Several disorders including pulmonary hypertension (PH) and heart failure (HF) could lead to right ventricle (RV) hypertrophy and failure. RV failure is one of the most important prognostic factors for morbidity and mortality in these disorders. However, there is still no therapy to prevent the RV hypertrophy in PH. Treatments developed for the left ventricle (LV) failure do not improve the survival in patients with RV failure probably due to the significant differences in the chambers physiology and hemodynamic function. A better understanding of the cellular and molecular mechanisms of RV hypertrophy is needed. Our focus lies into the alterations of cellular microarchitecture that promotes functional changes in Ca2+ handling. Recently our group showed that reorganisation of the transverse-axial tubular system (TATS) in HF are of particular importance for Ca2+ mishandling and contractile impairment of failing cells. Rationale: This study aims to establish the differences in membrane organisation of Ca2+ handling between healthy RV and LV myocytes, and to investigate the remodelling of RV during disease. Specifically, the objectives are: (1) To study the membrane organisation of RV and LV myocytes by revealing the surface topography using Scanning Ion Conductance Microscopy and by studying the TATS using confocal microscopy. (2) To assess the contraction and Ca2+ transients in RV and LV myocytes. (3) To determine the spatial distribution and properties of single L-type Ca2+ channels (LTCC) in RV myocytes using “smart patch clamp” technique. (4) To describe the changes occurring in the RV and LV in the two disease rat models: PH induced by monocrotaline injection and HF induced by chronic myocardial infarction (MI). This thesis showed that in healthy samples the TATS of RV myocytes has a different organization as compared to LV. Two main Ca2+ channels for the excitation-contraction coupling: LTCC and ryanodine receptors (RyR) were studied by immunofluorescence staining. The density of LTCC was lower in RV than in LV myocytes. However, the density of RyR was similar between the chambers. Contraction duration was longer in RV than in LV myocytes. The distribution of functional LTCCs in RV myocytes was uniform along the cell surface, in contrast to LV myocytes, where LTCCs were primarily located in the T-tubules. Secondly, PH rats showed a reduction of the conduction velocity anisotropy throughout the RV as well as prolongation of the refractoriness of the tissue. The hypertrophy of RV myocytes in PH was accompanied by the reduction of the TATS organisation. The amplitude of contraction of RV PH myocytes was higher, the activation of Ca2+ transients was more desynchronised than in controls, and the rate of spontaneous Ca2+ activity was significantly elevated. Functionally, in PH the open probability (Po) of LTCC located in the T-tubules was significantly higher. On the other hand, PH LV myocytes had preserved TATS but still showed prolonged Ca2+ transients that could influence increased refractoriness of LV tissue. Thirdly, by studying RV myocytes from the MI model, a significant hypertrophy was found, accompanied by a reduction of TATS organisation. The study reports a prolongation of Ca2+ transients with more frequent local Ca2+ waves in MI versus control RV myocytes. Higher Po of LTCCs was shown in MI RV myocytes could be associated with the PKA-mediated phosphorylation. In summary, RV myocytes have a lower TATS organisation than LV myocytes probably related to the lower workload of the RV chamber. Consequently, RV myocytes present several differences with LV myocytes, including changes in the Ca2+ handling or a more uniform distribution of LTCC on the membrane. Diseases induce reduction of TATS and Ca2+ mishandling in both chambers. Due to the intrinsic differences of RV versus LV myocytes, the RV could be more prone to pathological events in early stages of the diseases, which should be investigated further.
Structural and functional differences between cardiomyocytes from right and left ventricles in health and disease
Roman MedvedevWriting – Original Draft Preparation
2020-01-01
Abstract
Several disorders including pulmonary hypertension (PH) and heart failure (HF) could lead to right ventricle (RV) hypertrophy and failure. RV failure is one of the most important prognostic factors for morbidity and mortality in these disorders. However, there is still no therapy to prevent the RV hypertrophy in PH. Treatments developed for the left ventricle (LV) failure do not improve the survival in patients with RV failure probably due to the significant differences in the chambers physiology and hemodynamic function. A better understanding of the cellular and molecular mechanisms of RV hypertrophy is needed. Our focus lies into the alterations of cellular microarchitecture that promotes functional changes in Ca2+ handling. Recently our group showed that reorganisation of the transverse-axial tubular system (TATS) in HF are of particular importance for Ca2+ mishandling and contractile impairment of failing cells. Rationale: This study aims to establish the differences in membrane organisation of Ca2+ handling between healthy RV and LV myocytes, and to investigate the remodelling of RV during disease. Specifically, the objectives are: (1) To study the membrane organisation of RV and LV myocytes by revealing the surface topography using Scanning Ion Conductance Microscopy and by studying the TATS using confocal microscopy. (2) To assess the contraction and Ca2+ transients in RV and LV myocytes. (3) To determine the spatial distribution and properties of single L-type Ca2+ channels (LTCC) in RV myocytes using “smart patch clamp” technique. (4) To describe the changes occurring in the RV and LV in the two disease rat models: PH induced by monocrotaline injection and HF induced by chronic myocardial infarction (MI). This thesis showed that in healthy samples the TATS of RV myocytes has a different organization as compared to LV. Two main Ca2+ channels for the excitation-contraction coupling: LTCC and ryanodine receptors (RyR) were studied by immunofluorescence staining. The density of LTCC was lower in RV than in LV myocytes. However, the density of RyR was similar between the chambers. Contraction duration was longer in RV than in LV myocytes. The distribution of functional LTCCs in RV myocytes was uniform along the cell surface, in contrast to LV myocytes, where LTCCs were primarily located in the T-tubules. Secondly, PH rats showed a reduction of the conduction velocity anisotropy throughout the RV as well as prolongation of the refractoriness of the tissue. The hypertrophy of RV myocytes in PH was accompanied by the reduction of the TATS organisation. The amplitude of contraction of RV PH myocytes was higher, the activation of Ca2+ transients was more desynchronised than in controls, and the rate of spontaneous Ca2+ activity was significantly elevated. Functionally, in PH the open probability (Po) of LTCC located in the T-tubules was significantly higher. On the other hand, PH LV myocytes had preserved TATS but still showed prolonged Ca2+ transients that could influence increased refractoriness of LV tissue. Thirdly, by studying RV myocytes from the MI model, a significant hypertrophy was found, accompanied by a reduction of TATS organisation. The study reports a prolongation of Ca2+ transients with more frequent local Ca2+ waves in MI versus control RV myocytes. Higher Po of LTCCs was shown in MI RV myocytes could be associated with the PKA-mediated phosphorylation. In summary, RV myocytes have a lower TATS organisation than LV myocytes probably related to the lower workload of the RV chamber. Consequently, RV myocytes present several differences with LV myocytes, including changes in the Ca2+ handling or a more uniform distribution of LTCC on the membrane. Diseases induce reduction of TATS and Ca2+ mishandling in both chambers. Due to the intrinsic differences of RV versus LV myocytes, the RV could be more prone to pathological events in early stages of the diseases, which should be investigated further.File | Dimensione | Formato | |
---|---|---|---|
Roman Medvedev,thesis manuscript.pdf
accesso aperto
Descrizione: File contains the doctoral thesis manuscript
Tipologia:
Tesi di dottorato
Licenza:
Dominio pubblico
Dimensione
8.46 MB
Formato
Adobe PDF
|
8.46 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.