various computational linguistic machine learning algorithms to construct measures of the minutes of the COPOM. First, we create measures of the content of the paragraphs of the minutes using Latent Dirichlet Allocation (LDA). Second, we build an uncertainty index for the minutes using Word Embedding and K-Means. Then, we combine these indices to create two topic-uncertainty indices. The first one is constructed from paragraphs with a higher probability of topics related to “general economic conditions”. The second topic-uncertainty index is constructed from paragraphs that have a higher probability of topics related to “inflation” and the “monetary policy discussion”. Finally, we employ a structural VAR model to explore the lasting effects of these uncertainty indices on certain Brazilian macroeconomic variables. Our results show that greater uncertainty leads to a decline in inflation, the exchange rate, industrial production and retail trade in the period from January 2000 to July 2019.
2022
Latent Dirichlet Allocation, monetary policy uncertainty, Word Embedding
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1107546
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact