Introduction: The technological development of the last 20 years pledges the intensity of efforts for implementing novel imaging contactless modalities that accelerate the translation from the research bench to the patient bedside, especially in the cardiac field. In this work, a novel intraoperative cardiac imaging approach, named Video Kinematic Evaluation (Vi.Ki.E.), is presented and explained in detail. This technology is able to monitor, contactless, the cardiac mechanics and deformation in-situ during heart surgery. Cardiac kinematics have been deeply evaluated ranging from the experimental animal approach to the human myocardial pathologies in both left and right ventricles. Methods: Vi.Ki.E. can be defined “as simple as innovative”. It only consists of a high-speed camera placed upon an exposed beating heart in-situ to record cardiac cycles. Afterwards a tracker software is used on the recorded video to follow the epicardial tissue movements. This tracker provides information about trajectories of the epicardium and, thanks to a custom-made algorithm, the technology supplies heart mechanical information such as: Force of contraction or cardiac fatigue, Energy expenditure, Contraction velocity, displacement of the marker and epicardial torsion. This approach has been tested on 21 rats (9 ischemia/reperfusion and/or for validation, 12 for the gender difference study) and on 37 patients who underwent different surgery between 2015 and 2019. In detail 10 patients underwent Coronary Artery Bypass Grafting, 12 underwent Valve Replacement after Tetralogy of Fallot correction surgery, 6 implanted a Left Ventricular Assist Device (1 is moved in the case study section), 6 patients with Hypoplastic Heart Syndrome underwent GLENN or FONTAN surgery, 2 patients underwent Heart Transplantation and finally 1 patient underwent double valve replacement (this patient is moved into case study section). Results: The patients’ results demonstrated that the Vi.Ki.E. technology was able to discriminate, with statistic potency, the kinematic differences before and after the surgery in real-time, suggesting possible clinical implications in the treatment of the patients before the chest closure and/or in the intensive care unit. As it concerns the experimental animals, the results are the basics of the validation technology. Some of them were used as accepted model in comparison with the Vi.Ki.E. results on patients. Conclusions: In conclusion, this study has shown that Vi.Ki.E. is a safe and contactless technology with promising possible clinical application. The ease in the evaluation and the algorithm-based approach makes Video Kinematic Evaluation a widespread technique from cellular level to human cases covering the entire experimental field with in-vivo evaluation and possibly Langendorff/Working Heart approaches.

VIDEO KINEMATIC EVALUATION OF THE HEART (VI.KI.E.): AN IDEA, A PROJECT, A REALITY

Giacomo Rozzi
2020-01-01

Abstract

Introduction: The technological development of the last 20 years pledges the intensity of efforts for implementing novel imaging contactless modalities that accelerate the translation from the research bench to the patient bedside, especially in the cardiac field. In this work, a novel intraoperative cardiac imaging approach, named Video Kinematic Evaluation (Vi.Ki.E.), is presented and explained in detail. This technology is able to monitor, contactless, the cardiac mechanics and deformation in-situ during heart surgery. Cardiac kinematics have been deeply evaluated ranging from the experimental animal approach to the human myocardial pathologies in both left and right ventricles. Methods: Vi.Ki.E. can be defined “as simple as innovative”. It only consists of a high-speed camera placed upon an exposed beating heart in-situ to record cardiac cycles. Afterwards a tracker software is used on the recorded video to follow the epicardial tissue movements. This tracker provides information about trajectories of the epicardium and, thanks to a custom-made algorithm, the technology supplies heart mechanical information such as: Force of contraction or cardiac fatigue, Energy expenditure, Contraction velocity, displacement of the marker and epicardial torsion. This approach has been tested on 21 rats (9 ischemia/reperfusion and/or for validation, 12 for the gender difference study) and on 37 patients who underwent different surgery between 2015 and 2019. In detail 10 patients underwent Coronary Artery Bypass Grafting, 12 underwent Valve Replacement after Tetralogy of Fallot correction surgery, 6 implanted a Left Ventricular Assist Device (1 is moved in the case study section), 6 patients with Hypoplastic Heart Syndrome underwent GLENN or FONTAN surgery, 2 patients underwent Heart Transplantation and finally 1 patient underwent double valve replacement (this patient is moved into case study section). Results: The patients’ results demonstrated that the Vi.Ki.E. technology was able to discriminate, with statistic potency, the kinematic differences before and after the surgery in real-time, suggesting possible clinical implications in the treatment of the patients before the chest closure and/or in the intensive care unit. As it concerns the experimental animals, the results are the basics of the validation technology. Some of them were used as accepted model in comparison with the Vi.Ki.E. results on patients. Conclusions: In conclusion, this study has shown that Vi.Ki.E. is a safe and contactless technology with promising possible clinical application. The ease in the evaluation and the algorithm-based approach makes Video Kinematic Evaluation a widespread technique from cellular level to human cases covering the entire experimental field with in-vivo evaluation and possibly Langendorff/Working Heart approaches.
2020
Video Kinematic Evaluation, cardiac physiology, artificial vision, cardiac imaging, intraoperative evaluation, CABGs, LVAD, ToF, Tetralogy of Fallot, Hypoplastic heart syndromes, Heart transplantate,ion, Cardiac kinematics, Congenital heart diseases, Intraoperative RV assessment, Heart Failure
File in questo prodotto:
File Dimensione Formato  
PhD thesis GR_final version_full revised.pdf

accesso aperto

Descrizione: Tesi di dottorato in scienze cardiovascolari riguardante una innovativa tecnologia di imaging cardiaco basata sulla visione artificiale nelle operazioni a cuore aperto
Tipologia: Tesi di dottorato
Licenza: Dominio pubblico
Dimensione 7.96 MB
Formato Adobe PDF
7.96 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1017185
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact