Human brain has been subject of deep interest for centuries, given it's central role in controlling and directing the actions and functions of the body as response to external stimuli. The neural tissue is primarily constituted of neurons and, together with dendrites and the nerve synapses, constitute the gray matter (GM) which plays a major role in cognitive functions. The information processed in the GM travel from one region to the other of the brain along nerve cell projections, called axons. All together they constitute the white matter (WM) whose wiring organization still remains challenging to uncover. The relationship between structure organization of the brain and function has been deeply investigated on humans and animals based on the assumption that the anatomic architecture determine the network dynamics. In response to that, many different imaging techniques raised, among which diffusion-weighted magnetic resonance imaging (DW-MRI) has triggered tremendous hopes and expectations. Diffusion-weighted imaging measures both restricted and unrestricted diffusion, i.e. the degree of movement freedom of the water molecules, allowing to map the tissue fiber architecture in vivo and non-invasively. Based on DW-MRI data, tractography is able to exploit information of the local fiber orientation to recover global fiber pathways, called streamlines, that represent groups of axons. This, in turn, allows to infer the WM structural connectivity, becoming widely used in many different clinical applications as for diagnoses, virtual dissections and surgical planning. However, despite this unique and compelling ability, data acquisition still suffers from technical limitations and recent studies have highlighted the poor anatomical accuracy of the reconstructions obtained with this technique and challenged its effectiveness for studying brain connectivity. The focus of this Ph.D. project is to specifically address these limitations and to improve the anatomical accuracy of the structural connectivity estimates. To this aim, we developed a global optimization algorithm that exploits micro and macro-structure information, introducing an iterative procedure that uses the underlying tissue properties to drive the reconstruction using a semi-global approach. Then, we investigated the possibility to dynamically adapt the position of a set of candidate streamlines while embedding the anatomical prior of trajectories smoothness and adapting the configuration based on the observed data. Finally, we introduced the concept of bundle-o-graphy by implementing a method to model groups of streamlines based on the concept that axons are organized into fascicles, adapting their shape and extent based on the underlying microstructure.

Adaptive microstructure-informed tractography for accurate brain connectivity analyses

Matteo Battocchio
2022-01-01

Abstract

Human brain has been subject of deep interest for centuries, given it's central role in controlling and directing the actions and functions of the body as response to external stimuli. The neural tissue is primarily constituted of neurons and, together with dendrites and the nerve synapses, constitute the gray matter (GM) which plays a major role in cognitive functions. The information processed in the GM travel from one region to the other of the brain along nerve cell projections, called axons. All together they constitute the white matter (WM) whose wiring organization still remains challenging to uncover. The relationship between structure organization of the brain and function has been deeply investigated on humans and animals based on the assumption that the anatomic architecture determine the network dynamics. In response to that, many different imaging techniques raised, among which diffusion-weighted magnetic resonance imaging (DW-MRI) has triggered tremendous hopes and expectations. Diffusion-weighted imaging measures both restricted and unrestricted diffusion, i.e. the degree of movement freedom of the water molecules, allowing to map the tissue fiber architecture in vivo and non-invasively. Based on DW-MRI data, tractography is able to exploit information of the local fiber orientation to recover global fiber pathways, called streamlines, that represent groups of axons. This, in turn, allows to infer the WM structural connectivity, becoming widely used in many different clinical applications as for diagnoses, virtual dissections and surgical planning. However, despite this unique and compelling ability, data acquisition still suffers from technical limitations and recent studies have highlighted the poor anatomical accuracy of the reconstructions obtained with this technique and challenged its effectiveness for studying brain connectivity. The focus of this Ph.D. project is to specifically address these limitations and to improve the anatomical accuracy of the structural connectivity estimates. To this aim, we developed a global optimization algorithm that exploits micro and macro-structure information, introducing an iterative procedure that uses the underlying tissue properties to drive the reconstruction using a semi-global approach. Then, we investigated the possibility to dynamically adapt the position of a set of candidate streamlines while embedding the anatomical prior of trajectories smoothness and adapting the configuration based on the observed data. Finally, we introduced the concept of bundle-o-graphy by implementing a method to model groups of streamlines based on the concept that axons are organized into fascicles, adapting their shape and extent based on the underlying microstructure.
2022
Tractography, White matter structure, Bundle based tractography, Microstructure informed tractography, MCMC optimization, Diffusion Weighted Magnetic Resonance Imaging
File in questo prodotto:
File Dimensione Formato  
Thesis_battocchio_univr.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: Creative commons
Dimensione 47.59 MB
Formato Adobe PDF
47.59 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1076527
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact