We incorporate strong negation in the theory of computable functionals TCF, a common extension of Plotkin’s PCF and Goedel’s system T, by defining simultaneously strong negation of a formula and strong negation of a predicate P in TCF. As a special case of the latter, we get strong negation of an inductive and a coinductive predicate of TCF.

Strong negation in the theory of computable functionals TCF

Petrakis, Iosif
2025-01-01

Abstract

We incorporate strong negation in the theory of computable functionals TCF, a common extension of Plotkin’s PCF and Goedel’s system T, by defining simultaneously strong negation of a formula and strong negation of a predicate P in TCF. As a special case of the latter, we get strong negation of an inductive and a coinductive predicate of TCF.
2025
Inglese
ELETTRONICO
Esperti anonimi
Volume 21, Issue 2
1
28
28
Higher order computability, constructive mathematics, strong negation
https://lmcs.episciences.org/15465
none
info:eu-repo/semantics/article
Köpp, Nils; Petrakis, Iosif
2
01 Contributo in rivista::01.01 Articolo in Rivista
262
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/1159069
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact