Smoothing, filtering and estimation for doubly stochastic Poisson processes are interesting problems which, in general, cannot be solved analytically. Here we discuss some solutions to these problems based on the reversible jump Markov chain Monte Carlo algorithm and on particle filtering. Maximum likelihood estimation will be carried out by some Monte Carlo versions of the EM algorithm. In particular, we will discuss these methods for a class of models with a stochastic intensity given by a jump process with drift. Models in this class can be used to describe ultra-high-frequency stock prices.

Smoothing, filtering and estimation by Monte Carlo methods for doubly stochastic Poisson processes

MINOZZO, Marco;CENTANNI, Silvia
2006-01-01

Abstract

Smoothing, filtering and estimation for doubly stochastic Poisson processes are interesting problems which, in general, cannot be solved analytically. Here we discuss some solutions to these problems based on the reversible jump Markov chain Monte Carlo algorithm and on particle filtering. Maximum likelihood estimation will be carried out by some Monte Carlo versions of the EM algorithm. In particular, we will discuss these methods for a class of models with a stochastic intensity given by a jump process with drift. Models in this class can be used to describe ultra-high-frequency stock prices.
2006
Inglese
STAMPA
Comitato scientifico
Convegno Nazionale delle Ricerche sulle Serie Temporali (SER 2006)
Villa Mondragone, Monte Porzio Catone, Roma
18-19 aprile 2006
nazionale
contributo
Atti del Convegno Nazionale delle Ricerche sulle Serie Temporali (SER 2006)
Gruppo di Lavoro Analisi delle Serie Temporali della Società Italiana di Statistica
Roma
ITALIA
187
190
4
Particle filters; reversible jump Markov chain Monte Carlo; Ultra-high-frequency data
none
Minozzo, Marco; Centanni, Silvia
2
04 Contributo in atti di convegno::04.01 Contributo in atti di convegno
273
info:eu-repo/semantics/conferenceObject
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/313893
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact