Given two inconsistent formulae, a (reverse) interpolant is a formula implied by one, inconsistent with the other, and only containing symbols they share. Interpolation finds application in program analysis, verification, and synthesis, for example, towards invariant generation. An interpolation system takes a refutation of the inconsistent formulae and extracts an interpolant by building it inductively from partial interpolants. Known interpolation systems for ground proofs use colors to track symbols. We show by examples that the color-based approach cannot handle non-ground refutations by resolution and paramodulation/superposition. We present a two-stage approach that works by tracking literals, computes a provisional interpolant, which may contain non-shared symbols, and applies lifting to replace non-shared constants by quantified variables. We obtain an interpolation system for non-ground refutations, and we prove that it is complete, if the only non-shared symbols in provisional interpolants are constants.
On interpolation in automated theorem proving
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
BONACINA, Maria Paola
;
	
		
		
	
			2015-01-01
Abstract
Given two inconsistent formulae, a (reverse) interpolant is a formula implied by one, inconsistent with the other, and only containing symbols they share. Interpolation finds application in program analysis, verification, and synthesis, for example, towards invariant generation. An interpolation system takes a refutation of the inconsistent formulae and extracts an interpolant by building it inductively from partial interpolants. Known interpolation systems for ground proofs use colors to track symbols. We show by examples that the color-based approach cannot handle non-ground refutations by resolution and paramodulation/superposition. We present a two-stage approach that works by tracking literals, computes a provisional interpolant, which may contain non-shared symbols, and applies lifting to replace non-shared constants by quantified variables. We obtain an interpolation system for non-ground refutations, and we prove that it is complete, if the only non-shared symbols in provisional interpolants are constants.| File | Dimensione | Formato | |
|---|---|---|---|
| 
									
										
										
										
										
											
												
												
												    
												
											
										
									
									
										
										
											JAR2015interpolation2stages.pdf
										
																				
									
										
											 accesso aperto 
											Descrizione: Articolo principale
										 
									
									
									
										
											Tipologia:
											Documento in Post-print
										 
									
									
									
									
										
											Licenza:
											
											
												Creative commons
												
												
													
													
													
												
												
											
										 
									
									
										Dimensione
										264.84 kB
									 
									
										Formato
										Adobe PDF
									 
										
										
								 | 
								264.84 kB | Adobe PDF | Visualizza/Apri | 
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



