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Abstract 
 
Background: Despite several functions of opioid receptors/ORs in cardiovascular 

physiology and neurotransmission, expression in post-heart transplantation, diabetic 

heart, great vessels, and cardioprotective roles in neuropathic models of diabetic rat heart 

has not yet been addressed. The aims of this study were i) to investigate whether 

myocardial opioidergic system in transplanted and diabetic heart was altered, ii) to study 

the modulation of some pro-survival signaling proteins upon ORs blockade in diabetic rat 

model of post-myocardial ischemia-reperfusion injury (IRI), iii) to measure levels of 

apoptotic nuclei and infarct size in the presence of naloxone, iv) to evaluate and compare 

the expression of kappa (κ) and delta (δ) ORs in aorta and pulmonary arteries in rats.  

 

Materials and methods: Endomyocardial biopsy from the orthotopically transplanted 

heart (OTH, human); tissues from heterotopic transplanted heart (HTH), diabetic rat heart 

in the presence and absence of naloxone after ischemia-reperfusion/IR following body 

weight and blood glucose measurement were collected and preserved in formalin and 

liquid nitrogen. The tissues were processed for total-RNA isolation, protein extraction, 

immunohistochemistry (IHC), immunofluorescence (IF), TUNEL, and Hematoxylin & 

eosin (H&E). The optical density (OD) of ORs immunoreactivity and a neuronal marker 

(CGRP-1) were measured. The pro-survival signaling pathways involved in alterations, 

phosphorylation levels of GSK-3α/β and p38, and TUNEL positive apoptotic nuclei were 

evaluated after IR-induction. 2, 3, 5-triphenyl tetrazolium chloride/TTC staining was also 

applied to measure levels of infarction of IR-induced rat heart with and without naloxone. 

H&E staining was performed to: grade the level of rejection; evaluate histopathology of 

sciatic nerve and pancreas in diabetic rats and any concurrent structural abnormalities of 

heart tissue. Immunohistochemically, κ- and δ-ORs were evaluated in endothelial and 

vascular smooth muscle cells in the aorta and pulmonary arteries of rats. 

 

Results: IHC and IF observations showed the expression of δ- & κ-ORs in the heart with 

a significant reduction in the OD of DOR-1 & KOR-1 immunoreactivity in post-heart 

transplantation and in Streptozotocin-induced diabetic rat heart. However, MOR-1 was 

not detected in the rat heart. Dual labeling signals of KOR-1 with DOR-1 co-expression 
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were observed in both hearts of human and rats. The reduced OD of DOR-1 immuno-

positive myocytes significantly correlated with the reduction of neuronal marker (CGRP-

1) immunoreactivity.  

 

Messenger RNA transcripts encoding the Oprd1 and Oprk1 were detected in human and 

rats, and downregulated in transplanted and diabetic hearts. Nevertheless, Oprm1 was not 

identified in rats` heart. Undetected Oprm1 RT-qPCR products also were shown by 

agarose gel electrophoresis. Densitometric quantification of immunoblots revealed that 

DOR-1 and KOR-1 proteins were also downregulated in transplanted and diabetic hearts 

of rats. Furthermore, an elevation of apoptotic nuclei of myocytes in transplanted and 

diabetic heart was observed. Histopathological examination of transplanted heart tissue 

demonstrated lymphocytes infiltrate in orthotopically and heterotpic transplanted heart in 

human and rats, respectively. Moreover, lower body weight and fasting blood glucose 

levels and abnormal distribution and shrinkages of βeta-cells of islet of pancreas, and 

connective tissue fibrosis around the epineurium and axonal swelling of the sciatic nerve 

were detected in diabetic rats. Mild morphological distortion of myocytes was observed 

in diabetic heart in the presence and absence of naloxone. 

 

Process of cell-signaling showed that blockade of ORs by naloxone reduces the levels of 

phosphorylated pro-survival kinases (AKT, ERK1/2) in diabetic and IR-induced rat heart. 

On the contrary, the extent of phosphorylation of GSK-3β significantly elevated in the 

presence of naloxone. On the other hand, absence or poor phosphorylation of GSK-3α 

was observed in almost all groups tested. Moreover, elevation of p38 phosphorylation, 

TUNEL positive nuclei, and fibrosis was observed in the presence of naloxone after IR. 

TTC-stained ventricular slices showed a higher percentage of infarct size after ORs 

blockade.  Comparative study of KOR-1 and DOR-1 on the aorta and pulmonary artery 

showed presence of κ- and δ-ORs in endothelial and vascular smooth muscle cells in the 

aorta and pulmonary arteries in rats dominantly KOR. 

 

Conclusion: The δ- & κ-ORs possess a protective role in the heart against ischemia-

reperfusion injury; however, the down-regulation of ORs may compromise the 
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effectiveness of pharmacological activities of opioids in transplanted and diabetic hearts 

that could reduce the potential role of ORs in the regulation of cardiac tissue. The ORs 

might promote cell survival by mediating the action of Akt and ERK1/2. The 

phosphorylation of GSK-3β and p38 might also be involved in ORs in regulation of 

myocardial tissue. The ORs dominantly KOR also play role in endothelial and smooth 

muscle cells in vascular system in rats. 

 

Keywords: Opioid receptors, Cardiac transplantation, Cellular rejection, Ischemia-

reperfusion injury, Diabetic neuropathy, Apoptosis, Myocardial infarction, 

Endomyocardial biopsy, Denervation, Vascular System 
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CHAPTER ONE 

1. General introduction 
1.1. Background 

 

Opioids are among the world's oldest known drugs (Manglik et al., 2012) that resemble 

morphine or other opiates in their pharmacological effects. They have long been known 

for their analgesic effects and work by binding to opioid receptors (ORs) which are found 

mainly in neural elements. In the last decade, pieces of evidence regarding local opioid 

regulation of heart physiology have been demonstrated (Mousa et al., 2011). The local 

opioids effects could be affected by innervations. Despite several functions of ORs in 

cardiovascular physiology and neurotransmission, their expression in post-heart 

transplantion, diabetic hearts, great vessels, and their cardioprotective roles in diabetes 

with neuropathy and ischemia-reperfusion/IR-induced models of rat heart have not been 

addressed yet.  

 

Opioidergic effects on cardiovascular function are known by reducing arterial 

hypotension and bradycardia which is transmitted through a dorsal vagal complex in 

central nervous system (Treskatsch et al., 2015). The opioid is commonly administered to 

alleviate pain and unload the heart in patients with advanced heart failure (Bolte et al., 

2009). The opioid effects are mediated by opioid receptors (MOR, DOR, and KOR) 

(López-Bellido et al., 2012; Matthes et al., 1996). Opioid receptors are activated by both 

endogenously produced opioid peptides and exogenously administered opiate compounds 

(Waldhoer et al., 2004). They include, mu, delta, and kappa ORs (µ-, δ-, and κ-OR, 

respectively), are G protein-coupled receptors (GPCRs) that regulate neurotransmission. 

Different documented evidence show that in many organ-systems, they mediate the 

beneficial as well as detrimental opioids effects in the body (Treskatsch et al., 2015). 

 

Past and recent studies indicate the presence of ORs throughout the peripheral tissues of 

the body (Wittert et al., 1996), such as, heart (Theisen et al., 2014; Sobanski et al., 2014; 

Cao et al., 2003; Patel et al., 2006; Weil et al., 1998; Howells et al., 1986), intestines, 

adrenal medulla, kidney, lung, spleen, testis, ovary and uterus (Wittert et al., 1996), skin 
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(Salemi et al., 2005), MOR in vascular epithelium, cardiac epithelium, keratinocytes, vas 

deferens, and Sertoli cells (Lesniak and Lipkowski, 2011), autonomic ganglia (Janecka et 

al., 2004), vascular tissue (Feuerstein and Siren, 1987; Schultz et al., 1997), olfactory 

epithelium, limb bud and tooth (Zhu et al., 1998), both DOR and KOR in fibroblast-like 

synoviocytes (Shen et al., 2005), and both the μ- and δ- ORs in the boar sperm plasma 

membrane (are sperm kinematics regulators) (Vicente-Carrillo et al., 2016). The heart 

expresses high levels of endogenous opioids across species (Headrick et al., 2015; 

Howells et al., 1986). These receptors located in neural structures such as  pontine angles, 

tonsils, olfactory bulb, deep cerebral cortex and peripheral sensory neurons (Martins et 

al., 2012). 

 

Major families of the opioid system are endorphins, enkephalins and dynorphins, which 

in order are derivatives of the endogenous peptides pre-proopiomelanocortin, pre-

proenkephalin A and pre-proenkephalin B (Koneru et al., 2009). Furthermore, opioids, 

sometimes considered as neurotransmitters, also possess autocrine, paracrine, or 

endocrine functions in the peripheral tissues (Barron, 2000). 

 

The opioid receptors play great roles in cardiovascular function (Pugsley, 2002; Sobanski 

et al., 2014; Barry and Zuo, 2005). They also have been shown to regulate cardiovascular 

function in the healthy and diseased heart (Peart and Gross, 2006; Gross, 2003). They are 

known to modulate cardiac function, for instance, they exert strong cytoprotective 

activities (Williams-Pritchard et al., 2011). Furthermore, they play a significant role in 

cardiogenesis such as in regulation of vascular tone (Sobanski et al., 2014, Cao et al., 

2003). Activation of DOR suppresses calcineurin and activates extracellular signal-

related kinase (ERK) 1/2 which are thought to interact with the mechanism involved in 

cardioprotection (Rungatscher et al., 2013).  

 

Since the description of ORs in 1973 by Pert and Snyder and endogenous opioids in 1975 

by Hughes and colleagues, a large number of articles were published concerning the 

presence of a number of ORs and their roles in cardioprotection. After a study that 

supports the hypothesis of ORs roles in ischemic preconditioning in the rat myocardium 
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done in 1995 by Schultz and colleagues, many data also show the involvement of ORs in 

cardioprotection in different animal models (Schultz et al., 1997; Mayfield and D`Alecy, 

1994; Benedict et al., 1999; Valtchanova-Matchouganska and Ojewole, 2003; Li et al., 

2009; Peart and Gross, 2004; Zhang et al., 2006; Wu and Wong, 2003; Peart et al., 2005; 

Wu et al., 2004; Park et al., 2014; Karlsson et al., 2012; Zatta et al., 2008; Maslov et al., 

2013; Wong et al., 2010; Guo et al., 2011; Kim et al., 2011; Al-Hasani and Bruchas, 

2011) (Table. 2).  

 

According to Marvin et al., (1980) in rat heart parasympathetic innervations develop 

before birth; while sympathetic innervations develop during 7 to 10 postnatal days 

(Mousa et al., 2011; Robinson et al., 1996). DOR and KOR are increased in number in 

the adult rat heart (Zimilichman et al., 1996) and within central nervous system (Spain et 

al., 1987) except a gradual disappearance of MOR (Zimilichman et al., 1996).  

 

It is reported that DOR mRNA, protein, and binding sites that gradually increased from 

postnatal day 1 towards adulthood. The DOR-1 co-localization with VAChT principal 

neurons from the first day of birth and with small intensely fluorescent catecholaminergic 

cells and CGRP within intracardiac ganglia and atrial myocardium are reported. 

Moreover, the co-expression DOR with neuronal markers increasing with age (neonatal 

to adulthood) (Mousa et al., 2011) and these developmental expressions of ORs and 

sympathetic, parasympathetic and sensory innervations of the heart imply the regulation 

of ORs by cardiac autonomic innervations.  

 

In another immunohistochemical localization qualitative study, it is demonstrated that 

delta and kappa ORs and CGRP sensory nerve fibers are expressed in heart tissue using 

only two individuals of sudden death (Sobanski et al., 2014); however, in transplanted 

and Streptozotocin (STZ) induced diabetic rats has not been addressed and/or 

characterized. The study of Sobanski et al., (2014) employed lacking quantitative 

approaches, transplanted and STZ-induced diabetic and neuropathic models for ORs 

characterization and IR-induced models to evaluate their cardioprotective roles in 

neuropathic IR-induced models. 
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Base on the suggested clue on the role of ORs in neural transmission and regulation of 

cardiomyocytes physiology (Sobanski et al., 2014) in the heart and modulation of these 

receptors by autonomic innervations which are lost due to transplantation, we 

hypothesized that they could be down-regulated after heart transplantation and 

neuropathic conditions. To test this hypothesis, this study was designed to investigate 

levels of opioid receptors and their mRNA, fragmented DNA (apoptotic level) after 

cardiac transplantation (orthotopic and heterotopic in human and rat, respectively) and 

STZ-induced diabetic rats using both qualitative and quantitative approaches.  

 

Moreover, this study has dealt with the cardioprotective role of ORs after blockade in IR-

induced model of diabetic rats. Moreover, concurrently any histopathological 

abnormalities of heart tissue in transplanted heart and diabetic rat heart. In addition, body 

weight, fasting blood glucose levels and histopathology of the pancreas to assess diabetic 

condition, and histopathology of the sciatic nerve to evaluate neuropathic changes are 

done. 

 

This doctoral project entitled “Characterization of opioid receptors in post-heart 

transplantation, diabetic heart, great vessels, and cardioprotective role in myocardial 

ischemia-reperfusion injury”. It consisted of seven major parts. The first four chapters 

deal with a general introduction and characterization of opioid receptors in orthotopically 

and heterotopic transplanted (human, rat, respectively), and STZ-induced diabetic (rat) 

heart. The fifth chapter deals with ORs signaling mechanisms after ischemia-reperfusion 

in the STZ-induced neuropathic model of diabetic rats in the presence of naloxone. The 

sixth one presents comparative study of kappa and delta opioid receptors in aorta and 

pulmonary artery in normal rats.  

 

The thesis project contributes insight and a better understanding of the expression of ORs 

specifically in denervated/transplanted heart, diabetic heart, and great vessels using 

advanced approaches. It also evaluates role of opioid receptors in myocardial ischemia-

reperfusion injury and levels of apoptotic nuclei in cardiomyocytes in post-
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transplantation and diabetic hearts. Besides, expression of delta and kappa-ORs in 

pulmonary arteries and aorta are included in the study. 

 

The novel findings of this study show denervated and diabetic heart might have 

implications as a possible mechanism for defective cardioprotection in patients with 

cardiac transplants and diabetes. 

 

1.1.1. Opioidergic system: the opioids and opioid receptors 

 

The existing anesthesia, the species being studied, the dose, the site of action in the brain, 

any concurrent respiratory system effects, receptor specificity, and the existing status of 

the cardiovascular system, particularly the degree of hypotension or hypertension 

contribute to the cardiovascular effects produced by the opioids (Gross, 1994). Another 

issue is the plasticity of the opioid receptor system that is capable of changing its level 

and distribution pattern in response to physiological or pathological changes (Feuerstein, 

1985). The opioids decrease preload, afterload, contractility, and heart rate with a 

resulting decrease in cardiac output. In contrast, opioids also cause central respiratory 

depression (Gross, 1994). 

 

In 1973, a pioneer study done by Pert and Snyder, has shown the existence of ORs in 

mammalian brain and guinea pig intestine through a powerful opiate antagonist 

(naloxone) (Snyder and Pasternak, 2003) and then in 1976 Martin and colleagues also 

demonstrated heterogeneity of ORs, and proposed names of μ and κ after they used 

morphine for μ receptor and ketocyclazocine for κ receptor. Another study in 1977 done 

by Lord and colleagues on effects of opioid peptides in mouse vas/ductus deferens tissue 

in which the receptor (δ) was first characterized. Consequently, the receptors were named 

using the first letter of the first ligand that was found to bind to the receptors.  

 

Since the description of ORs in 1973 by Pert and Snyder and endogenous opioids in 1975 

by Hughes and colleagues, a large number of articles were published concerning the 

presence of a number of ORs. Opioid receptors are a group of inhibitory GPCRs with 
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opioids as ligands, like other GPCRs in the cell membrane, are characterized by seven 

transmembrane domains (Fig. 1) (Koneru et al., 2009; Freye, 2008). They are activated 

by opioid peptides derived from endogenous ligands the endorphins, enkephalins, and 

dynorphin families (Williams-Pritchard et al., 2011).  

 

Opioid receptors are classified as a classic (mu, delta, and kappa), and non-classic (ORL-

1) and identified by molecular cloning. Each of the cloned ORs is derived from a single 

gene; however, a number of alternatively spliced variants/isoforms from their own genes 

have been isolated (Pan, 2003). The three classic closely related subtypes, mu, delta and 

kappa, share ~70% sequence identity in their seven transmembrane helices (Wu et al., 

2012; Kobilka, 2007) (Fig.1, 2 and Table. 1), with more variations in extracellular loops 

and very little similarity in their amino and carboxyl terminal (Wu et al., 2012; Waldhoer 

et al., 2004; Janecka et al., 2004).  

 

Based on pharmacological evidences, distinct subtypes of ORs were suggested with 

different nomenclatures (Table 1) that µ (mu, MOP), δ (delta, DOP) and κ (kappa, KOP) 

ORs with different variants such as μ1 μ2 μ3, δ1 δ2, and κ1 κ2 subtypes, respectively 

(Williams-Pritchard et al., 2011; Cox et al., 2015). Although scientists have intensely 

studied and characterized these receptors in neural elements (Mansour and Watson, 

1993), a lot of further studies are still needed especially in peripheral tissues, such as the 

heart.  
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Table: 1. NC- IUPHAR-approved nomenclatures for opioid peptide receptors and some 

agonists and antagonists 

SN Current NC-

IUPHAR- 
approved 

nomenclature  

Other (non-approved) 

nomenclature 

Presumed endogenous ligand (s) 

1 µ, mu or MOP MOR, OP3 β-endorphins (not selective) 
Enkephalins (not selective) 
Endomorphin-1b 
Endomorphin-2b 

2 δ, delta or DOP DOR, OP1 Enkephalins (not selective)  
β-endorphin (not selective) 

3 κ, kappa or 
KOP 

KOR, OP2 Dynorphin A 
Dynorphin B 
α-neoendorphin 

4 NOP, 
Nociceptin or 
FQ, Orphanin 

ORL1, OP4 Nociceptin/Orphanin FQ (N/OFQ) 

   IUPHAR Review 9 Cox et al., 2015. 
- Universal 

antagonist 
Naloxone  

- NOP/FQ 
antagonist  

Antagonist JTC-801  Scoto et al., 2007 ; Redrobe et al., 2002 

- Agonists  Fentanyl for µ; DPDPE for δ; 
U50488H for κ. 

Bolte et al., 2009 ; J Mol Cell Cardiol. 

- NOP/FQ 
agonist 

Full agonist MCOPPB for FQ,  Hirao et al., 2008 

 Partial agonist BU08028 for FQ, Ding et al., 2016 
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Figure: 1. Schematic representation of opioid receptor: The figure 
illustrates the sequence of the seven transmembrane domains, the 
extracellular and intracellular loops. All GPCRs contain 7TM α-
helical regions. The loop between α-helices 5 and 6, and in cases 
between helices 3 and 4, which face the cytosol, are important for 
interactions with the coupled G-protein. E1-E4 implies extracellular 
loops; C1-C4 implies intracellular loops; H1-H7 implies 7TM 
domains. Reproduced from Lodish et al., (2000); Freye, (2008). 

 

 

Figure: 2. How does signal 
bind to the receptors? When 
signal binds (1) to the 
receptor, GPCR regulates 
intracellular reaction by 
involving G-protein (2) that 
binds the receptor and then 
activated (3). Reproduced 
from Purves et al., (2001). 

 

Figure: 3. Binding of ligands and activation of G-proteins: Binding of ligand to a receptor triggers 
activation of G-protein, which then binds to and activates an enzyme that catalyzes the synthesis of a 
specific second messenger. Reproduced from Lodish et al., (2000). 
 

1.1.2. Myocardial opioid expression 

 

There are pieces of evidence to indicate the presence of multiple opioid receptors in 

different organs of the body (Khachaturian et al., 1987). The heart expresses high levels 

of endogenous opioids across species (Headrick et al., 2015). Cardiomyocytes are major 

sites of opioid peptide synthesis, storage, release, and possess large stores of genes 

encoding the endogenous opioid precursors pre-proenkephalin, prodynorphin and pro-

opiomelanocortin (Barron, 2000; Koneru et al., 2009). Ventricular myocardium may 
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contain the highest levels of pre-proenkephalin mRNA in the body (Howells et al., 1986) 

that assures the heart as an important neuroendocrine organ. Myocardial synthesis and 

release of opioid peptides are variable, increasing with ischemia, and cardioprotective 

intervention (Zatta et al., 2008). They are also influenced by aging (Caffrey et al., 1994), 

and disease state (Lendeckel et al., 2005). Relative quantities of myocardial transcripts 

imply a tendency to greater generation of endogenous DOR selective ligands (Headrick et 

al., 2015). 

 

1.1.3. Intracellular signals following opioid binding 

 

When opioids those bind to their receptors on a cell surface, a signal is transmitted or 

"transduced" to the cells interior to exert events like a series of chemical and physical 

reactions that produce biological responses. The biological responses include 

proliferation, cell differentiation, altered metabolism, migration, survival, apoptosis, and 

cell growth and division (Freye, 2008). Each receptor has extracellular, transmembrane, 

and intracellular components (Fig. 1, 2 and 3). 

 

The binding of a ligand to the receptor is known as the first message. First messengers 

are extracellular substances such as opioid peptide ligands that bind to receptors. The 

second messengers are intracellular signaling molecules or mediators that relay 

information/signals from the receptor-ligand complex and diffuse from one part of the 

intracellular space to their spatial target molecules in the cytosol and/or nucleus (Berg et 

al., 2002). They have three major classes such as cyclic nucleotides (e.g. cAMP & 

cDMP), Inositol triphosphate (IP3), Diacylglycerol (DAG), and calcium ions (Berg et al., 

2002).  

 

In general, ligand binding to a receptor on the surface of the cell thus initiates a chain of 

intracellular reaction, ultimately reaching the target cell nucleus and resulting in 

programmed changes in gene expression (Cooper, 2000). 
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1.1.4. Opioids and opioid receptors cardioprotective action signal mechanism 

 

Mechanisms of ORs which are involved in cardioprotection are not clearly understood. 

However, many studies documented different views. The study of Maslov and colleagues 

2013 supports the occurrence of convergent pathways in which multiple GPCRs interact 

independently and transactivate epidermal growth factor (EGF) receptor-dependent 

kinase signaling to provide cytoprotection. Intracellular interaction of delta-1 ORs and 

adenosine A1 receptors is indicated as an example of transactivation of GPCRs (Maslov 

et al., 2013). It is also thought that both delta and kappa ORs which act via cellular 

mechanisms involving activation of ATP-sensitive (sarcolemmal) k+ channel via G(1/o) 

proteins, phosphatidylinositol pathway via activation of kinase C, and most likely cross 

talk between adrenergic and ORs in cardiomyocytes (Valtchanova-Matchouganska and 

Ojewole, 2003). 

 

It is known that Gi/o proteins are intermediary linkages that provide cellular signaling 

between ORs and protein kinase C (PKC) (Maslov et al., 2013). Nowadays, a number of 

studies have shown that the involvement of protein kinase C (PKC) in mediating anti-

necrotic and anti-apoptotic actions of ORs agonists (Maslov et al., 2016; Maslov et al., 

2013). Studies of Maslov and colleagues (2013) have demonstrated that PI3 and Akt 

kinases are involved in the cardioprotective effect of opioids. Besides, important roles of 

MEK1/2, ERK1/2, Src and JAK2 kinases and transactivation of ORs in the 

cardioprotective effect of opioids in the development tolerance of the heart to ischemia 

and reperfusion are indicated (Maslov et al., 2013). Opioid transactivation of epidermal 

growth factor receptor (EGFR) is a connecting link between ORs and ERK1/2 and PI3 

kinase cascades (Maslov et al., 2013). The activation of the EGFR increases the Akt 

(protein kinase B) and Pl3 (phosphatidylinositol-3-kinase) in their activities (Krieg et al., 

2002).  

 

In the past decades, various investigators have shown their efforts to find out possible 

mediating effects of ORs against IR injury using different: pharmacological, ischemic 

and exercise preconditioning. DOR and KOR are strongly implicated in cardioprotection 
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including anti-infarct and anti-arrhythmic actions across models and species indicated as 

seen in the table below: 

 

Table: 2. Cardioprotective effect of opioid receptors 

S

N  

Preconditioning  Receptors  Cardioprotective effects  Mode

ls  

Authors  

1  Intermittent hypoxia 
conditioning (protects 
>90%) after 60min 
occlusion and 5hr 
reperfusion  

DOR specific 
antagonist 
(naltrindole)  

completely repels the 
reductions of IS and 
arrhythmia  

Canin
e  

Estrada et al., 
2016 

2  Remote electro-
stimulation (RES)  

specific antagonist 
targeting KOR and 
DOR  

↑GSK3 and PKC expression 
levels in (RES) but ↓ δ and ᴋ  

Rats  Tsai et al., 
2015 

3  Remote electro-
stimulation (RES)  

specific antagonist 
targeting KOR  

↓ IS in KOR antagonist than 
left  

Rats  Tsai et al., 
2015 

4  Preconditioned EA  Sham RES = 50% 
(n=24) 
RES = 20% 
(n=20) 
RES+KOR left = 
33% (n=9) 
RES+KOR 
blocked = 67% 
(n=18) 

attenuated cardiomyocyte cell 
death and decrease mortality  

Rats  Tsai et al., 
2015 ; PLOS 
ONE  

5  Restraint stress 
preconditioning  

κ-selective 
antagonist 

reduced the increases in MAP 
and HR  
↓ the restraint stress-related 
pressor and tachycardic 
responses, 
IL KOR plays a facilitator 
role in the control of 
cardiovascular responses 
induced by RS.  

Rats  Fassini et al., 
2015  

6  Exercise 
preconditioning  

A specific DOR 
antagonist 
(naltrindole) 

Abolished the protection 
against tissue necrosis - 
significantly elevated tissue 
necrosis /IS levels in 
comparison to sham.  

Sprag
ue–
Dawle
y rats  

Miller et al., 
2015 

7 Ischemic 
preconditioning 
(intrathecal morphine 
preconditioning)  

IV naloxone 
methiodide; 
intrathecal 
naloxone 
methiodide  

↓ IS/AAR  Sprag
ue-
Dawle
y rats  

Wong et al., 
2010  

  μ-selective 
antagonist or 
naltrindole and δ-
selective 

No effects on the restraint-
evoked increases in MAP and 
HR  

Rats  Tsai et al., 
2015 
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antagonist  
8 Exercise 

preconditioning  
naltrindole – DOR 
b-funaltrexamine - 
MOR 
nor-
binalthorphimine 
– KOR 

DOR blockade completely 
prevented the 
cardioprotection seen in the 
Exe group but not MOR and 
KOR 

Wistar 
rats  

Borges et al., 
2014  

9 Activation of delta 
opioid receptors 

Delta-2 specific 
opioids 
deltorphin-II 
(Delt-II) 
Delt dvariat (Delt-
Dvar) 
Deltorphin-E 
(Delt-E) 

Cardiac tolerance to 
arrhythmogenic effect of 
ischemia 

Rats Maslov et al., 
2013 

10  MI/R + U50488H in 
the absence or 
presence of KOR 
selective antagonist 
(Nor-BNI)  

KOR agonist (U-
50488H) 

KOR attenuated the 
expressions of TLR4 and NF-
jB.  
- sig. inhibits TLR4/NF-
kappa B signaling in rat heart 
subjected to I/R  

Rats  Lin et al., 
2013 

11 Antagonists of 
ERK1/2 and PI3K 
perfused rat  

KOR agonist 
(U50488H)  

effective reduction of MI: 
Inhibition of ERK1/2 
(26.8±2.9%) repels anti-
infarct effect of KOR agonist 
(U50488H). 
Anti-infarct effect of KOR 
agonist is mediated by 
ERK1/2. 

Rats  Kim et al., 
2011 

12 Stress with cold 
exposure and restraint 
for 3 h- attenuated IS 
induced by 
M/IR (from 36.64±1.8 
to 22.85±2.6%) 
Morphine at 8 mg/kg 
attenuated the IS from 
36.26 ± 1.6 to 20.30 ± 
2.1%)  

-naloxone, 
norbinaltorphimin
e, a selective KOR 
antagonist; 
-naltrindole, a 
selective DOR 
antagonist, or  
CTOP, a selective 
MOR antagonist.  

↓effect of cold-restraint stress 
↓effect of morphine 
All three types of ORs 
mediate the cardioprotective 
effect of morphine in the 
heart of the rat. 
The effects also attenuated 
by blockade of protein kinase 
C or the mitochondrial 
KATP channel 

isolate
d 
perfus
ed rat 
heart  

Wu et al., 
2004  

13 After IR injury  DOR agonist 
(DADLE) 

- Sig. decreased the 
infarct size (by 66%) 
compared to control 

intact 
rat 
rats  

Valtchanova-
Matchougans
ka Ojewole, 
2003  

14 Hypoxic setting: 
drowning, head 
injury apnea, and 
complicated 
childbirths 

mechanism of 
neuroprotection 
via decreasing 
body-To using 
delta agonist 
(BW373U86), 
DPDPE 

- elevation of 
survival time 
during lethal 
hypoxia 

mice Bofetiado 
etal., 1996 
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1.1.5. Functions of opioid system in the body 

 

The opioid system is one of the most multifaceted neurotransmitter systems in the body 

(Feng et al., 2012). Although opioids mainly are known in pain modulation and widely 

associated with analgesia for postoperative pain therapy (Hanlon et al., 2011), other 

important roles of the system in peripheral organs, especially in the heart has been the 

focus of many studies in the past decade. The release of endogenous opioids into the 

blood has a significant elevation of β-endorphin following muscle injury and 

hemorrhagic shock in naïve rats models (Molina, 2002) and works against pain by 

regulating nociceptive information.  

 

The opioid system plays important roles in the regulation of cardiovascular system, 

especially in cardioprotection. The three subtypes (mu, delta, and kappa) opioid peptides 

have been found in cardiomyocytes, sympathetic nerve fibers and ganglion cells of the 

heart (Steele et al., 1996). The delta (Schultz et al., 1997) and kappa (Wu et al., 1999) 

opioid receptors have been shown to mediate cardioprotection by preconditioning with 

myocardial ischemia and metabolic inhibition. 

 

Endogenous opioid systems are associated with the regulation of emotional responses 

(Saitoh et al., 2005). This system in the regulation of emotional response is not well 

studied; however, it has been reported that opioids are natural inhibitors of stress and 

anxiety (Saitoh et al., 2005), and produce antidepressant-like activity through DOR 

mechanism of action (Naidu et al., 2007). 

 

Opioid receptors, especially, DOR, mediate neuroprotection against ischemic injury. 

Even though there have been major controversies in the past decade on the role of opioids 

in the neuronal responses to ischemic insults by activation and inhibition of opioid 

receptors, recent data Chao and Xia, (2010); Feng et al., (2009) have clarified their 

neuroprotective effects against ischemic neuronal injury. The up-regulation of DOR 

expression and activation increase the neuronal tolerance to ischemic stress through 

triggering different mechanisms (PKC-ERK-Bcl2), and stabilization of ionic homeostasis 
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(Chao et al., 2007) that reduce oxidative (Feng et al., 2012) and glutamate-induced 

(Zhang et al., 1999; Zhang et al., 2000) injury to reserve neuronal survival (Feng et al., 

2012). DOR also play a crucial role in neurogenesis. It is indicated that DOR agonist 

(SNC80) promotes neural differentiation from multipotent neural stem cells (Narita et al., 

2006). 

 

Morphine and other opiates, act like cytokines to modulate the immune response 

(Eisenstein, 2011) in central and peripheral neurohumoral systems (Welters, 2003). 

According to Car and colleagues (1993), ORs stimulation exerts suppression in numerous 

parts of the immune defense responses. Opioid modulation of the immune response is 

mediated via the direct interaction with ORs expressed by immune cells (Finley et al., 

2008). They are also involved in regulation of ionic homeostasis under normoxic and 

ischemic conditions by intracellular elevation of Ca2+ or inhibition of their entry.   

 

Opioid receptors are also involved in regulation of feeding in animal (Marczak et al., 

2009). Stimulation of ORs increases feeding, while inhibition of ORs reduces food intake 

in rodent models of obesity (Marczak et al., 2009).  

 

It has been well established that opioids trigger respiratory depression in humans and 

animals (Pattinson, 2008) by a direct action on respiratory generating and high densities 

of ORs brain areas (Mutolo et al., 2007). The use of opioid drugs for pain relief results in 

a respiratory depression that creates a significant clinical problem for patients treated 

with the drugs in the postoperative period (Pattinson, 2008). The massive release of 

endogenous opioids or overdose of opioid drugs can cause a severe respiratory depression 

and may be lethal. On the other hand, excessive use and abuse of opioid compounds lead 

to opioid tolerance/addiction in the nervous system via desensitization and internalization 

(Koch and Höllt, 2008) which greatly affects body homeostasis and brain physiology.  

 

In general, various well-established evidence has shown the role of the opioid system in 

cardioprotection, pain modulation, neuroprotection, modulating the immune response, 

feeding, respiration, reward and opioid addiction (Feng et al., 2012). 
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1.2. Brief notes on cardiac and vascular structure, function and its development 

 

1.2.1. Development of the heart 

 
The cardiovascular system is the first organ system to develop and function in the 

vertebrate embryo (Harris and Black, 2010). The heart develops from the precardiac 

lateral fold to form the primitive heart tube (Brutsaert et al., 1998). The mesodermal 

tissues that give rise to the heart first become evident when the embryo is undergoing the 

process known as gastrulation. In the human, this occurs during the third week of 

development, while for the mouse, at a comparable stage of development, around seven 

days will have elapsed from fertilization, and the embryo will be in the presomitic stage.  

 

The embryonic plate in humans, initially possessing two layers, is ovoid, and is formed at 

the union between the yolk sac and the amniotic cavity. In the midline of the long axis of 

the oval disc is found the primitive streak, with the node at its cranial end. Through this 

streak, cells migrate from the upper layer by the process called gastrulation to form the 

three germ layers of the embryo proper: the ectoderm, the endoderm, and the mesoderm.  

 

The cells that are destined to form the heart are also derived from this mesodermal layer 

(Moormon et al., 2003). The heart tube at the time of its formation is a two-layered 

structure, composed of an inner endothelial layer and an outer myocardial layer (Harris 

and Black, 2010). However, the caudal and cranial additions to the tube produce a 

pronounced elongation of the primary heart tube. The elongation, the dorsal 

mesocardium, originally connecting the left ventricle to the mediastinum, forms the 

larger part of the tube.  

 
1.2.2. Layers, chambers, and valves of the heart 

 

The heart is located in middle mediastinum, is surrounded by pericardium. The 

pericardium is a relatively avascular, double-walled fibrous sac that can normally contain 

15 to 35 ml of serous fluid distributed mostly over atrial-ventricular and interventricular 

grooves (Little et al., 2006). The visceral layer is composed of a single layer of 

mesothelial cells that are adherent to the epicardium (Lewinter et al., 2005). The parietal 
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pericardium is a fibrous structure, is composed of mainly of collagen and a lesser amount 

of elastin (Lewinter et al., 2005). It protects the heart from friction, excessive dilatation, 

injury, shock. It provides a smooth lubricated sliding surface and attaches to the sternum, 

diaphragm, and anterior mediastinum (Little et al., 2006). It may also function as a barrier 

to infection because of its location (Little et al., 2006).     

 

Layers/wall: The heart wall comprises of three layers: epicardium, myocardium, and 

endocardium. The epicardium outer layer is structurally characterized as a visceral layer 

of pericardium. A film of epicardial fat is found between epicardium and myocardium 

known as a true visceral fat depot of the heart, measures 1mm to 23mm thick using 

echocardiography (Iacobellis et al., 2009). It predominantly overlies the atrioventricular 

grooves and the right ventricle and houses coronary vessels, lymphatics, autonomic 

nerves, and a variable amount of fats (Herzog, 2014; Murphy and Lloyd et al., 2013). It 

plays a role in cardiovascular diseases because of its anatomical and functional proximity 

to the myocardium and its intense metabolic activity (Iacobellis et al., 2009). The 

epicardium gives rise to the precursors of the coronary vasculature and cardiac fibroblasts 

(Xin et al., 2013). 

 

The myocardium is a complex three-dimensional network of myocytes in a fibrous tissue 

matrix (Ho and Nihoyannopoulos, 2006). It is the thickest and the middle layer of the 

heart; however, the levels of myocardial mass are varied within the heart. The 

myocardium is thinner in the left atrium and thickest in the left ventricle. 

 

The endocardium is the inner layer in contact with blood. This large surface area is firmly 

attached to myocardium and lines the cavities and valves. The endocardium is further 

classified into smooth muscle cells, connective tissue, and subendocardial layers (Katz 

2010). The endocardium is mainly composed of the endothelial cells. This endocardial 

endothelium modulates cardiac performance, rhythmicity, and growth (Brutsaert et al., 

1998). It is also suggested that cardiac endothelium controls the development of the heart 

in both embryo and adult during hypertrophy. The endocardial endothelium may also act 
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as blood heart barrier and thus controls the ionic composition of the extracellular fluid 

(Milgrom-Hoffman et al., 2011). 

 

Chambers of the heart: The heart is a muscular, four-chambered organ, situated in a 

thoracic region called middle mediastinum (Sundberg-Cohon et al., 2009). It contains an 

apex and base. The apex is pointed forward, downward, toward the left. The base is the 

broader end where cardiac plexus is located and great vessels emerge upward (Katz, 

2010). The chambers are upper right and left atria, and lower right and left ventricles. The 

atria are relatively small and thin-walled located superior to ventricles, receive blood 

from large veins through Ostia unguarded by valves whereas, the ventricles are larger 

thick-walled designed to pump blood and perform most of the work (Sundberg-Cohon et 

al., 2009). 

 

The right atrium is the upper right cardiac chamber that receives deoxygenated blood 

from the systemic venous and coronary sinus return (Malik et al., 2015). It is made of a 

smooth concavity and a rough muscular part, formed by pectinate muscles. These two 

regions are separated by an internal ridge known as crista terminalis and a vertical groove 

(sulcus terminalis) (Dingová et al., 2015). In the right atrium, there are a number of 

structures located, such as pacemakers of the heart (SA and AV nodes), venae cavae, and 

coronary sinus (Katz, 2010). It is slightly thicker than left atrium. 

 

The left atrium is situated behind the right atrium and forms a greater part of the base. It 

receives oxygenated blood from pulmonary veins via its openings. Like right atrium, it 

comprises of a smooth concavity and a muscular left auricle. The atria are separated by 

an interatrial septum that prevents blood flow between the atria (Hara et al., 2005). 

 

The right ventricle is the most anterior cardiac chamber located immediately behind the 

sternum (Ho and Nihoyannopoulos, 2006), is more triangular shaped when viewed from 

the front and its right edge is sharp, forming the acute margin of the heart. Fibers are 

oriented like left ventricle (Ho and Nihoyannopoulos, 2006). The ventricles are separated 

by an interventricular septum. The septum is curved and convexity into the right 
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ventricle. It comprises of muscles except for a thin fibrous structure beneath aortic valve 

(Ho, 2009).  It is demonstrated that cardiac output of the right ventricle (RV) is five times 

lower than left ventricle (LV) (Katz, 2010). 

 

The left ventricle is located at the left bottom portion of the left atrium. It has a conical 

shape and its concavity presents a circular outline (Ho, 2009). Its fibers direction is 

aligned mostly apex-base route and oriented longitudinally, obliquely, and circularly 

(Helm et al., 2006). The predominant longitudinal orientation of the myocytes forms the 

myofibers (Ho and Nihoyannopoulos, 2006). The LV is four times thicker than the RV. 

Its wall is thinner at the apex and it gradually becomes thicker towards the base (Ho, 

2009). 

 

Valves of the heart: The heart contains four valves and fibrous skeleton. The fibrous 

skeleton houses the annuli of the four valves, membranous septum, aortic intervalvular, 

right and left fibrous trigones (Movahed et al., 2009). The right trigone and the 

membranous septum together form a central fibrous body, which is penetrated by the 

bundle of His (Movahed et al., 2009). The fibrous skeleton, in addition to providing an 

electrophysiological dissociation of atria and ventricles, it gives structural support to the 

heart (Movahed et al., 2009). 

 

1.2.3. Microscopic structures of the heart 

 

The heart possesses well-orchestrated and highly heterogeneous cells (Burton et al., 

2006). There are permanent and transient cells in the heart. The permanent cellular 

constitutes cardiomyocytes (Fig. 4), endothelial cells, cardiac fibroblasts, and vascular 

smooth muscle cells (Souders et al., 2009). Impermanent cells include lymphocytes, mast 

cells, and macrophages, which can interact with permanent cell types to affect the cardiac 

function (Souders et al., 2009). All these types contribute to structural, electrical, 

biochemical, and mechanical properties of functional heart (Xin et al., 2013).  
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Figure: 4. Morphology of cardiomyocytes and nuclei in transplanted and normal heart: the 
above figure (Fig. 4A&B) illustrates the longitudinal structure of cardiomyocytes (in green and 
white), nuclei (in blue), striations, intercalated disc (ICD) and erythrocytes in human (Fig. 4. A) 
& rat (Fig. 4B).  All sections are taken from the left ventricle. The figure 4C illustrates tissue a 
section is taken from heterotopic transplanted heart showing t-cell lymphocytes infiltrate (Fig.C 
encircled with red circular arrow) which are signs of acute cellular rejection in a red circle shaped 
arrow. Note: Green arrows in (Fig. 4A) and (Fig. 4B) illustrate the cardiomyocytes. Blue arrows 
indicate normal nuclei whereas; black arrow indicates shrinkages of nuclei in diabetic rat heart 
tissue sections. White arrows in figure 4A show ICD. Images are acquired using 400x 
magnification, scale bar = 50 microns (Fig. 4 A, B, D) and 200x magnification, scale bar = 
100microns (Fig. 4C). ICD, Intercalated disc. 

 

The cardiac muscle cells: The cardiac muscle cells include contractile cardiomyocytes 

and specialized conducting cardiomyocytes (pacemaker cells, Purkinje fibers) that make 

up the largest volume of the heart; however, non-cardiomyocytes cells dominate in terms 

of cell numbers especially cardiac fibroblasts (Souders et al., 2009). The contractile cells 

react to impulses of action potential from the pacemaker cells that generate and conduct 
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electrical impulses and then the contractile cells contract in response to the impulses to 

pump blood through the body (Katz, 2010).  

 

Contractile cardiomyocytes: The human heart contains an estimated 2-3 billion rod-

shaped cardiac muscle cells, but they account less than one-third of the total number of 

cells in the heart (Tirziu et al., 2010; Song et al., 2007; Nakano et al., 2012). In mouse, 

the number of the LV cardiomyocytes ranges 2-3.3 million. Each myocyte is long, thin 

and joined to its neighboring cells at the ends as well as at its side branches (Ho and 

Nihoyannopoulos, 2006). The ventricular myocytes are approximately 50% of the weight 

of the heart (Nakano et al., 2012).  

 

Myofibrils (actin and myosin filaments) are rod-like shaped bundles that form the 

contractile elements within cardiomyocytes (Nakano et al., 2012). The myofibrils and 

mitochondria comprise 50% and 25% of the cell volume in an individual contracting 

cardiomyocyte, respectively (Nakano et al., 2012). The rest of the cell volume is 

occupied by the nucleus, sarcoplasmic reticulum, cytosol and other structures (Nakano et 

al., 2012). 

 

The heart has two syncytia (branched network) in both atria and ventricles (Dingová, 

2015). The transmission of contractile force between cardiomyocytes is arranged by 

intercalated discs (ICD) (Katz, 2010). Each cell in the heart is electrically coupled to the 

next one that enables the heart to work as a single functional organ or syncytium for rapid 

conduction of electrical impulses throughout the heart (Perriard et al., 2003).  

 

In the mature heart, the ICD is situated at the bipolar ends of the rod-shaped 

cardiomyocytes and it is where myofibrils are anchored (Perriard et al., 2003). The 

myocytes are smaller and ellipsoidal shaped in atria (Nakano et al., 2012) that contain 

granules with a precursor of atrial natriuretic peptide (ANP) (Dingová, 2015). The ANP 

is a cardiac hormone involved in the physiological maintenance of blood volume and 

arterial blood pressure (Dietz, 2005). Secretion of ANP is most importantly governed by 
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mechanical stretching of the atria rather than several vasoconstrictors when extracellular 

fluid or blood volume is elevated (Dietz, 2005). 

 
Conducting pacemaker cells: The pacemaker cells (Fig. 5) are specialized 

cardiomyocytes that generate and conduct electrical impulses. They comprise 1% of the 

cells of the heart. They are much smaller than the contractile cells, have fewer 

myofilaments running in all directions but they are not organized into myofibrils (Katz, 

2010). A group of pacemaker cells at the junction of crista terminalis and veins forms 

cardiac pacemaker called SA node which has more rapid firing rate and directly in 

contact with atrial fibers.  

 

The action potential propagates from SA node to atria and then to AV node located 

between atria and ventricles in the area of the tricuspid valve and to ventricles via a 

specialized conduction system that coordinates the rhythmic contraction of the heart 

(Sartiani et al., 2011). The electrical impulses spread from AV node to AV His bundle 

which can then be divided into right and left bundle branches to give terminal part of 

conducting system (Purkinje fibers). The Purkinje fibers are larger with few myofibrils 

and rich in glycogen. 
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Figure: 5. Cardiac conduction system: This system is formed by specialized cardiac muscle 
cells (SA node, AV node, Bundle of His, Bundle branches, and Purkinje fibers) in the cardiac 
wall that send signals to cardiomyocytes result in contractility (Thomas, 2015).  
 
The vascular smooth muscle cells (VSMC): Cardiac tissue is highly vascularized (Nam 

et al., 2013). The majority of blood vessels wall is comprised of VSMC. Myocardial 

infarction results from a blockage of a major coronary artery that closes the delivery of 

nutrients and oxygen to myocardium leading to cardiomyocytes necrosis (Montgomery et 

al., 2014). The vascular smooth muscle cells provide structural integrity of veins and 

regulate the caliber of the blood vessels in the body by contraction or relaxation in 

response to vasoactive stimuli (Metz et al., 2012). 

 
The connective tissue cells: Heart myocytes are entangled in a complex array of 

connective tissue structures arranged in various levels of organizations, such as 

epimysium, perimysium, and endomysium (Robinson et al., 1988). They surround the 
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entire muscle, group of cells, and surround and interconnect individual cardiac myocytes, 

respectively. They also contribute to heart tensile strength and stiffness (Katz, 2010). The 

number of connective tissue cells increases with heart weight (Kohl, 2003). SA node 

contains many connective tissues, mainly collagen, and fibroblasts. More than 50% of the 

cells of the heart are cardiac fibroblast (Xin et al., 2013).  

 

Many studies are showing the possibility of conversion of human fibroblast into 

functional cardiomyocytes. Programming somatic fibroblasts into alternating lineages 

provide a promising source of cells for regenerative therapy (Cao et al., 2016) through 

chemically induced cardiomyocyte-like cells that can uniformly contract and resemble 

human cardiomyocytes in their transcriptome, epigenesis, and electrophysiological 

properties (Cao et al., 2016). Cardiac fibroblasts play also a role in the regulation of 

myocardial proliferation through β1 integrin signaling (Ieda et al., 2009).  

 
The endothelial cells: The heart contains not only cardiomyocytes but also other cell 

types such as endothelial cells (Zhang and Shah, 2014). The endothelial cells tightly 

attach squamous cells, construct the complex cavitary surface of the cardiac wall 

completely lined by endocardial endothelium (Brutsaert, 2003), and the interior lining of 

blood vessels and cardiac valves (Xin et al., 2013). The endocardial endothelium is 

recognized as a sheet of endothelial cells with a central nuclear bulge and extensive 

intracellular junctions (Brutsaert, 2003). The endocardial endothelial cells are larger than 

endothelial cells in most other portions of the circulatory system.  

 

Cardiac endothelial cells are also distinguished from myocardium by the expression of 

endothelial markers. They create an adaptable life-support system because blood supply 

depends on the function of endothelial cells.  The intracellular clefts between endocardial 

endothelial cells are 3 to 5 times deeper than endothelial-myocardial capillaries 

(Brutsaert, 2003). The functional cross-talk among the cardiac endothelial cells and other 

cardiac cells types is important for normal cardiac function and disease state (Zhang and 

Shah, 2014).  
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The cardiac nervous tissue cells: Fifteen years ago, Pauziene and colleagues (2000), in 

their morphological study of human intracardiac nerves under electron microscope have 

shown the normal structure of intracardiac nerves as baseline information for assessing 

the extent of nerve damage both in autonomic and sensory neuropathies in the human 

heart. Many intracardiac nerves are covered by epineurium. The nerve diameter 

determines the thickness of epineurium and perineurial sheath (Pauziene et al., 2000).  

 

The perineurial sheath is varied from nerve to nerve and containing up to 12 layers of 

perineurial cells. The presence and complexity of the coats in the human intracardiac 

nerves and the blood supply of nerves depend directly on nerve diameter (Pauziene et al., 

2000). However, an individual nerve fiber covering, endoneurium, is variable and 

independent of nerve diameter. Both myelinated and unmyelinated axons are found in the 

heart. They show normal ultrastructure. The number of unmyelinated axons within 

unmyelinated nerve fibers is related to nerve diameter. Thin cardiac nerves have fewer 

axons (Pauziene et al., 2000). 

 
Cardiac tissue engineering: The mammalian adult heart has limited or no regenerative 

and repair capacity (Xin et al., 2013), and many forms of heart diseases result from a 

deficiency in a number of cardiomyocytes (Rubart and Field, 2006). Because of a limited 

regenerative capacity of the adult mammalian heart, any myocardial cell loss is mostly 

irreversible and may lead to progressive ventricular dysfunction and heart failure (Caspi 

et al., 2007). However, to treat these problems many experimental studies have done cell-

based regenerative therapies (Feric and Radisic, 2016).  

 

Tissue engineering plays very important role in creating functional tissue constructs that 

can re-establish the structure and function of the injured myocardium (Vunjak-

Novakovici et al., 2010). Repopulation of the damaged heart with new myogenic cells 

can be a potential alternative method to reverse cardiac diseases (Rubart and Field, 2006) 

by increasing the function of the failing heart (Caspi et al., 2007). This can be done in 

two ways: by direct transplantation of isolated cells into the dysfunctional myocardial 

areas, and by combining of in-vitro cells with polymeric scaffolds generating a tissue-
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engineered muscle construct, following in-vivo engraftment of the engineered tissue 

(Caspi et al., 2007). Now a day, cardiac regeneration is also getting favorable approaches 

through a direct conversion or transdifferentiation of non-cardiac cells into 

cardiomyocytes by forced expression of transcription factors and microRNA (Fu et al., 

2015).  

 
1.2.4. Innervations of the heart 

 
The peripheral nervous system is the part of nervous system outside brain and spinal 

cord. Physiologically, peripheral nerves are categorized in motor, sensory, and 

automonmic nerves (Chung et al., 2014). The heart receives the innervations of 

autonomic nerves (Fig. 6) (Mauro et al., 2009; Olshansky et al., 2008). These 

sympathetic and parasympathetic nerves originate from thoracolumbar and craniosacral 

aspects of the spinal cord, respectively. They exchange information between CNS and the 

heart (Kukanova and Mravec, 2006).  

 

The sympathetic nerves supply the heart by the sympathetic chain/gangliated cord, while 

the parasympathetic through the vagi (CNX) (Mauro et al., 2009). The cardiac 

sympathetic nerve fibers are located subepicardial and travel along the major coronary 

arteries. They represent the predominant autonomic component in ventricles. The 

sympathetic nervous system has a variety of cardiovascular actions; including 

acceleration of heart rate, increase the force of cardiac contractility, constriction of 

resistance vessels, and reduction of venous capacitance (Triposkiadis et al., 2009).  

 

The parasympathetic nerve fibers are subendocardial and run with the vagus nerve, and 

present mainly in the atrial myocardium (Triposkiadis et al., 2009). The parasympathetic 

nervous system works by slowing heart rate through vagal impulses, decreasing the 

cardiac contractility, and dilating the coronary resistance vessels (Triposkiadis et al., 

2009). 
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Figure: 6. Schematic illustration of cardiac autonomic innervations: The SA node is 
innervated by parasympathetic (vagal) and sympathetic fibers. Sympathetic efferents nerves are 
found throughout the atria (SA node), ventricles and in the cardiac conduction system. 
Reproduced from Olshansky et al., (2008). 
 

Extracardiac innervations of the heart: The extra-cardiac nervous system includes pre- 

and post-ganglionic sympathetic and parasympathetic nerves (CNX). The preganglionic 

sympathetic nerves originate in the lateral gray columns of the spinal cord, while 

postganglionic sympathetic nerves originate in cervical and stellate sympathetic ganglia 

(Kawashima, 2005). The overall effect of sympathetic activation is to increase cardiac 

output, chronotropic (heart rate), dromotropic (conduction velocity), inotropy 
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(contractility), lusitropy (myocardial relaxation) and bathmotropic (excitability) of the 

heart (Klabunde, 2011; Triposkiadis et al., 2009).  

 

The parasympathetic nervous system controls the heart through vagi nerves which 

originate from the brainstem. The parasympathetic ganglia are located proximal to or 

within the target organ (Mauro et al., 2009). Activation of the parasympathetic system 

affects heart performance via opposing fashion (Vaseghi and Shivkumar, 2008; 

Triposkiadis et al., 2009). 

 
Intracardiac nervous network: Structural and functional complex nervous network of 

the heart is made by the interactions of neurons within intracardiac ganglia together with 

interconnections of individual ganglia (Kukanova and Mravec, 2006; Brack, 2015; 

Ardell, 2004). The intracardiac neurons are concentrated in multiple heart ganglia and 

play a significant role in the regulation of heart activity (Kukanova and Mravec, 2006; 

Brack, 2015). 

 

The intracardiac nervous system amalgamates information from different neurons such as 

sympathetic and parasympathetic postganglionic, sensory afferent fibers, local 

interneurons, and paracrine signals that are mast cell signals (Hardwick et al., 2009). The 

communication of these intrinsic neurons works as a complex nervous network (plexuses 

and ganglia) in the heart (Kukanova and Mravec, 2006; Brack, 2015; Ardell, 2004). This 

intricate intrinsic network of neurons is called "little brain" in the chambers of the heart.  

 

This "little brain" comprises spatially distributed sensory (afferent), interconnecting 

(local circuit) and motor (adrenergic and cholinergic efferent) neurons under the tonic 

influence of central neuronal command and circulating catecholamines (Armour, 2008). 

The complex intra-cardiac nervous network together with extracardiac neurons innervates 

and modulates the activity of the heart during both physiological and pathological 

conditions (Kukanova and Mravec, 2006). 
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1.2.5. Vascular structure 

 

Vascular system is part of circulatory system and function to transport blood, lymph, 

nutrients, gases, hormones, and blood cells to and from cells to provide nourishement, 

facilitate fighting diseases, regulate temperature and pH, and maintain homeostasis. The 

cardiovascular system can be divided into four major components: the heart, the 

macrocirculation, the microcirculation, and the lymph vessels. The macrocirculation 

comprises all vessels (arteries and veins) (Young et al., 2006).  

 

The inner lining is the endothelium surrounded by subendothelial connective tissue. A 

layer of vascular smooth muscle is well developed in arteries. The outer layer 

(Adventisia) contains nerves that supply muscular layer and nutrients capillaries in the 

larger blood vessels (Kupinski, 2017) 

 

The blood vessels except capillaries comprise of these three main layers: Tunica intima, 

tunica media, and tunica adventisia. The tunica intima (interna) contains endothelial 

lining and its basal lamina, and a delicate layer of loose CT (loose CT, longitudinal 

oriented fibers). An internal elastic membrane delimits the outer margin of the tunica 

intima.  

 

Tunica media (media), which is the thickest layer in arteries composed of circularly 

arranged layer of smooth muscle cells, and has variable amount of laminae/elastic and 

reticular fibers.  

 

Tunica externa (adventisia) consists of fibroelastic connective tissue (collagen and 

elastic) its fibers occur in longitudinal array. The external elastic membrane separated the 

tunica adventisia from tunica media. It is the thickest layer in veins and contains vasa 

vasorum and nervi vasculares in large vessels (Fig. 7). 
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Figure: 7. Histological demonstration of layers of blood vessels: The section was 
taken from pulmonary artery (Fig 7. A) and aorta (Fig. 7. B) of rat. E, Endothelium, TI, 
Tunica intima; TM, Tunica media; TA, Tunica adventisia; VV, Vasa vasorum; H&E, 
Hematoxylin and Eosin. Scale bar = 100um. 
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CHAPTER TWO 

2. Characterization of classical opioid receptors in orthotopically 
transplanted heart in human 

2.1. Introduction 

 

The opioid receptors are modulated by autonomic innervations, play roles in neural 

transmission and regulation of cardiomyocytes physiology (Sobanski et al., 2014) in the 

heart. However, transplanted heart is devoid of sensory, sympathetic and parasympathetic 

innervations (Valerio et al., 2014; Arrowood et al., 1997) and this might contribute for 

the down-regulation of these receptors in the denervated heart.  

 

Therefore, this study aimed, to characterize opioidergic system specifically classical 

opioid receptors (µ, δ, and κ) at protein, mRNA, and level of fragmented DNA (apoptotic 

level) in orthotopically transplanted heart, to evaluate the impact of denervation using a 

sensory neuronal marker. Moreover, it identified the eventual occurrences of any 

associated cardio-pathological changes and possible signs of acute cellular rejections. 

 

2.1.1. Heart transplantation and its brief history 

 

Heart transplantation (HTx) is a life-saving surgical procedure in which a diseased heart 

or refractory end-stage heart failure is replaced with a donor`s healthier heart (Lee and 

Hong, 2014; Strecker et al., 2013; American Heart Association, 2009; Miniati and 

Robbins, 2002) to prolong survival (Lee and Hong, 2014; Strecker et al., 2013; American 

Heart Association, 2009) and to improve the quality of life for recipients (Miniati and 

Robbins, 2002; Hervàs et al., 2004). However, it is not a cure for heart disease (Burch 

and Aurora, 2004).  

 

A cardiac allograft can be sewn in either a heterotopic or an orthotopic position. For this 

study, we used cardiac allograft sewn in orthotopic position (Fig.8A, 8B, 8C) for its 

easier approaches to obtain an endomyocardial biopsy, lesser pulmonary compression of 

the recipient and lesser need for anticoagulation. However, heterotopic transplantation is 
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an excellent technique for patients with severe pulmonary hypertension (Botta et al., 

2016). Orthotopic heart transplantation is performed either with the 

classic/standard/traditional/ShumwayLower/biatrial technique or as a bicaval/total 

anastomosis (Botta et al., 2016; Davies et al., 2010).  

 

 

Figure: 8. Illustration of recipient's, donor`s, and complete heart transplantation: (Fig. 8A, 
B, and C) (Modified images from Botta et al., 2016; Heart transplantation technique, the 
heart.org. Medscape).   
 

The history and development of cardiac surgery span 117 years to date (DiBardino, 

1999). Even though the first heart cross-species transplantation (xenotransplantation) in 

human by using Chimpanzee heart performed by Hardy in 1964 (Cooper, 2012) which 

survived the patient for 2 hours, the advanced HTx we notice today started in an 

operation carried out by Barnard in 1967 at Groote Schuur Hospital that enables the 

recipient (53 yr old, Lewis Washkansky) to survive for only 18 days. It was recorded as 

World`s first human-to-human orthotopic HTx (Brink and Hassoulas, 2009).  

 

Cardiac transplantation was full of challenges that have been overcome with many 

studies (DiBardino, 1999), advanced surgical procedures, such as the development of 

endomyocardial biopsy technique for diagnosis of acute rejection (Caves et al., 1974), 

understanding of immunology and rejection, pharmaceutical development with the 

discovery of anti-rejection medication (Cyclosporine and Tacrolimus); and clinical 



55 

 

management and better selection of donors and recipients (Lee and Hong, 2014) and 

myocardial protection. This overall advancement improves survival rates.  

 

Studies on cardiac receptors which are known to be involved in cardioprotection are 

crucial for the understanding of the survival of denervated heart. However, the presence 

and the correlation between the opioid system and the defect of cardioprotection in 

transplanted heart are unclear. For this reason, we designed qualitative and quantitative 

methods to test the expressions of opioids receptors in heart of cardiac recipients, so as to 

investigate their pharmacological role and relationships in transplanted and innervated 

heart and to provide information about the levels of opioid receptors in the denervated 

heart. 

 

In HTx, the two important common elements and objectives are avoiding potential risks 

such as rejection and infection brought by over-immunosuppression in recipients to help 

cardiac recipients (Budde et al., 2011, Valerio et al., 2014). Rejection is the major barrier 

to successful transplantation (Wood and Goto, 2012). As it is mentioned by Hammond 

and colleagues 1989, there are three patterns of allograft rejection which are designated 

as cellular, vascular/humoral, and mixed rejection.  

 

Acute cellular rejection (ACR) is the most common in the first six months after HTx and 

is predominantly T-cell-mediated (Patel and Kobashigawa, 2006; Taylor et al., 2010). 

Just about 20 to 40% of recipients experience at least one episode of ACR in the first 

postoperative year (Patel and Kobashigawa, 2006). The number and severity of acute 

rejection episodes have been correlated with the development of cardiac allograft 

vasculopathy (CAV) and mortality.  

 

The inflammation and cell death associated with acute rejection, first leads to myocardial 

edema that increase myocardial stiffness and diastolic dysfunction and if it is left 

untreated eventually leads to systolic dysfunction (Taylor et al., 2010). Standard cardiac 

biopsy rejection grading consensus first published in 1990 by ISHLT and eventually 
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updated in 2005 (Table. 3) used for scaling level of rejection in transplanted heart 

specimens in this study. 

 

Table: 3. Standard cardiac biopsy grading 

Grades  Features  

Grade 0 No rejection  
Grade 1 R, mild Interstitial and/or perivascular infiltrate with up to 1 focus on 

myocyte damage 
Grade 2 R, moderate Two or more foci of infiltrating with associated myocyte damage 
Grade 3 R, severe  Diffuse infiltrate with multifocal myocyte damage ± edema ± 

hemorrhage ± vasculitis  
Note: “R” represents revised grade. Reproduced from Stewart et al., 2005; American 
Medical Association, 2014. 
 
 
2.1.2. Epidemiology of heart transplantation 

 

In the globe, approximately 3,500 heart transplants are performed every year (Cook et al., 

2015). Data reported by Bouwman et al., 2013, a total of 31, 165 organs transplants were 

performed in the European Union countries in 2013. Organ transplantation consistently 

increased from 2004 to 2013 except a slight decline in 2008 and 2012 due to a shortage 

of donors (Matesanz, 2016). From 63,800 patients placed on organs` waiting lists about 

3,400 patients have been heart waiting lists in 2012 (Matesanz, 2016).  

 

In nineteen centers of transplant in Italy, 733 patients waiting for a heart transplant and 

out of 94 mortalities have been registered in 2011 (Bouwman et al., 2013). It is also 

reported that 4.6 and 3.8pmp rate of the heart transplant in 2011 and 2012, respectively, 

(Matesanz, 2011) in Italy. According to American Heart Association, Statistics reports, 

2,192 and 2,125 the heart transplants performed in 2006 and 2005, respectively with 

72.3% (male) and 67.6% (female) five years’ survival rate as of 2007 in the United States 

(Tagerman et al., 2009). 
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2.1.3. Physiology of denervated heart 

 

Heart activity is modulated by means of the autonomic nervous system, intrinsic 

regulatory mechanisms, and humoral factors (Kukanova and Mravec, 2006). Even though 

autonomic nervous system modulates the heart, transplanted heart is completely devoid 

of sensory, sympathetic and parasympathetic innervations (Valerio et al., 2014; 

Arrowood et al., 1997). However, few pieces of evidence indicate that with time some 

degree of sympathetic and parasympathetic re-innervations is progressively reestablished 

(Gómez-Ríos, 2012; Swami et al., 2011).  

 

Cardiac physiology of transplanted heart is unique because the transplanted heart doesn`t 

provide the recipient with normal cardiac function (Cotts and Oren, 1997) due to 

alterations of afferent control mechanisms and efferent responses which lead to clinical 

abnormalities such as changes of cardiac electrophysiology, cardiovascular responses to 

exercise, and responses to cardiac pharmacologic agents (Cotts and Oren, 1997) Table: 4.  

 

The most obvious alteration in hemodynamics of allograft recipients is the increase heart 

rate occurs due to the loss of resting vagal tone, which normally suppresses the intrinsic 

heart rate (Hosenpud et al., 1991) and as a result of afferent denervation of the 

myocardium ischemic myocardial pain is absent. Therefore, transplant recipients with 

severe vasculopathy and myocardial infarction are usually pain-free (Hosenpud et al., 

1991). The difference in automatism, conduction and refractoriness between recipients 

and transplanted hearts are attributable to differences in the hemodynamic situation to 

denervation (Alvarez et al., 1990). It is also mentioned that the extensive cardiac 

sympathetic denervation that involves severe lateral ventricular wall in idiopathic 

Parkinson disease (Wong et al., 2012).  
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Table: 4. Physiological changes of denervated heart 

SN Normal heart Transplanted heart 

1 Innervated  Denervated/Loss of resting vagal tone 
2 The nerves from the CNS 

supply connections to the heart 
The nerves from the CNS don`t supply connections to the 
heart.  

3 Responds to exertion by 
quickly increasing its rate after 
nerve supply 

Doesn`t need connections to pump effectively 

4 Presence of ischemic 
myocardial pain 

Absence of ischemic myocardial pain 

5 Increase it rate due to 
innervations  from connections  

Increases it rate only after catecholamines (e.g. adrenalin) 
are released and circulated through the blood to the heart 

6 Increases its rate more faster 
with exertion and decreases its 
rate more faster with rest; 
faster recovery period  

Increases its rate more gradually with exertion and 
decreases its rate more gradually with rest; slower recovery 
period. 

7 Normal atrial contribution to 
SV 

less atrial contribution to stroke volume/SV 

8 Resting heart rate (60-100bpm) Resting HR is faster (95 to 110 bpm)  
9 Acceleration of HR is 

normal/faster during exercise 
depends on age and physical 
condition 

Acceleration of HR is slower during exercise 

10 Normal diastolic function with 
no rejection  

The myocardium is stiff from some degree of rejection and 
possibly from denervation result in the moist common 
diastolic dysfunction  

11  Autonomic cardiac denervation of the heart increase the 
incidence of ventricular arrhythmia (Mason et al., 1976) 
and  play role in the genesis of malignant arrhythmic 
events (Rodrigues et al., 1996) 

12  Cardiac response to psychological stress are altered by 
cardiac denervation (Shapiro et al., 1994) 

13  Regional cardiac sympathetic denervation increases the 
risks to the antiarrhythmic drug (Yu et al., 2012) 

14  Attributable to differences in the hemodynamic situation to 
denervation (Alvarez et al., 1990) 

Alvarez et al., 1990; Mason et al., 1976; Yu et al., 2012; Shapiro et al., 1994; Rodrigues 
et al., 1996; Wong et al., 2012). 
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2. 2. Materials and methods 

2.2.1. Human subjects and endomyocardial biopsy 

 
In this study, three cardiac recipients from Department of Surgery, Cardiac Section and 

four cardiac recipients who have been following medical care at 30 days’ post orthotopic 

heart transplantation were selected on their regular schedule from Department of 

Cardiology (UOC, USF) laboratory of Hemodynamics and Electrophysiology at 

University Hospital Integrated Verona - Ospedale Civile Maggiore (CMO) of Borgo 

Trento. All endomyocardial biopsies (EMBs, n = 9) were taken from septal part of right 

ventricle through the internal jugular vein approach. Control heart tissues (n = 10) were 

taken from the right atrium, septum, and left ventricle of patients who had been under 

surgical procedures for aortic valve surgery.   

 

2.2.2. Surgical procedure of endomyocardial biopsy 

Endomyocardial biopsy (EMB) is an invasive diagnostic procedure mainly used for 

rejection surveillance or immunosuppressive therapy survey after cardiac transplantation 

(Eisen 2008; Kilo et al., 2006), was used to take samples from cardiac recipients. The 

right internal jugular vein (RIJV) approach was used for the surgical procedure because it 

has a shorter operation and radiation exposure times than other approaches in cardiac 

recipients (Imamura et al., 2015; Fiorelli et al., 2011; Kilo et al., 2006). All recipients 

underwent EMBs by highly skilled and experienced cardiac biopsy experts.  

 

Patients were placed in a supine position with extended neck and turned head to the left 

about 45% to facilitate venous puncture site. Conventional asepsis was applied to the skin 

of the surgical region of the neck and then surgical drapes were positioned at ease. The 

triangle vertex formed by sternal and clavicular heads of the sternocleidomastoid muscle 

and clavicle was served as a landmark to RIJV. Sonography of the neck was performed to 

evaluate diameter of the RIJV and demonstrate adjacent structures. The vein puncture 

was performed at the upper vertex of the triangle in ipsilateral nipple direction under 

local anesthesia (5 to 10ml of 2% Xylocaine/lidocaine) followed by insertion of a 

sheath/blunt cannula that passed over the guidewire in standard Seldinger technique.  
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The sheath was introduced with the help of guidewire. Under X-ray control, the 

appropriate position of guidewire was confirmed before the introduction of the sheath. 

After passing a sheath, the guidewire was withdrawn and the sampling device/bioptome 

was carefully threaded through the sheath into the internal jugular vein and advanced 

towards the right atrium, rotated to the left lateral side of the patient to direct through the 

right atrioventricular valve to ventricular septum. The bioptome’s jaws were opened and 

touched the right ventricular wall and closed to take the specimen. Finally, the bioptome 

with the specimen was withdrawn slowly. After the procedure, the sheath was removed 

and external compression on the puncture site had been applied for a minimum of 30 min. 

All EMB specimens were obtained from the recipients` interventricular septum of the 

right ventricle through the internal jugular vein approach.  

 

2.2.3. Tissue processing, embedding, and sectioning 

 

After collection of EMBs and heart tissues were promptly and adequately fixed with 4% 

paraformaldehyde to produce superior morphology, washed three times for 10min each 

with phosphate buffer saline (PBS) (pH 7.35, 0.1M), and then dehydrated with increasing 

ethanol concentration (70% 1x, 90% 2x, 100 1x) for 1hr, 11/2 hrs, and 1hr each, 

respectively. Following dealcolization by two changes of xylene (100%) for 1hr, 

infiltrated with two changes of molten paraffin wax at 56oc for 1hr to replace the xylene.  

 

Next to infiltration, embedding was performed for better sectioning. In embedding step, 

the first small amount of paraffin was placed into the cassettes, and then specimens were 

transferred into the mold using warmed forceps and placed in the middle of the cassettes 

in preferred orientations, and then the cassettes were filled with molten paraffin wax with 

care to prevent under and over-filling. At the end, embedded specimens were put on ice, 

and stored in cold room at 4oc overnight to form strong paraffin blocks. This paraffin 

embedded tissue processed for further IHC, IF, TUNEL, and H& E staining.  

 

Once specimens embedded, they were cut into 3µm thickness sections using Leica RM 

2255 CSA® US digital microtome. It is good to place blocks on ice prior to sectioning to 



61 

 

obtain unwrinkled sections. Sections were, floated on cold water bath and picked up by 

adhesion microscope slides (26x76MM, DIAMOND Blue, 33820B, Lot#300414, 

LABOINDUSTRIA S.P.A, IT) and FLEX IHC coated microscope slides with white-

painted label area (Code: K8020, K802021-2, Wo503900201, 75mm, W x 25mm, D x 

1mm, H), floated on a warm water bath to remove wrinkles of sections. Finally, the 

microtome cleaned with Vacuum Cleaner (Mode: AS10-A40, No. 0288112) and left in 

good condition. 

 

2.2.4. Immunohistochemistry 

 

Immunohistochemistry which is a key tool for the analysis of the localization of target 

molecules within tissues was used to evaluate DOR-1, KOR-1, MOR-1, and CGRP-1 

immunoreactive cardiomyocytes and analyzed for relative distribution of ORs. In our 

immunohistochemical studies, immunoperoxidase and double immunofluorescence (IF) 

staining were done at a laboratory of Histology Section, Department of Neuroscience, 

Biomedicine, and Movement. 

 

Markers used for detection of MOR-1, DOR-1, KOR-1, and CGRP-1, are the following: 

a rabbit polyclonal antibody (MOR-1, H-80: Cat. No. sc-15310), a rabbit polyclonal 

(DOR-1, H-60: sc-9111, Lot no. L2211), an affinity purified goat polyclonal (KOR-1, N-

19: sc-7494, Lot: A2914) supplied from Santa Cruz Biotechnology, Inc, Europe, and a 

goat antibodies (CGRP-1, 1720-9007, Batch No. 051, BIO-RAD). 

 

Immunoperoxidase staining: after mounted paraffin sections heated at 37oC for 20min, 

immersed in 2 changes of xylene for 5min each and decreasing ethanol concentration. 

Sections on slides surrounded with a liquid blocker (PapPen) to prevent running away of 

the incubation solutions. Sections were washed in 1ml Triton X-10 in PBS and incubated 

for 20 min in H2O2 (30% J.T. Baker® lot no. 0625510001) in PBS to block endogenous 

peroxidase which is naturally found in the tissue that gives false positive background 

result when interacts with DAB staining to specific immunoperoxidase. Sections were 

pre-incubated for 11/2 hr in blocking solutions of 2% of Normal Horse Serum/NHS (S-
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2000, Lot no. ZA0721), 0.25% Triton X-10 in PBS followed by incubated overnight in a 

rabbit polyclonal antibody (MOR-1, H-80: Cat. No. sc-15310), a rabbit polyclonal (DOR-

1 (H-60): sc-9111, Lot no. L2211) and an affinity purified goat polyclonal (KOR-1 (N-

19): sc-7494, Lot: A2914) primary antibodies (1o Abs) at a 1:250 dilution rate in the 

following standard antibody diluents: 2% NHS, 0.25% Triton X-10 in PBS.  

 

Following incubation in 1o Abs, the sections were washed and incubated for 3hrs in 

secondary anti-rabbit IgG (H+L) biotinylated (BA- 1100, Lot no. ZA0319) made in horse 

for DOR-1 and MOR-1, and anti-goat IgG (H+L) biotinylated (BA- 9500, Lot no. Z0326) 

for KOR-1 and CGRP-1, diluted 1:1000 in PBS containing 2% NHS and 0.25% Triton X-

10. Succeeding, 5min washes, avidin-biotin complex (The VECTASTAIN® Elite ABC 

Kit (Standard), Cat.No. PK-6100 Vector Laboratories, Inc. Burlingame, CA 94010 USA) 

in PBS was applied to the sections on slides for 1hr according to the manufacturer`s 

instruction. Finally, specific immunostaining was detected with DAB 

(Diaminobenzidine) in PBS containing 0.75% H2O2 and 3% nickel solution. Over-

staining was controlled by applying PBS. The absence of the signal or specificity of 

staining was checked and confirmed by a negative control. 

 

After sections dried overnight inside “CAPA” dehydrated with increasing ethanol 

concentration (50%, 70%, 80%, 96%, 100% and 100%). Ethanol was removed by two 

changes of Xylene (100%). Finally, drops of mountanat “Entellan" applied on tissue 

sections and covered with rectangular microscope cover glasses (ECN631-1574, Lot: 

29339 017, 24x50mm), and prepared for analysis under a microscope. 

 

Double immunofluorescence: this technique was also performed for the concurrent 

visualization of DOR-1 and KOR-1 immunoreactive signals on EMB of transplanted and 

control/innervated heart tissue sections. After removal of paraffin from sections using 

heat and xylene, rehydrated in decreasing alcohol concentration and distilled water. 

Following, a brief three times (5 min) wash in 1ml Triton X-10 in PBS, sections were 

pre-incubated for 11/2 hrs in 2% NHS and 0.25% Triton-X-10 in PBS and incubated 
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overnight in a solution of primary antibodies (DOR-1, Lot # L2211, H-60: sc-9111; 

KOR-1, Lot # A2914, N-19: sc 7494), 2% NHS and 0.25% Triton-X-10 in PBS.   

Following overnight incubation, a brief 3 times 5 min wash (1ml Triton -X-10 in PBS) 

were performed, and then incubated for 3hrs in a mixture of Alexa Fluor 568 donkey 

anti-rabbit IgG (H+L) (1:1000, Ref. A10042, Lot no. 1668655, Eugene DR. USA) and 

Alexa Fluor 488 donkey anti-goat IgG (H+L) (1:1000, A11055, Lot no. 1627966, Eugene 

DR. USA) species-specific fluorescent secondary Abs raised in donkey supplied from 

Life Technologies, Italy, Europe with standard diluents 2% NHS and 0.25% Triton-X-10 

in PBS.  Thereafter, sections were washed with PBS and tap off excess rinsing solutions, 

and the nuclei stained bright blue with 4`, 6-Diamidino-2-Phenylindole (DAPI, 1: 

100,000). Sections were washed three times for 5 min each and dried for 40 min in the 

dark at room temperature.  

 

Finally, drops of mountant were added on sections and cover with rectangular 

microscope cover glasses (ECN631-1574, Lot: 29339 017, 24x50mm), Germany. The 

pressure was applied gently over glasses to remove bubbles before sealing of edges of 

cover glasses with nail polish and then stored at -20oC until analysis was done by 

fluorescence and inverted confocal microscopes.   

 

2.2.5. Hematoxylin and eosin staining for histopathological evaluation  

 

The histological technique of routine H&E staining was performed to evaluate any 

eventual occurrence of structural abnormalities and level of acute cellular rejection in 

sections of EMBs. Levels of rejection of transplanted heart analyzed from sections 

stained with H&E with standard cardiac biopsy grading (Stewart et al., 2005) and the 

help of pathologists. 

 

First, all staining solutions were prepared beforehand. The sections were immersed in a 

series of descending ethanol concentration (100%, 100%, 95%, 70%, and 50%) and 

dipped in 2 changes of distilled water for 2 min. The sections were immersed in 

hematoxylin solution for 1min. After washing with running tap water for 2 min, sections 
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were dipped in 2% eosin for 30 sec. Over-staining was controlled by washing with tap 

water. Sections were dehydrated with increasing alcohol concentration (95%, 100%, and 

100%) for two min each and then ethanol was removed from the sections by two changes 

of xylene for 5 min because ethanol is not miscible with DePeX mountant (“Entellan”). 

Finally, sections were covered with cover glass and prepared for analysis.  

 

2.2.6. Microscopy 

 

Image acquisition of immunoperoxidase, TUNEL non-fluorescent, and H&E stained 

sections was done under Olympus System BX51 Universal research microscopy 

connected to both a computer and a camera (Camera-FAST 1394 QICAM) with different 

objectives (4X, 10X, 20X, and 40X) for immunoreactivity and pathological examination.  

 

After sections processed for double immunofluorescence, laser scanning confocal 

microscopy (LSCM) technique was performed using laser scanning confocal microscope 

(Carl Zeiss LSM 510, Göttingen, Germany) at FIM 30% for obtaining multicolor optical 

images using drops of immersion fluid (Type F, Leica microsystems CMS GmbH, Ve = 

46 cat. No. 115138559), Wetzlar, Germany at 40x obb. IMM magnification and 35.5um 

scale bar, and then images were extracted by Leica LAS AF Lite; Images were further 

synchronized by using ImageJ (Rasband, 1997-2015) and Leica software for better 

contrast.    

 

2.2.7. Optical density measurement of immunoreactive myocytes 

 

Prior to optical density (OD) measurement, slides were blindly assigned with code 

number and the thickness of the sections (3 to 3.5µm) was measured after processed by 

Stereoinvestigator. Thereafter, the mean of each sample of immunoreactive cells of the 

four sections was used for analysis.  

 

Optical density measurement was done for DOR-1, KOR-1, MOR-1, and CGRP-1 

strength of immunoreactivity using Figi version of ImageJ to quantify the strength of 
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immunoperoxidase staining in heart tissue sections of MOR, DOR, and CGRP-1 from 

images taken at 20X objective. Optical density/OD methods (Image-adjust, color-

deconvolution/H DAB)-threshold with dark background) indicated by Jensen, 2013 was 

used with the following formula: OD = log (255 ÷ Mean Intensity). 

 

2.2.8. Cryosectioning 

 

Endomyocardial biopsy and heart tissue specimens were collected and placed in liquid 

nitrogen with drops of optimal cutting temperature (O.C.T.) medium in NALGENE® tube 

and stored at -80oC until used. Tissues were pre-cooled at -21oC and placed into cryostat 

(Leica CM 1900-V5.3 ENGLISH-10/2006) for 30 min prior to sectioning to attain 

thermal balance. The chamber of cryostat was set to -20oC and 8μm thickness.  

 

Freezing/cryostat embedding medium (Lot: 140410) was applied to cover the specimen 

plate/the round metallic mount of the cryostat. When the medium began to frost, tissues 

were placed in the center as straight as possible horizontally. Once the media was 

completely frozen, the specimen plate was placed into holder and knob was turned 

clockwise to tight it. The blade was pre-cooled to -20oC and placed onto the stage with 

maintained O.C.T before cryosectioning. The tissues were cryosectioned at 8μm and 20 

sections were collected with sterile Eppendorf tube and sections were kept inside the 

cryostat machine on ice to keep cold while continuing to cryosectioning, and then 

immediately stored at -80 oC until the commencement of the experiment (Rüegg and 

Meinen, 2014; Peters, 2010). Finally, the blade, all trimmings, and specimen wastes were 

removed, and the machine was left in a clean and safe condition. 

 

2.2.9. RNA isolation 

 

Frozen sections (10mg) were taken on the ice and homogenized by adding 200µl TRIzol 

to each tube and centrifuged at 4oC for 6 min and lysis cells by vigorously pipetting few 

minutes with a syringe needle. The pipette samples were centrifuged at 12,000rpm for 

10min and then the clear supernatant homogenate transferred to each new Eppendorf tube 
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(190µl), and the bottom insoluble materials (10µl) was discarded. Chloroform (40µl) was 

added to each Eppendorf tube and shook vigorously by hands and then pre-incubated for 

2 to 3min at RT before centrifuged at 12, 000rpm for 15min at 4 oC. The upper aqueous 

supernatant was transferred to new Eppendorf tube without disturbing the lower organic 

part.  

 

Isopropanol (100ul) was added to each tube and incubated at RT for 10min. Following 

10min centrifugation at 12,000rpm, the supernatant was discarded except the small pellet 

at the bottom. Afterward, 200µl of 70% of ethanol was added and centrifuged at 

12,000rpm for 10min and then RNA formed a gel-like pellet on the bottom side of the 

Eppendorf tube. The ethanol supernatant and any residual ethanol were removed by 

pipetting. The RNA-pellet remained at the bottom and further air dried for 10min. 20µl 

RNase-free water was added to resuspend the RNA-pellet and incubated at 60oC for 

10min in a water bath. Finally, RNA concentration was measured by Nanodrop 

(2000/2000c) and stored at -80oC until required. The total RNA preparations were used 

for RT-qPCR.     

 

2.2.10. Synthesis of cDNA 

 

cDNA synthesis was done using the protocol and cDNA synthesis kit obtained from 

SIGMA® Saint Louis Missouri 63103 USA. The following reagents were added to a thin-

walled 200µl PCR microcentrifuge tube on ice in the first mix: RNA template (0.25µg/µl 

FC, SIGMA), deoxynucleotide mix (dNTPs), random nonamers and water for a total 

volume of 10µl. The mixes were centrifuged gently and briefly to collect all components 

to the bottom of the tubes, and tubes were placed in the thermal cycler at 70oC for 10min.  

 

After 10min, tubes were removed from thermal cycler and placed on ice, centrifuged and 

the following second mixes were added: a 10x buffer for eAMV-RT (2µl), enhanced 

avian RT (1µl), RNase inhibitor (1µl), water (6µl). Finally, 20µl of reaction tubes at 25oC 

for 15min, and placed in a thermocycler at 50 oC for 10min. The cDNA concentration 

was measured by Nanodrop and stored at -80oC until required. Afterward, cDNAs were 
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diluted in 50ul water. One ul of this reaction mix was used as a template for RT-qPCR 

using the SYBR Green protocol with the readymade SYBR®Green qPCR ReadyMixTM, 

with ROXTM 2X (KCQS02).  

 

2.2.11. Quantitative Real-Time PCR 

 

The readymade SYBR®Green qPCR ReadyMixTM, with ROXTM 2X (KCQS02) that 

contains all components except primers and cDNA template was used. Following primer 

mix for DOR, KOR (Sigma), and GAPDH (Invitrogen, 059901, M5583 (A02, A01), 

mixed with ROX, and then appropriately added to each well with sample mix in four 

duplicate. Amplification didn`t exceed 200bp. SYBR®Green dye that binds to the minor 

groove of dsDNA and detects any dsDNA generated during amplification was done using 

Applied Biosystems 7300 Real Time System instrument. Finally, the green fluorescence 

light emitted when bound to dsDNA was measured for proper PCR amplification, and 

then the data calculated by the delta-delta method indicated by Livak and Schmittgen, 

2001). 

Table: 5. Primer sequence used for real-time PCR SYBR Green amplification 

Gene  Forward human (5`-3`) Reverse human (5`-3`) Product size (bp) 
OPRD1 AACTGAGTCCTTAAACAGGG CTCCAAGTTAGAAACCGAAG 76 
OPRK1 CGATACACAAAGATGAAGACAG AAGTAGACCGTACTCTGAAAG 165 
GAPDH ATCAGCAATGCCTCCTGCAC TGGTCATGAGTCCTTCCACG  

 

2.2.12. Terminal deoxynucleotidyl transferase, 2`-deoxyuridine 5`- Triphosphate 

Nick End Labeling (TUNEL) Assay 

 

TUNEL assay is the most widely used method to detect apoptotic nuclei of a cell within 

tissue samples. Apoptosis is a part of normal development and carefully regulated 

process but ultimately result in cell death. The study of apoptosis is very important 

because modifications of these processes have been implicated in cancer, autoimmune 

diseases, and degenerative conditions. The whole mark of late apoptosis is the 

fragmentation of DNA. To detect DNA fragmentation, a specialized DNA polymerase 

(terminal deoxynucleotidyl transferase/TdT) slots-in unlabeled and fluorescently labeled 

nucleotide 2`-deoxyuridine 5`- triphosphate (adds dUTP) at the end of the fragmented 

DNA. The TdT is, template independent nucleotide addition enzyme, recruited a lot when 
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there is a breakdown of double stranded DNA. If there is a breakdown of DNA, i.e. cells 

are undergoing apoptosis. The apoptosis can be, correlated with the amount of TdT active 

inside the cell, measured by the fluorescein-dUTP from double-stranded breaks.   

 

In this study, all TUNEL staining solutions were prepared ahead. The sections were 

dewaxed and rehydrated in a series of two changes of xylene (5min), descending ethanol 

concentration (100%, 100%, 95%, 80%, 70%, and 30%, 5min), and two changes of 

distilled water (2min). Slides were heated for 10min at 60oC. Following brief 3 cycles 

washing in PBS, sections were incubated with Proteinase K/0.1% triton (100X) and then 

slides were rinsed twice in PBS. After PBS was wiped, sections were circled around by 

ImmEdgesTM Pen (Cat. No. H-4000, Vector Laboratories, Inc, Burlingame, CA 94010). 

During treatment, TUNEL solutions were prepared and equilibrated using In Situ Cell 

Death Detection kit, AP (ref. 11684809910, Version 11, Roche Diagnostics Indianapolis 

IN, USA) containing vial 1, 2 & 3 as follows: 100ul of labeling solution (vial 2) was 

taken to two negative controls to assess reagent performance and 50ul of enzyme (vial 1) 

enzyme was added to the remaining labeling solution.  

 

Tissue sections were incubated for 1hr in a mixture of vial 1 and vial 2 at 37oC. DNase I 

recombinant (1500U/ml, from Bovine pancreas, REF. 04536282001, Lot# 18831000, 

Roche, Germany) was diluted with 50mM Tris, 10mM mgcl2, and 1mg/ml Albumin, 

from bovine serum/BSA, Lot#119K1526, A3912-50G, Prod. 1000784619, Sigma, Life 

Science, the USA for positive control and incubated for 10min at RT. Hoechst (33342 

nucleic acid stain, trihydrochloride trihydrate) for a cell-permeant nuclear counterstain 

that emits blue fluorescence when bound to dsDNA was used.  

 

At this stage following a brief washing in PBS, analysis was done in a drop of at 

excitation wavelength (500nM) and detection in the range of 515-565nM (Green) under 

fluorescent microscope (EVOS® imaging system, Thermo Scientific Brand, ZP-PKGA-

0665, Pub. No. MAN0007716, Rev.1.0, 2013, Life Technologies) with drops of PBS on 

sections using slide holder (AMEP-VH001). Converter (vial 3) was added to each section 

and incubated for 30min at 37oC, and then washed with PBS. The substrate (BCIP/NBT-
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Liquid substrate system, Cat. No. B1911, Sigma-Aldrich)/Novex®AP Chromogenic 

substrate (BCIP/NBT, Lot#02054161, Invitrogen by Life Technologies, Part no. 

100002902, USA) was added to sections and incubated for 10min, and then 

counterstained with hematoxylin, mounted and covered with coverslip prior to analysis 

by light microscopy. 

 

2.2.13. Study setting and ethical issue 

 

This qualitative immunohistochemical experiment and cell counting were conducted at 

the Department of Neuroscience, Biomedicine, and Movement. RT-q PCR was 

performed at LURM and Laboratory of Cardiovascular Sciences. All experiments were 

carried out with the authorization of ethical Research Committee at University of Verona 

and MOH.  

 

2.2.14. Statistical analysis 

 

Mean value of positive cells ± SD in each group and independent samples t-test for the 

significance of means of independent groups of a number of KOR-1 and DOR-1 

immunopositive cells of transplanted and control heart were used for statistical analysis 

using IBM Corp. Released 2011 IBM SPSS® Statistics for Windows, Version 20.0. 

Armonk, NY: IBM Corp software. Microsoft office Excel 2007 was also used to extract 

line graphs. P value < 0.05 was regarded as statistically significant. For relative 

quantification of real-time PCR data, the 2^-ΔΔCt method mentioned by Livak and 

Schmittgen 2001 was used.  
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2.3. Results 

 

2.3.1. Histopathological observation of H&E stained endomyocardial biopsy of 

orthotopically transplanted and control heart tissue sections 

Histopathological data of control heart tissue sections (CHT) (Fig. 9. A, C, E, G, I) 

demonstrated normal morphology except wavy shaped fibers histopathological changes 

(Fig. 9. C). However, Septal part of right ventricle endomyocardial biopsy sections (Fig. 

9. B, D, F, H and J) of transplanted heart showed mild cellular rejection (Grade 1 R) 

based on ISHLT, 2005 updates as compared to CHT sections. The mild cellular rejection 

was demonstrated by interstitial, scattered and perivascular lymphocytes infiltrate without 

distorting the normal morphology of myocytes (Fig. 9. B, F, H and J). In addition to 

scattered, perivascular and interstitial lymphocytes infiltrate focal cardiomyocytes 

necrosis was shown (Fig. 9.D). 

 

Figure: 9. T-cell-mediated rejection of and lymphocytes infiltrate in endomyocardial biopsy 

sections in orthotopically transplanted heart: the above figure hematoxylin and eosin stain 
tissue sections (Fig. 9. B, F, H, J) illustrated myocardial biopsy from septal part of right ventricles 
of human transplanted heart showing mild cellular rejection represented by interstitial, scattered, 
perivascular lymphocytes infiltrate, and (Fig. 9. D) focal necrosis. Control heart tissue sections 
(Fig. 9. A, C, E, G, and I) showing the normal morphology of cardiomyocytes except wavy 
shaped fibers and hyperplasia (Fig. 9. C), mild degenerative aspects (Fig. 9. A, E). H&E, 
Hematoxylin and Eosin; EMBOTH, Endomyocardial biopsy of orthotopically transplanted heart; 
CHT, Control heart tissue. Images acquired at 200x magnification. Scale bar 100 µm 
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2.3.2. Immunoperoxidase stained MOR-1 immunoreactive myocytes and its optical 

density in endomyocardial biopsy after 30 days of orthotopically 

transplanted heart 

MOR-1 is a GPCR for β-endorphin, morphine and other opiates. It inhibits 
neurotransmitter release. In our qualitative data, immunoperoxidase stained MOR-1 
immunopositive myocytes were observed both in orthotopic transplanted and control 
human heart (Fig. 10). Even though MOR-1 immunoreactivity was observed in both 
groups (EMBOTH and CHT) and didn`t reach a significant threshold P>0.05 in its OD 
immunoreactivity, analysis of MOR-1 immunoreactivity OD reduced in EMBOTH 
(0.18±0.02) compared to CHT sections (0.244±0.15). 

 

Figure: 10. Representative images of MOR-1 immunoreactive myocytes in endomyocardial 

biopsy of orthotopically transplanted and control heart tissue sections and MOR-1 

immunoreactive optical density: There was a slight difference in microscopic observation of 
MOR-1 immunoreactivity between endomyocardial biopsy of orthotopically transplanted (Fig. 
10.  B, D, F, H and J) and control heart tissue (Fig. 10. A, C, E, G, I) sections. The graph showed 
OD of MOR-1 immunoreactivity in EMBOTH and CHT. Mean ± STD, P<0.05 was considered as 
significant. MOR-1, mu opioid receptor; EMBOTH, Endomyocardial biopsy of orthotopically 
transplanted heart; CHT, Control heart tissue; IRC, Immunoreactive cell; OD, Optical density; 
GPCR, Gi protein-coupled receptor. Images acquired at 200x magnification. Scale bar 
100microns.  
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2.3.3. Immunoperoxidase stained DOR-1 immunoreactive myocytes and its optical 

density in endomyocardial biopsy sections after 30 days of orthotopically 

transplanted heart 

Immuno-peroxidase stained DOR-1 immunopositive myocytes were observed both in 
transplanted (Fig. 11 B, D, F, H, and J) and control heart (Fig. 11 A, C, E, G, and I). 
Similarly, the qualitative data of inverted confocal microscopy also reflected DOR-1 
immunoreactive signals. The optical density of DOR-1 immunoreactivity of myocytes 
was significantly declined in endomyocardial biopsy of orthotopically transplanted heart 
(0.134±0.18) compared to control heart tissue (0.37±0.08), P = 0.018.  

 

Figure: 11. A: Representative images of DOR-1 immunoreactive myocytes in 

endomyocardial biopsy of orthotopically transplanted (EMBOTH) and control heart tissue 

(CHT) sections and DOR-1 immunoreactive optical density: Immunoperoxidase DOR-1 
labeled EMBOTH (Fig. 11. B, D, F, H and J) showed poor immunoreactivity myocytes of septa 
of right ventricle compared to control heart tissue (Fig.11.  A, C, E, G, and I) sections. B: Graph 
showing the results obtained using Image-Pro Plus. Counts of DOR-1 immunoreactive 
cardiomyocytes in EMB of transplanted and control heart tissue sections DOR, Delta opioid 
receptor; EMBOTH, Endomyocardial biopsy of orthotopically transplanted heart. IRC – 
Immunoreactive cells. Images acquired at 400x magnification, Scale bar 50µm 
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2.3.4. Immunoperoxidase stained KOR-1 immunoreactive myocytes and its optical 

density in endomyocardial biopsy sections after 30 days of orthotopically 

transplanted heart 

In our qualitative data, immunoperoxidase stained KOR-1 immunopositive myocytes 

were observed both in orthotopically transplanted and control heart (Fig. 12). However, 

analysis of the optical density of KOR-1 immunopositive cardiomyocytes showed an 

apparent reduction on orthotopically transplanted heart compared to control (Fig. 12). 

The optical density of KOR-1 immunoreactivity of EMBOTH (0.19±0.05) was 

significantly reduced compared to control heart (0.35±0.1) p = 0.004. Furthermore, the 

qualitative data showed less frequent appearance number of KOR-1 immunoreactive 

myocytes in transplanted heart tissue sections (Fig. 12).   

 
Figure: 12. Representative images of KOR-1 immunoreactive myocytes in endomyocardial 

biopsy of orthotopically transplanted (EMBOTH) and control heart tissue (CHT) sections 
and KOR-1 immunoreactive optical density: Immunoperoxidase DOR-1 labeled EMBOTH 
(Fig. 12. B, D, F, H and J) showed lightly stained immunoreactivity in septa of right ventricle 
compared to control heart tissue (Fig.12.  A, C, E, G, and I) sections of right atria, septum and left 
ventricles. The graph showing the results obtained using Image-Pro Plus. Counts of KOR-1 
immunoreactive cardiomyocytes in EMB of transplanted and control heart tissue sections KOR, 
Kappa opioid receptor; EMBOTH, Endomyocardial biopsy of orthotopically transplanted heart. 
IRC – Immunoreactive cells. Images acquired at 200x magnification, Scale bar = 50 microns. 
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2.3.5. Immunoperoxidase stained CGRP-1 immunoreactive cells and its optical 

density in endomyocardial biopsy sections after 30 days of orthotopically 

transplanted heart 

In this study, a neuropeptide (CGRP-1) of sensory and motor neurons was evaluated in 

EMBOTH. Immunoperoxidase stained immunoreactivity of CGRP-1 was detected as a 

sparse individual fiber of myocytes in both EMBOTH and CHT. Nevertheless, its 

immunoreactivity to sensory nerves was limited to nerve bundles of control heart (Fig. 13 

A, C, E, G, and I). Even though CGRP-1 immunoreactivity was detected in both 

EMBOTH and CHT groups, an optical density of CGRP immunopositive fibers of 

EMBOTH (0.37±0.53) was significantly reduced compared to control heart (0.44±0.26) p 

= 0.035.  

 

Figure: 13. Representative images of CGRP-1 immunoreactive myocytes in endomyocardial 

biopsy of orthotopically transplanted (EMBOTH) and control heart tissue (CHT) sections 

and CGRP-1 immunoreactive optical density: Immunoperoxidase CGRP-1 labeled EMBOTH 
(Fig. 13. B, D, F, H and J) showed sparely stained immunoreactivity in septa of right ventricle 
compared to control heart tissue (Fig.13.  A, C, E, G, and I) sections of right atria, septum and left 
ventricles. The above graph is showing OD of CGRP-1 immunoreactivity in EMBOTH and CHT. 
Mean±STD, P<0.05 was considered as significant. CGRP, Calcitonin gene-related peptide; 
EMBOTH, Endomyocardial biopsy of orthotopically transplanted heart; CHT, Control heart 
tissue; IR, Immunoreactivity; OD, Optical density. Images acquired at 200x magnification. Scale 
bar 100microns. 
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2.3.6. Confocal microscopic observation of immunofluorescence labeled DOR-1 

immunoreactive signals on endomyocardial biopsy of orthotopically 

transplanted and control heart tissue  

 
Immunofluorescence qualitative observational data demonstrated that DOR-1 

immunopositive cardiomyocytes signals were detected in both endomyocardial biopsy of 

orthotopically transplated (EMBOTH) (Fig. 14. B, D, F, H, J) and control heart tissue 

(Fig. 14. A, C, E, G, I) sections. However, except C and D, there was no clear 

immunoreactive signal difference between transplanted (Fig. 14. B, D, F, H, J) and 

control heart (Fig. 14. A, C, E, G, I) tissue sections.   

 

Figure: 14. Representative images of fluorescence labeled DOR-1 immunoreactive 
cardiomyocytes of the human heart: Immunofluorescence microscopy of EMBOTH and 
control heart tissue. Immunofluorescence staining of DOR-1 immunoreactive signals was shown 
in myocytes of EMBOTH (Fig. 14. B, D, F, H and J) and control heart tissue (Fig. 14. A, C, E, G 
and I). The left column of the images indicated control heart tissue sections of Fig.14. A, C, RA, 
E, Septum, G & I, LV, and the right one indicated the endomyocardial biopsy sections of the 
orthotopically transplanted heart of interventricular septum. DOR, Delta opioid receptor; 
EMBOTH, Endomyocardial biopsy of orthotopically transplanted heart; CHT, Control heart 
tissue; RA, Right atrium; LV, Left ventricle, Scale bar = 35.5µm. 
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2.3.7. Confocal microscopic observation of immunofluorescence labeled KOR-1 

immunoreactive signals on endomyocardial biopsy and control heart tissue  
 
Qualitative observational data demonstrated DOR-1 immunopositive cardiomyocytes 

signals in both endomyocardial biopsy orthotopically transplanted (EMBOTH) (Fig. 15. 

B, D, F, H, J) and control heart tissue (Fig. 15. A, C, E, G, I) sections. However, the 

expression was weak as compared to DOR-1 immunoreactivity in both EMBOTH (Fig. 

14. B, D, F, H, J) and CHT (Fig. 15. A, C, E, G, I) tissue sections.   

 
Figure: 15. Representative images of immunofluorescence labeled KOR-1 immunoreactive 
cardiomyocytes of the human heart: Immunofluorescence microscopy of EMBOTH and 
control heart tissue. Immunofluorescence staining of DOR-1 immunoreactive signals was shown 
in myocytes of EMBOTH (Fig. 15. B, D, F, H and J) and control heart tissue (CHT) (Fig. 15. A, 
C, E, G and I). The left column of the images indicates control heart tissue sections of Fig.15. A, 
C = RA, E= Septum, G & I = LV, and the right one indicates EMB sections of transplanted heart. 
KOR, Kappa opioid receptor; EMBOTH, Endomyocardial biopsy of orthotopically transplanted 
heart; RA, Right atrium; LV, Left ventricle. Scale bar = 35.5µm. 
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2.3.8. Co-localization of confocal microscopic double immunofluorescence labeled 

DOR-1 and KOR-1 immunoreactive signals in septal part of right ventricular 

of orthotopically transplanted and control heart tissue sections 

Co-localization of DOR-1 and KOR-1 immunopositive myocyte signals was also 
evaluated in endomyocardial biopsy of orthotopically transplanted and control heart 
tissue sections under confocal technique. Delta- and kappa-OR-1 immunoreactive signals 
co-localization was observed in EMBOTH (Fig. 16 B4) and control heart tissue (Fig.16. 
A4 merged) myocytes. Throughout our evaluation of the delta and kappa opioid 
receptors, we observed very rearly expression of delta opioid receptors in intracellular 
structure as it is evident from the figure 16 (Fig. 16. CHT) that co-localized with DAPI 
stained nuclei of cardiomyocytes. In previous studies, it was also suggested its expression 
not only limited to plasma membrane receptor but also in intracellular structure. 

 

Figure: 16. Confocal microscopy of double immunofluorescence images showing the overlap 

of DOR-1 and KOR-1 immunofluorescence reactive signals in the cardiomyocytes in 

orthotopically transplanted and control heart in human: Confocal microscopy images of DAPI 
(blue A1, B1, C1, D1) showing bright blue stained nuclei, DOR (red A3, B3, C2, D3), KOR (green A2, B2, 
C2, D2). Representative images of double immunofluorescence for DOR-1, KOR-1, and DAPI nuclei 
staining (Fig. 16 A1 C1, DAPI; A2 C2, KOR; A3 C3, DOR; A4 C4, Merged A1 C1, A2 C2, A3 C3 & A4 
C4) in orthotopically transplanted heart endomyocardial biopsy and control heart tissue section (Fig. 16. 
B1, B2, B3, & B4) in confocal microscopy which shows cardiomyocytes containing DOR-1 and KOR-1 
immunoreactive cells on EMB of transplanted heart. The arrows point to the same landmark for spatial 
reference. Note: DAPI, A1, B1, C1, & D1; KOR, A2, B2, C2, & D2; DOR, A3, B3, C3 & D3; Merged, 
A4&B4, C4&D4. DAPI, 4`, 6-Diamidino-2-Phenylindole, DOR-Delta opioid receptor; KOR, Kappa opioid 
receptor; EMBOTH, Endomyocardial biopsy of orthotopically transplanted heart. Images were acquired at 
400x magnification, Scale bar = 35.5µm. 
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2.3.9. Confocal microscopic observation of CGRP-1 and MOR-

1immunofluorescence labeled fibers on endomyocardial biopsy of 

orthotopically transplanted and control heart tissue sections 
Confocal microscopic observation demonstrated poorly detected CGRP-1 

immunopositive sensory neuronal signals in EMBOTH (Fig. 17 B and D) compared to 

CHT (Fig. 17. A and C) sections. Moreover, immuno-positive MOR-1 signals were also 

detected in EMBOTH and CHT (Fig 17). 

 

Figure: 17. Representative images of double immunofluorescence labeled MOR-1 and 
CGRP-1 immunoreactive cardiomyocytes of the human heart: Immunofluorescence staining 
of MOR-1 immunoreactive signals was shown in myocytes of EMBOTH (Fig. 17. B and D) and 
control heart tissue (CHT) (Fig. 17. A and C); however, poor CGRP-1immunofluorescence 
signals was observed inEMBOTH compared to CHT. MOR, mu opioid receptor; CGRP-1, 
Calcitonin gene-related peptide; EMBOTH, Endomyocardial biopsy of orthotopically 
transplanted heart; RA, Right atrium; LV, Left ventricle. Scale bar = 35.5µm. 
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2.3.10. RT-qPCR analysis for expression of DOR and KOR mRNA in human 

 

In this study, a relative quantitative real-time RT-PCR assay was applied to detect mRNA 
transcripts encoding DOR and KOR in the orthotopically transplanted heart. The mRNA 
transcript encoding the DOR and KOR was identified in endomyocardial biopsy of the 
orthotopically transplanted heart taken from septal part of the right ventricle in human. 
Similar results were shown in different studies (Lendeckel et al., 2005). 

In this study, δ and κ-opioid receptors are detected in human heart (Fig. 18). However, 
mRNA encoding KOR and DOR was down-regulated in EMBOTH, and KOR was found 
lower than DOR in EMBOTH. Weak signal of KOR in rat heart was also reported by 
Wittert et al., (1996). 

 

Figure: 18. The graph showing relative KOR & DOR mRNA gene expression: quantitative 
real-time RT-PCR assay was developed to quantify DOR and KOR mRNA in transplanted heart. 
GAPDH gene was used as a reference gene to normalize sample variations. DOR, Delta opioid 
receptor; KOR, Kappa opioid receptor, GAPDH, Glyceraldehyde-3-phosphate dehydrogenase; 
RT-qPCR; Reverse transcriptase quantitative real-time polymerase chain reaction; RNA, 
Ribonucleic acid; EMBOTH, Endomyocardial biopsy of orthotopically transplanted heart. 
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2.3.11. TUNEL positive apoptotic nuclei in endomyocardial biopsy of orthotopically 

transplanted and control heart tissue sections in human and TUNEL positive 

nuclei counts 
 

Apoptosis/programmed cell death is a highly regulated and energy requiring process 
characterized by shrinkage of cell and nucleus (Krijnen et al., 2002). Cardiomyocyte 
death result from myocardial infarction (MI) is not only due to necrosis but also result in 
apoptosis in the process of tissue injury from MI. In our TUNEL analysis of 
endomyocardial biopsy of orthotopic transplanted human heart, DNA fragmentation in 
the nuclei of myocytes through labeling of the terminal end of nucleic acid was assessed. 
The observed apoptotic nuclei of myocardium results from apoptotic signaling cascades 
in orthotopically transplanted heart were found significantly elevated (7.82±0.59) 
compared to control (9.45±0.925), P=0.013 (Fig 19). The occurrence apoptotic markers 
in the myocardium are related to heart failure and only observed in patients with end-
stage heart failure undergoing heart transplantation (Bott-Flügel et al., 2008). Saraste and 
colleagues, 1999 have reported a significant increase in a number of apoptotic 
cardiomyocytes in dilated cardiomyopathy and the increase apoptotic cells also correlate 
with clinical complications.  

 

Figure: 19. Representative photomicrographs of endomyocardial biopsy of orthotopically 

transplanted and control heart tissue sections showing TUNEL stained apoptotic cells:  
Number of TUNEL positive nuclei was significantly elevated in EMBOTH. TUNEL+ 
Hematoxylin (H); OTH, Orthotopic transplanted heart; CTRL, Control; TUNEL, Terminal 
deoxynucleotidyl transferase; dUTP, 2'-deoxyuridine 5'-triphosphate; Nick End Labeling. 
Mean±STD, P<0.05 was considered as significant.  
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2.4. Discussion 

 

Our data indicates the presence of classical opioid receptors in the human heart with a 

down-regulation in the orthotopically transplanted heart. There are many shreds of 

evidence indicating the presence of opioid receptors in multiple organs of the body 

(Khachaturian et al., 1987). The heart expresses high levels of endogenous opioids across 

species (Headrick et al., 2015). In a study which detects delta and kappa opioid receptors, 

it is reported that δ & κ opioid receptors in human atria selectively down-regulates the k-

OR during atrial fibrillation (Lendeckel et al., 2005). Moreover, Sobanski et al., 2014 

proved detection of immunoreactivity of all the three classic opioid receptors, principally 

kappa-OR in myocardial cells of the human heart (Sobanski et al., 2014).  

 

Although studies have shown the presence of ORs in myocardial tissue of different 

species, there is no data indicates the presence of classical opioid receptors in 

endomyocardial biopsy of orthotopically transplanted heart in the human. This study 

contributes in identifying the level of classical opioid receptors in transplanted heart that 

can contribute to understand the effectiveness of opioid and opiate-like drugs in 

transplant patients.   

 

This study, therefore, confirms that mRNA encoding delta and kappa ORs, and MOR-1 

immunoreactive myocytes at the protein level are present in orthotopically transplanted 

heart and normal heart in the human. The study was in agreement with previous studies 

showing the presence of mu, delta and kappa opioid receptors on cardiomyocytes of 

humans (Sobanski et al., 2014) and (delta and kappa) animals` heart (Theisen et al., 2014; 

Cao, 2003; Patel et al., 2006; Weil et al., 1998; Howells et al., 1986).  

 

Besides, delta and kappa opioid receptors expression are observed not only on the 

immunoreactive plasma membrane receptors but also in few intracellular labeling of 

DOR-1 and KOR-1 in line with other studies which observed both in membranes bound 

and intracellular in the porcine myocardium (Theisen et al., 2014; Al-Hasani and 

Bruchas, 2011). 
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Interestingly, this study shows a down-regulation of Oprk1 and Oprd1 mRNA in 

orthotopically transplanted human heart tissues, and reduction of the number of KOR-1 

immunoreactive cells at the protein level. Even though the strength (optical density) of 

immunostaining/immunoreactivity of MOR-1 didn`t reach a significant threshold, 

analysis of MOR-1 immunoreactivity reduces in the orthotopically transplanted 

heart. This implies a great contribution and influence of innervation to the functioning of 

opioid receptors in the heart. 

 

In our TUNEL analysis of endomyocardial biopsy of orthotopically transplanted heart, it 

is shown a significant elevation of apoptotic nuclei in transplanted heart. Koch et 

al., 2008 has shown apoptotic cell death during acute rejection episodes in 27 human 

heart transplants in the interstitial cells. Cristóbal and colleagues (2010) have also 

strengthened detection of apoptotic myocytes in 81.5% of 130 endomyocardial biopsies 

during the first six months of post-heart transplantation.  

On the otherhand, Bott-Flügel et al., (2008) have shown the occurrence of apoptotic 

markers in the myocardium that are related to heart failure and only observed in patients 

with end-stage heart failure undergoing heart transplantation. Saraste and colleagues, 

1999 have added a report on a significant increase in a number of apoptotic 

cardiomyocytes in dilated cardiomyopathy and the correlation of increased apoptotic cells 

with clinical complications. The decreasing number of DOR-1 and KOR-1 

immunoreactive cardiomyocytes might be due to the histopathological changes, elevated 

TUNEL positive nuclei of myocytes observed in the denervated heart tissue and lack of 

innervations. This down-regulation might also be due to the involvement of an autocrine 

process of ORs in which opioid peptides may be released from cardiomyocytes locally 

and interact with ORs of the heart that mediates cardioprotection. 

 

This mechanism may be because of the increase in the synthesis and release of opioid 

peptides into the peripheral circulation due to histopathological changes (Paradis et al., 

1992). On the contrary, increased the level of enkephalins in ventricles of rats following 

myocardial infarction is also reported (Paradis et al., 1992).  
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Furthermore, DOR-1 and KOR-1immunopositive signals co-localization with the same 

cell receptors are also observed in the orthotopically transplanted heart. The overlap of 

these receptors that are found in fluorescence DOR-1 and KOR-1 implies the strong 

functional association on cardiomyocytes and contributions in the regulation of 

cardiovascular function in transplanted heart.  

 

Generally, in this study, expression of delta and kappa ORs are detected in orthotopically 

transplanted and normal human heart with a decline in Oprk1 and Oprd1 mRNA and 

proteins of cardiomyocytes in transplanted heart. Co-localization of DOR-1 and KOR-1 

immunoreactive signals is observed in transplanted heart. Elevation of apoptotic nuclei in 

transplanted heart myocardium is also observed.  

 

The findings suggest clues toward a tendency of reduction in the pharmacological 

activities of opioids in the regulation of cardiac tissue in transplanted heart and 

vulnerability of denervated heart to ischemia and reperfusion injury.  
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CHAPTER THREE 

3. Expression of classical opioid receptors in heterotopic transplanted 
and naïve hearts in rat 

3.1. Introduction 

 
The distribution of endogenous peptides in rats` heart has been elaborated after findings 

from a study of peripheral distribution of preproenkephalin mRNA that show surprising 

large amounts (Howells et al., 1986) of endogenous peptides (Koneru et al., 2009) 

preproenkephalin mRNA in Sprague Dawley rats’ cardiac ventricular tissue than any 

other tissue including brain (Howells et al., 1986), and species such as guinea pig, 

bovine, and mouse hearts. Preproenkephalin is an endogenous peptide where the two 

major families of the opioid system, enkephalins, and dynorphins are derived. This study 

has initiated other studies to emerge on expression, and protective effects of translational 

products derived from preproenkephalin on different peripheral tissues, and then rats' 

heart become a useful model for investigation of translational control of protein 

synthesis. The clue that we obtained from our previous study of orthotopically 

transplanted heart in human on the expression of opioid receptors. This study aimed to 

characterize the expression of mu-, delta- and kappa- opioid receptors in naïve and donor 

rat cardiac tissue. 

 

The Sprague Dawley rat is an outbred multipurpose breed of albino rat used extensively 

in medical research. These animals are an important aspect of cardiac research where a 

variety of cardiac processes and therapeutic targets can be studied. They belong to the 

Rodentia and family Muridae. The rat has short hair, a long naked tail, rounded erect 

ears, protruding eyes, and five toes on each foot. Rats have a much longer tail; however, 

they have no gall bladder. They have the following normative values: lifespan (2.5-3.5 

years), adult weight (males 300-500g, females 250-300g), birth weight(5-6g), heart rate 

(330-480 b/min), respiratory rate (85 breaths/min), body temperature (35.9-37.5ºC), 

blood volume (50-70 ml/kg), urine volume (3.3 ml/100g body weight/day), allergens 

(dander, urinary protein) (Koolhaas, 2010). 
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Heterotopic abdominal HTx in rats involves an aortic-aortic and a pulmonary artery-

inferior vena cava anastomosis (Fig. 20). In this kind of transplantation rat model, the left 

ventricle is volume unloaded, receiving the smallest cardiac veins (Thebesian veins). 

However, it is not entirely pressure unloaded (Ibrahim et al., 2013). Based on recipient`s 

operative time and graft survival, abdominal was preferred to cervical heart transplant 

(Ma and Wang, 2011) for the procedure.  

 
 
 
Figure: 20. Illustration of a heterotopic heart transplantation (mechanical unloading) model 
in rats: The coronary arteries are perfused via retrograde through the aortic anastomosis, thus 
allowing the circulation of the graft. The left ventricle - except for the flow in transit from the 
veins of Tebesio - is completely excluded from circulation: the blood is collected in fact - thanks 
to the coronary venous circulation - in the sections of the right heart, through the pulmonary vein 
and its anastomosis with the inferior vena cava, the pump in the systemic venous circulation of 
the recipient rat. Ibrahim et al., Journal of Surgical Reseach. 2013; I79: E3I-E29. 
 

The first execution technique of heart transplantation in small experimental animals dates 

back in mid-sixties, then perfected further, in the following years; if it were not for these 

jobs, they would be few authors who have helped to shed light on techniques for the 

surgical and anesthetic management of heterotopic heart transplantation procedure in 

rodents. This procedure involves implanting in the abdomen of a recipient (abdominal 

heterotopic) a heart removed from a donor animal, to which is supplied the blood supply 

thanks to the execution of two anastomoses. The first is abdominal aorta of the recipient 

with the ascending aorta graft and inferior vena cava of the recipient with graft 
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pulmonary trunk is the second one. The blood of the recipient rat - pumped around from 

its native heart - perfusing retrograde coronary graft and (with them, the entire 

myocardium) due to the presence of aorta-aortic anastomosis; the effluent blood is then 

drained from the coronary venous circulation which, in turn, enters blood in the right 

heart sections: the blood is ejected from the pulmonary artery of the graft that, thanks to 

pulmonary-cava anastomosis, it drains into the inferior vena cava of the recipient rat. 

In this way, the left sections of the graft are excluded from the bloodstream: in fact, the 

heterotopic transplant model is set up as a left unloaded (in reality left ventricular preload 

model is present and represented by the blood flow through the veins of Tebesio), in 

which the graft takes on more or less the same function as an LVAD (Fig. 21). 

 
Figure: 21. Illustration of abdominal heterotopic transplanted and naïve heart model of a 
rat: The above figure illustrates naïve and heterotopic transplanted heart model of rat. Aortic-
aortic and a pulmonary artery-inferior vena cava anastomosis were done with the help of 
Surgeons, University of Verona, Department of Surgery, and Cardiac Section. HTH, Heterotropic 
transplanted heart; NH, Naïve heart; LL, Left lung; RL, Right lung; R.D, respiratory diaphragm. 
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3.2. Materials and methods 
 

3.2.1. Study design and experimental animals 

 
The study designed comprising of adult male Sprague-Dawley rats, weighing about 350-

400g. The out-bred multipurpose breed of Sprague-Dawley rats was used. These animals 

are an important aspect of cardiac research where a variety of cardiac processes and 

therapeutic targets can be studied. They were housed 1 per cage in a setup cage system at 

Interdepartmental Center of Experimental Research Service/CIRSAL, the University of 

Verona at a temperature controlled room (21±2oC) with food (ad libitum) and water 

available under a 12 hours’ light/dark cycle. They were acclimatized for 7 days before the 

beginning of the experiment in order to adapt them to the laboratory conditions. These 

rats grouped into recipients and donors. Four rats were assigned to recipients and donors 

to obtain rats with final dual hearts (Naïve and Heterotopic) in each rat. All tests were 

done during the light hours. The study was carried out in accordance with the ethical 

guidelines for investigations of experimental pain in conscious animals (Zimmermann, 

1983; CIRSAL, University of Verona). 

 

3.2.2. Transplants preparation and abdominal cava and aortic exposure, 

explantation and plantation 

 
Two syringes (10ml) and container for a dipping heart with cardioplegia were prepared 

and syringe with 10ml saline left in the fridge.  Rats were stun/unconscious with diethyl 

ether vapors Pentothal administered 40mg/kg anesthesia with isofluorane with a mask or 

through gold tracheal intubation (cannula 16G to 17G 3.0 prolene thread). 

 
After preparation of cotton fioce, suture threads 6.0, cautery (destroying abdominal 

tissue), gauze saline, wire 3.0 to encircle and vena cava and aorta, explanations were 

done as follows: An overdose of Pentothal was administered to the donor rat. Heparin 

was administered in the 1 ml syringe and cold cardioplegia in 10ml syringe through the 

abdominal aorta. Afterword, clips and wire insula to 3.0 were prepared for vessels and 

administered a second 10ml syringe of cardioplegia in the coronary sinus and then 

explanted heart placed in a container with cardioplegia. Prior to the plantation, heparin in 

1 ml syringe, suture thread 8.0, cotton fioce, physiological cold, positioning the syringe 
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of saline solution under a heating lamp, hot gauzes, fabotamp, and suture thread 4.0 for 

closing abdomen were prepared. Later, the donor`s thoracic aorta was anastomosed to the 

recipient's infrarenal abdominal aorta, and the donor`s pulmonary artery was 

anastomosed to the recipient`s inferior vena cava as described by Ma and Wang, (2011). 

 

3.2.3. Duration of the post-transplantation and sample collection 

The post-transplantation stay was six weeks. Later, rats were sacrificed to collect tissues 

from all chambers and septa of the hearts from both naïve and abdominal transplanted 

donor`s heart and processed with different techniques such as immunohistochemistry, 

immunofluorescence, western blot, hematoxylin and eosin, real-time polymerase chain 

reaction, and TUNEL. 

 

3.2.4. Tissue processing, embedding, and sectioning 

After collection of heart tissues, fixed promptly and adequately with 4% 

paraformaldehyde to produce superior morphology, washed three times for 10min each 

with PBS (pH 7.35, 0.1M), and then dehydrated with increasing ethanol concentration 

(70% 1x, 90% 2x, 100 1x) for 1hr, 11/2 hrs, and 1hr each, respectively. Following 

dealcolization by two changes of xylene (100%) for 1hr, infiltrated with two changes of 

molten paraffin wax at 56oc for 1hr to replace the xylene.  

 

Next, to infiltration, embedding was performed for better sectioning. In embedding step, 

a first small amount of paraffin was placed into the cassettes, and then specimens were 

transferred into the mold using warmed forceps and placed in the middle of the cassettes 

in preferred orientations, and then the cassettes were filled with molten paraffin wax with 

care to prevent under and over-filling. At the end, embedded specimens were put on ice, 

and stored in cold room at 4oc overnight to form strong blocks. This paraffin embedded 

tissue process was used for further IHC, IF, TUNEL, and H& E staining.  

 

Once specimens embedded, they were cut into 3µm thickness sections using Leica RM 

2255 CSA® US digital microtome. It is good to place blocks on ice prior to sectioning to 

obtain unwrinkled sections. Sections were, floated on cold water bath and picked up by 
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adhesion microscope slides (26x76MM, DIAMOND Blue, 33820B, Lot#300414, 

LABOINDUSTRIA S.P.A, IT) and FLEX IHC coated microscope slides with white-

painted label area (Code: K8020, K802021-2, Wo503900201, 75mm, W x 25mm, D x 

1mm, H), floated on a warm water bath to remove wrinkles of sections. Finally, the 

microtome cleaned with Vacuum Cleaner (Mode: AS10-A40, No. 0288112) and left in 

good condition. 

 

3.2.5. Hematoxylin and eosin staining for histopathological study 

Hematoxylin and eosin staining were done as indicated previously to evaluate any 

histopathologicalchanges and level of rejection in HTH tissue sections. Any structural 

abnormalities of H&E stained tissue sections were analyzed with the help of pathologist.   

 

3.2.6. Immunohistochemistry (immunoperoxidase and immunofluorescence) 

Immunohistochemical studies, such as immunoperoxidase and double 

immunofluorescence (IF) were done as described in previous studies to evaluate MOR-1, 

DOR-1, KOR-1, and CGRP-1 immunoreactive cardiomyocytes, and analyzed for relative 

distribution of opioid receptors on heterotopic transplanted and control rat heart tissue 

sections. Markers used for detection of MOR-1 were used as indicated earlier. However, 

different primary antibodies for DOR-1(a rabbit polyclonal antibody (H-80): Cat. No. sc-

15310, a goat polyclonal antibody (M-20): Cat. No. sc-7492) and KOR-1 (a mouse 

monoclonal antibody (D-8): Cat. No. sc-374479). 

 

In immunoperoxidase staining, tissue sections were processed of dewaxation, 

rehydration, treatment with antigen retrieval solutions, and incubation for 20min in H2O2, 

pre-incubation in 2% of Normal Horse Serum, incubation with primary antibodies 

(MOR-1, DOR-1, and KOR-1). Following incubation in 1o Abs, incubated 2o anti-rabbit 

IgG (H+L) biotinylated (BA- 1100, Lot no. ZA0319) and anti-goat IgG (H+L) 

biotinylated (BA- 9500, Lot no. Z0326), and anti-mouse Abs made in horse for MOR-1, 

DOR-1, and KOR-1, respectively, and then incubated with ABC solution. Finally, 

specific immunostaining was detected with DAB (Diaminobenzidine) in PBS containing 
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0.75% H2O2. Finally, sections dried, dehydrated with ethanol and xylene, and prepared 

for analysis. 

 

Double immunofluorescence technique was also performed for the concurrent 

visualization of MOR-1, DOR-1 and KOR-1 immunoreactive signals on cardiomyocytes. 

Following overnight incubation with primary antibodies (MOR-1, DOR-1, KOR-1), a 

brief wash was performed and incubated in a mixture of Alexa Fluor 568 donkey anti-

rabbit IgG (H+L) (1:1000, Ref. A10042, Lot no. 1668655, Eugene DR. USA), Alexa 

Fluor 488 donkey anti-goat IgG (H+L) (1:1000, A11055, Lot no. 1627966, Eugene DR. 

USA), and anti-mouse species-specific fluorescent secondary antibodies raised in donkey 

supplied from Life Technologies, Italy, Europe were used, respectively. The cell nuclei 

stained blue using Hoechst 33342 at a dilution of 1:10,000 (Thermo Fisher Scientific). 

Finally, drops of mountant were added on sections and cover with rectangular 

microscope cover glasses (ECN631-1574, Lot: 29339 017, 24x50mm), Germany. The 

pressure was applied gently over cover glasses to remove bubbles before sealing of edges 

of cover glasses with nail polish and then stored at -20oC until analysis was done by 

inverted confocal microscope. Note: We used the KOR-1 monoclonal primary antibody 

for post-heterotopic heart transplanted study. 

 

3.2.7. Microscopy, optical density measurement, and analyses of MOR-1, DOR-1, KOR-1, 

and CGRP-1 immunoreactivity 

 

Microscopy, counting and analyses of MOR-1, DOR-1, KOR-1, and CGRP-1 IRC were done as 

previously described in chapter two. Prior to counting, slides were blindly assigned with 

code number by another investigator and sections thickness was measured. Counts of 

DOR-1 and KOR-1 immunoreactive cardiomyocytes were performed using 20X 

objective at 3 to 3.5µm. The only observed longitudinal full length of KOR-1 

immunoreactive cardiomyocyte in the focal field of the live preview was used as a 

counting unit. Four sections were selected randomly from each sample. The counting was 

done using Image-Pro Plus software in workspace preview. Fiji version of ImageJ was 

used to quantify the strength of immunoperoxidase staining in heart tissue of MOR, 



91 

 

DOR, KOR, and CGRP proteins using the instruction indicated by Jensen, 2013. 

Instructions (Open DAB image-color-color, Deconvolution-H DAH-choose the 2nd 

metrics, run measure). Immunofluorescence images were quantified using Figi`s image 

by running adjust with auto-threshold for only evaluation purpose. Laser scanning 

confocal microscope (Carl Zeiss LSM 510, Göttingen, Germany) was used for obtaining 

multicolor optical images from sections of specimens. Images were further harmonized 

by using Leica LAS AF lite software for better contrast. 

 

3.2.8. Cryosectioning for RNA isolation and western blot 

Tissues were taken from heterotopic transplanted rat heart. Naïve hearts in rats were used 

as controls. Preserved in formalin and snap frozen in liquid nitrogen, and then processed 

for RNA isolation (RT-qPCR), protein extraction (immuno-blotting), IHC, IF, TUNEL, 

and H&E. snap frost tissue was stored at -80oC until used, and then pre-cooled at -21oC 

and placed into cryostat (Leica CM 1900-V5.3 ENGLISH-10/2006) for 30 min prior to 

sectioning to attain thermal balance.  

 

The chamber of cryostat was set to -20oC and 5μm thickness. Freezing/cryostat 

embedding medium (Lot: 140410) was applied to cover the specimen plate/the round 

metallic mount of the cryostat. When the medium began to frost, tissues were placed in 

the center as straight as possible horizontally. Once the media was completely frozen, the 

specimen plate was placed into holder and knob was turned clockwise to tight it. The 

blade was pre-cooled to -20oC and placed onto the stage with maintained O.C.T before 

cryosectioning. Thirty sections for RNA isolation and 45 sections for immunoblotting 

analysis at 5μm thickness were used. The blade, all trimmings, and specimen wastes were 

removed, and the machine was left in a clean and safe condition. 

 

3.2.9. RNA extraction, cDNA synthesis, and qPCR 

 

After RNA extraction done using MiniKit, RNA concentration was measured by 

Nanodrop (2000/2000c) and placed at -80oC until required. The total RNA preparations 

were used for RT-qPCR. Following RNA isolation process, cDNA synthesis was done 

immediately using the protocol and cDNA synthesis kit obtained from SIGMA® Saint 
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Louis Missouri 63103 USA. cDNAs were diluted in 50ul water. One µl of this reaction 

mix was used as a template for RT-qPCR assembly using the SYBR Green protocol with 

the readymade SYBR®Green qPCR ReadyMixTM, with ROXTM 2X (KCQS02).  

 

Following primer mix for DOR, KOR (Sigma), and GAPDH (Invitrogen, 059901, M5583 
(A02, A01), mixed with ROX and then appropriately added to each well with sample mix  

in triplicate and run in the following conditions (initial denaturation 95
o
C, 3min, 40 

cycles PCR cycling 95
o

C, 15sec, and data were collected at the end of extension step 

60
o

C, 60sec).  
 
 
The relative expression level of each gene was normalized to GAPDH in the same 

sample. Amplification didn`t exceed 200bp. SYBR®Green dye that binds to the minor 

groove of dsDNA and detects any dsDNA generated during amplification was done using 

Applied Biosystems 7300 Real Time System connected with the computer. The data 

calculated using the delta-delta method indicated by Livak and Schmittgen, (2001). 

 

The readymade SYBR®Green qPCR ReadyMixTM, with ROXTM 2X (KCQS02) that 

contains all components except primers and cDNA template was used. Following primer 

mix for DOR, KOR (Sigma), and GAPDH (Invitrogen, 059901, M5583 (A02, A01), 

mixed with ROX and then appropriately added to each well with sample mix in two 

duplicate. Amplification didn`t exceed 200bp. SYBR®Green dye that binds to the minor 

groove of dsDNA and detects any dsDNA generated during amplification was done using 

Applied Biosystems 7300 Real Time System instrument. Finally, the green fluorescence 

light emitted when bound to dsDNA was measured for proper PCR amplification and 

then the data calculated by the delta-delta method indicated by Livak and Schmittgen, 

2001). 

 

Table: 6. Primer sequence used for real-time PCR SYBR Green amplification 

Gene  Forward Rat (5`-3`) Reverse Rat (5`-3`) 

Oprm1 CTAACCACCAGCTAGAAAATC TTTGAATGCAGGATCAGATG 
Oprd1 AATCGTCCGGTACACTAAG AACATGTTGTAGTAGTCAATGG 
Oprk1 GTCATCATCCGATACACAAAG GGCCAAGAATTCATCAAGTAG 
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3.2.10. Western blot 
 

Lysate preparation: whole tissue from chambers of the heart was used for lysate 

preparation. Cold lysis buffer (RIPA) was used for lysate preparation. The sample(s) was 

sonicated. The lysate (s) was supplemented with additional protease and phosphatase 

inhibitors to prevent degradation by proteases. Samples were centrifuged for 20min at 

12,000rpm at 4oC in a microcentrifuge. Tubes have gently removed the centrifuge and 

placed on ice and the supernatant aspirated and placed in a fresh tube and kept at -80 oC 

until used. Protein concentration was measured using BCA assay (Fig. 22).  

 

Figure: 22. BCA standard curvefor protein concentration measurement: BCA assay was 
done to measure unknown protein concentration after standard curve was plotted using known 
BSA protein concentrations. The unknown concentration of solutions of different groups of rats` 
heart tissue samples was calculated at 560nm. 
 

The lysate was stored at -80oC. In this protein quantification assay for loading and 

running the gel, small and equal amount of protein (35µg/25µl) was loaded from tissue 

homogenate in the wells of the SDS-PAGE gel, along with Mol. Wt. marker (SIGMA, 

Aldrich) in 1.5mm spaced glass slide. Lysate in sample buffer was boiled at 60oC for 

10min to reduce and denature. Loading and positive control were used. Gel acrylamide 

10% was used in the gel based on the size of the protein. PVDF membrane (0.45µm pore 

size) was activated with methanol for 1min and rinse with transfer buffer. Stack was 

prepared as follows: (Fig. 23). 
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Figure: 23. Preparation of stack for the protein transfer from the gel to the membrane: 
Stack preparation can be done during a running of proteins. 
 
The proteins were transferred in wet transfer with containing 25 mM Tris-base, 0.2 M 

Glycine, 20% Methanol, pH 8.5 for 2 hrs in 300 mAmps and 100V. In antibody staining, 

the membrane was blocked with 5% non-fat milk in TBS-T (0.1% Tween-20, Lot # 

8T006910, A4974, 0250, CAS-No: 9005-64-5, AppliChem, Germany) for 1hr at RT.  

 

The membrane incubated with specific primary antibodies DOR-1, and KOR-1 in 

blocking buffer overnight. The dilution rates of all primary antibodies were 1:1000. For 

signal development, following three cycles of 5min washes, drops of LuminataTM Forte 

Western HRP Substrate (Cat.No. WBLUF0500, Lot No. 140525, Millipore Corporation, 

Billerica, MA 01821) were added on membrane above 4 IN. X 125 FT. ROLL Lab-

PARAFILM® (Pechiney Plastic Packaging, Menash, WI 54952, Chicago, IL, 60631), and 

then membrane developed for 3min exposure using G: Box Chem.XR5 Genesys version 

1.0.7.0 with Synoptics 5.0MP Camera and 1.4 database version. By removing excess 

reagent and covering in a transparent plastic wrap, the membrane was developed for 

30min exposure time.  

 

The bands were visualized by enhanced chemiluminescence. Images were immediately 

saved in tift for densitometric quantification of the immunoreactive bands using the 

software ImageJ. GAPDH was used for standardization of the results.  
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3.2.11. TUNEL Assay 

 

The TUNEL assay was performed as described in chapter two. All TUNEL staining 

solutions were prepared ahead using the protocol and AP cell death detection kit supplied 

from Roche for fluorescent and light microscopic analysis.  

 

3.2.12. Statistical analysis 

 

Mean value of immunoreactive cells ± SD in each group and independent samples t-test 

for the significance of means of independent groups of a number of KOR-1 and DOR-1 

immunopositive cells of transplanted and control heart were used for statistical analysis 

using IBM Corp. Released 2011. IBM SPSS® Statistics for Windows, Version 20.0. 

Armonk, NY: IBM Corp software. Microsoft office Excel 2007 and Graph prism were 

also used to extract graphs. For relative quantification of real-time PCR data, the 2^-

ΔΔCtmethod mentioned by Livak and Schmittgen 2001 was used. P value < 0.05 was 

regarded as statistically significant. 

 

3.2.13. Study setting and ethical issue 

 

This qualitative immunohistochemical experiment and IRC were conducted at the 

Department of Neurological, Biomedical and Movement Sciences. Quantitative 

experiments, immunoblotting, and RT-qPCR were performed at Laboratory of 

Cardiovascular Sciences and L.U.R.M.  All experiments were carried out with the 

authorization of ethical Research Committee and Departmental Biobank at Department of 

Surgery, University of Verona and the Italian MOE. 
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3.3. Results 

 

3.3.1. Histopathological observation of H&E stained tissue sections in heterotopic 

transplanted and naïve heart in rats 

Histopathological observation of hematoxylin-eosin stained heterotopic transplanted and 
naïve heart tissue sections was done. As it is shown in figure 24, heterotopically 
transplanted heart tissue sections showed cellular rejection characterized by interstitial, 
scattered and perivascular lymphocytes infiltrate with a mild distorting morphology of 
myocytes compared to naïve heart. Ventricles and right atrium exhibited severe acute 
cellular rejection expressed by diffuse myocardial inflammation (Fig. 24). 

 

Figure: 24. Histopathological microscopic observation of H&E stained heterotopically 

transplanted and naïve heart tissue sections: Microscopic observation of Infiltrates of 
lymphocytes is showing in heterotopic transplanted heart. NH, Naïve heart; HTH, Heterotopic 
transplanted heart; LV, Left ventricle; RV, Right ventricle; LA, Left atrium; RA, Right atrium; 
SEP, Septum. Images were acquired at 400x magnification, Scale bar = 40µm. 
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3.3.2. Microscopic observation of immunoperoxidase stained DOR-1 

immunoreactive myocytes and its optical density in heterotopic transplanted 

and naïve heart tissue sections in rats 

 
Immunoperoxidase stained DOR-1 immunoreactivity was observed in both heterotopic 

transplanted and naïve heart tissue sections. In our study, it was found that DOR-1 

immunoreactivity was reduced in optical density in heterotopic transplanted heart 

(0.097±0.02) compared to naïve heart (0.145± 0.04) tissue sections p = 0.035 (Fig. 25). 

 

Figure: 25. Representative images of heterotopic transplanted and naïve heart tissue 

sections of LV, RV, LA, RA, and SEP with labeled DOR-1 immunoreactive cardiomyocytes 
and graph showing optical density for the strength of immunoreactivity of DOR-1 in 
cardiomyocytes of heterotopic transplanted and naïve heart tissue sections: heterotopic 
transplanted heart tissue sections showed lower strength of DOR-1immunoreactivity compared to 
naïve heart. Images were acquired at 400x magnification from each chamber and four 
representative images were taken from each chamber for optical density measurement, Scale bar 
40µm. DOR, Delta opioid receptor; OD, Optical density NH, Naïve heart; HTH, Heterotopic 
transplanted heart; LV, Left ventricle; RV, Right ventricle; LA, Left atrium; RA, Right atrium; 
SEP, Septum. 
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3.3.3. KOR-1 immunoreactivity and its optical density in heterotopic transplanted 

and naïve heart tissue sections in rats 

Immunoperoxidase stained KOR-1 immunoreactivity was observed both heterotopic 

transplanted and naïve heart. KOR-1 immunoreactivity (Fig. 26) was significantly 

reduced in heterotopic transplanted heart tissue sections (0.09±0.05) compared to naïve 

heart (0.19± 0.09) p = 0.036. Throughout our evaluation kappa opioid receptor was 

dominant in rats` heart compared to delta opioid receptor.  

 

Figure: 26. Representative images of heterotopic transplanted and naïve heart tissue sections 

of KOR-1 labeled immunoreactive cardiomyocytes and OD of their immunoreactivity: 
Immunoperoxidase stained KOR-1 immunoreactive myocytes are apparently observed in NH 
compared to HTH. The graph illustrates the optical density measured for the strength of 
immunoreactivity of KOR-1 in heterotopic transplanted and naïve heart tissue sections: Images were 
acquired at 400x magnification from each chamber and 4 representative images were taken from each 
chamber for OD measurement, Scale bar 40µm. KOR, Kappa opioid receptor; OD, Optical density NH, 
Naïve heart; HTH, Heterotopic transplanted heart; LV, Left ventricle; RV, Right ventricle; LA, Left atrium; 
RA, Right atrium; SEP, Septum.  
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3.3.4. Microscopic observation of MOR-1 immunoreactivity in heterotopic 

transplanted and naïve heart tissue sections in rats 

Expression of MOR-1 was examined in heterotopic transplanted and naïve heart 

tissue sections on the protein level by immunohistochemistry. In a number of 

repeated immunostaining experiments, MOR-1 immunoreactivity was not detected in 

both heterotopic transplanted and naïve heart tissue sections in the rat (Fig.27). 

 

 Figure: 27. Chamber-wise representative images of MOR-1 immunoreactivity in 

heterotopic transplanted and naïve heart tissue sections. In this immunohistochemical 
analyses MOR-1 immunoreactivity was not localized in hearts of rat. NH, naïve heart; HTH, 
Heterotopic transplanted heart; LV, Left ventricle; RV, Right ventricle; LA, Left atrium; RA, 
Right atrium; SEP, Septum. Images were acquired at 400x magnification, Scale bar, 40µm 
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3.3.5. Immunoperoxidase stained CGRP-1 immunoreactive cells and its optical 

density in heterotopic transplanted and naïve heart tissue sections 

 

Microscopic observation of CGRP-1 immunoreactivity was evaluated in heterotopic 
transplanted and naïve heart. The immunoreactive CGRP-1 which is known to express in 
sensory and motor neurons was expressed both in heterotopic transplanted and naïve 
heart tissue sections. This neuronal marker was detected not only in nerve fibers but also 
in myocytes of both groups. However, it was weak in its expression in heterotopic 
transplanted heart tissue sections (Fig. 28) compared to naïve heart. The optical density 
of CGRP-1 IRC was significantly declined in heterotopic transplanted heart 
(0.298±0.054) compared to naïve heart tissue sections (0.368±0.05) p = 0.047. The 
prominent reduction of GCRP-1 immunoreactivity was observed in the heart tissue 
section where there was a reduction of kappa opioid receptors in transplanted heart. 

 

Figure: 28. Representative images showing CGRP-1 immunoreactive myocytes and graph 

showing the strength of CGRP-1 immunoreactivity of myocytes on heterotopic transplanted 
and naïve heart tissue sections: Images were acquired at 400x magnification from each chamber 
and 4 representative images were taken from each chamber for OD measurement, Scale bar 
40µm. CGRP, Calcitonin gene-related peptide; OD, Optical density NH, Naïve heart; HTH, 
Heterotopic transplanted heart; LV, left ventricle; RV, Right ventricle; LA, Left atrium; RA, 
Right atrium; SEP, Septum; IRC, Immunoreactive cells.  
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3.3.6. Immunofluorescence stained KOR-1 and DOR-1 signals in heterotopic 

transplanted and naïve heart tissue sections in rats 

Immunofluorescence labeled KOR-1 and DOR-1 immunoreactivity signals were detected 
under an inverted confocal microscope in naïve and heterotopic transplanted heart tissue (Fig. 
29). This immunofluorescence technique, the prominent appearance of KOR-1 
immunofluorescent signals in naïve heart was observed compared to heterotopic transplanted 
heart tissue sections. Moreover; poor DOR-1 immunofluorescence signals were identified in 
transplanted heart. DOR-1 was found weaker immunoreactive over KOR-1 in all sections of 
naïve and transplanted heart tissue. 

 

Figure: 29. Chamber wise confocal microscopy of KOR-1 and DOR-1 immunofluorescent 

reactive containing signals in naïve and heterotopic transplanted heart tissue sections in the 

rat: A: heterotopic transplanted heart tissue sections (Fig. 29. KOR, HTH) demonstrated KOR-1 
immunofluorescent weak signals compared to naïve heart in each chamber (LV, RV, LA, RA, 
and SEP) of the heart. DOR-1 immunofluorescent signals were also observed more in naïve heart 
related to heterotopic transplanted heart in each chamber (LV, RV, LA, RA, and SEP). The 
performance of staining was confirmed by absence of signal in all negative control tissue 
sections. DOR, delta opioid receptor; KOR, kappa opioid receptor; HTH, heterotopic transplanted 
heart; NH, Naïve heart, KOR-1, Green; DOR-1 Red. LV, left ventricle; RV, Right ventricle; LA, 
Left atrium; RA, Right atrium; SEP, Septum. Scale bar, 35.5µm.  
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3.3.7. Co-expression KOR-1 and DOR-1 labeled double immunofluorescence 

immunoreactive signals in heterotopic transplanted heart tissue section 

The double immunofluorescence KOR-1 and DOR-1 labeling immunoreactive signals 
showed co-localization of KOR-1 and DOR-1 in myocytes of heterotopic transplanted 
heart tissue sections (Fig. 30). 

 

Figure: 30. Confocal microscopy of double immunofluorescence DOR-1 and KOR-1 labeled 

immunoreactive signals in heterotopic transplanted heart tissue sections: Co-localization of 
DOR-1 and KOR-1 was detected in heterotopic transplanted heart tissue sections. Note: absence 
of signal confirmed in negative control LV tissue section. KOR, kappa opioid receptor; HTH, 
heterotopic transplanted heart; NH, Naïve heart, KOR-1, Green; DOR-1 Red. Scale bar, 35.5µm. 
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3.3.8. RT-qPCR analysis for expression of Oprd1 and Oprk1 mRNA in rats 

 

In this study, RT-qPCR technique was performed to detect the mRNA transcript 

encoding the three classical opioid receptors (µ, δ, κ) in heterotopic transplanted and 

naive heart in the rat. Data were generated by threshold cycle and Ct values were ranged 

from 24.05 to 28.8 (Oprk1 and Oprd1), 22.05 to 24.05 rGapdh, respectively. The mRNA 

transcript encoding the Oprd1 and Oprk1 was identified in heterotopic transplanted heart 

in atria and ventricles. The relative quantification of mRNA encoding Oprd1 and Oprk1 

showed down-regulation of the mRNA transcript encoding the DOR and KOR in 

heterotopic transplanted rat heart. Moreover, our findings didn`t find the mRNA 

transcript encoding µ-opioid receptors in rat heart even up to 50th amplification cycle 

(Fig. 31). Thus, various previous and our current studies suggest that µ-opioid receptor is 

not expressed in rats` cardiac tissues. However, δ and κ-opioid receptors are detected in 

all chambers of the rat heart and down-regulated in heterotopic transplanted heart.   

 

Figure: 31. Relative Oprd1 and Oprk1 mRNA expression: A&B: mRNA encoding DOR and 
KOR was detected and downregulated in HTH. rGAPDH gene was used as a reference gene to 
normalize sample variations; however, Gene encoding Oprm1 didn`t express in rat heart. C: 
Agarose gel electrophoresis of RT-qPCR product of Oprm1 (Fig. 31: 1 & 2) showing absence of 
rOprm1. Fig. C. 3&4 showing rGAPDH. Oprd1, Gene encodes Delta Opioid Receptor; Oprk1, 
Gene encodes kappa opioid receptor; Oprm1, Gene encodes Delta Opioid Receptor; rGAPDH, rat 
Glyceraldehyde-3-phosphate dehydrogenase 
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3.3.9. Western blot analysis of DOR-1 and KOR-1 immunoreactive proteins in 

heterotopic transplanted and naïve heart tissue in rats 

Western blot analysis of KOR-1 and DOR-1 immunoreactive proteins in heterotopic 

transplanted and naïve heart was done and found at the estimated molecular weight. As 

shown in figure 32 the amount of KOR in HTH (30.13±2) compared to naïve heart 

(46.61±4.4), p=0.03. Similarly, δ- ORs proteins were lowered in HTH (Fig. 32). The 

reduction in the amount of κ- & δ- ORs proteins in HTH was also supported by their 

reduced mRNA levels.  

 

Figure: 32. Immunoblot analysis of KOR-1 and DOR-1 proteins in heterotopic transplanted 
and naïve heart tissue in rat: KOR-1 and DOR-1 proteins analysis was done using 25ug of 
protein per 25ul which was loaded to 10% acrylamide gel. NH, Naïve heart; HTH, transplanted 
heart. Quantification of KOR-1 and DOR-1 proteins optical density was done using ImageJ. 
Mean ± STD, p<0.05 was considered as statistically significant. 
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3.3.10. Apoptotic nuclei in heterotopic transplanted and naïve heart tissue sections 

in rat and TUNEL positive nuclei count 
 

TUNEL positive nuclei were observed in heterotopic transplanted heart with a significant 

elevation (6.9±74) compared to naïve heart (3.33±0.68), p<0.001 (Fig. 33). Moreover, 

significant elevated apoptotic nuclei also observed in the interstitial cells. It is known that 

many regulatory proteins (Bcl2, Bax) play role in apoptosis. The abnormally elevated 

apoptosis that brings cell death later express Bax that elevates apoptosis and could 

decrease an apoptotic inhibitor (Bcl2) that could cause necrosis of myocytes.  

 

Figure: 33. Representative photomicrographs of TUNEL positive nuclei of myocytes in 

heterotopic transplanted and naïve heart tissue sections and apoptotic nuclei counts: 
TUNEL positive apoptotic nuclei found significantly elevated in heterotopic transplanted heart 
compared to naïve heart. Mean±STD, P<0.05 was considered as significant. TUNEL+ 
Hematoxylin (H); HTH, Heterotopic transplanted heart; NH, Naïve heart; OI, Oil immersion; 
TUNEL, Terminal deoxynucleotidyl transferase; dUTP, 2'-deoxyuridine 5'-triphosphate; Nick 
End Labeling; +VE CTRL, Positive control; -VE CTRL, Negative control. 
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3.4. Discussion 

 

Before two decades a study of ORs expression during heart ontogeny has shown the 

existence of ORs in Wistar Kyoto rats' heart in the early developmental period. On the 

other hand, the same study has demonstrated a reduction and disappearance of mu-OR 

after 7days of the postnatal period (Zimilichman et al., 1996). Thus, Kappa OR is the first 

to be detected developmentally in mouse heart (Zhu et al., 1998). This study shows the 

expression of δ & κ-ORs in rat heart as shown in porcine (Karlsson et al., 2012), in all 

chambers of human but in another study, it is only seen in human atria (Lendeckel et al., 

2005; Sobanski et al., 2014). 

 

There is a great disparity and debates regarding the distribution of opioid receptors 

subtype in the heart chambers (Krumins et al., 1985) and between species (Karlsson et 

al., 2012). Many studies support the presence of kappa and delta ORs in rat heart (Ela et 

al., 1997; Ventura et al., 1989), whereas some studies show that mu-OR is decreased or 

not expressed in heart tissue (Theisen et al., 2014), or is disappeared after seventh day of 

postnatal age (Zimlichman et al., 1996). The findings of this study shown that mRNA 

encoding Oprk1 and Oprd1 delta and kappa opioid receptors are detected in rat heart of 

all chambers, and interestingly, the study has shown a reduction of DOR-1 and KOR-1 

immunoreactivity at the protein levels in heterotopic transplanted rat heart 

tissues. However, mRNA encoding Oprm1 and proteins on cardiomyocytes of 

transplanted rats` heart are not detected. A similar immunohistochemical result has 

reported recently that MOR is absent in any of the cardiac tissue in porcine (Theisen et 

al., 2014).   

 

In the developmental study, Mousa and colleagues (2011) have shown co-localization of 

DOR-1 with VAChT principal neurons from the first day of birth and with small 

intensely fluorescent catecholaminergic cells and CGRP within intracardiac ganglia and 

atrial myocardium. They also demonstrated the co-expression of DOR with neuronal 

markers increasing with age (neonatal to adulthood) (Mousa et al., 2011) and gradual 

increase of DOR mRNA, protein, and binding sites from postnatal day 1 towards 

adulthood. These developmental expressions of opioid receptors and sympathetic, 
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parasympathetic and sensory innervations of the heart imply the regulation of opioid 

receptors by cardiac autonomic innervations. Likewise, in our immunohistochemical 

study, co-localization of the neuronal marker (CGRP-1) and kappa opioid receptor 

signals are detected in both naive and heterotopic transplanted heart in the rats.  

 

In another immunohistochemical localization report, delta and kappa ORs and CGRP 

sensory nerve fibers are expressed in heart tissue done by using only two individuals of 

sudden death (Sobanski et al., 2014); however, in transplanted and STZ-induced diabetic 

rats has not been addressed and/or characterized. Sobanski et al., 2014 employed lacking 

quantitative approaches, in transplanted heart model for opioid receptors characterization 

studies in the denervated heart. Thus, this study might show the correlation of 

denervation and opioid receptors regulation. 

 

3.5. Conclusions 

The findings of this study reveal down-regulation of delta and kappa ORs and elevated 

apoptotic nuclei in heterotopic transplanted heart. Therefore, heterotopic transplanted 

model in rats may expound the role of opioid receptors (δ & κ) in cardioprotection and 

pathophysiology in cardiac transplants. 

 

 

 

 

 

 

 

 

 

 

 



108 

 

CHAPTER FOUR 

4. Characterization of opioid receptors in STZ-induced diabetic heart 
of rats 

4.1. Introduction 

 

The term "diabetes" was first coined by Apollonius of Memphis around 250 BC (Mandal, 

2012). Later, in 1675, the word "Mellitus" was added after the sweetness of urine and 

blood had been noticed by the ancient Greeks, Chinese, Egyptians, Indians, and Persians 

(Mandal, 2012). In diabetic patients, ischemic heart disease is a major complication and 

remains the first cause of death worldwide (Wider and Przyklenk, 2014).  

 

Globally, an estimated 108 million in 1980 (WHO, 2016), 171 million in 2000 (Wild et 

al., 2004), 422 million in 2014 adult people were living with diabetes (WHO, 2016). It is 

projected to rise to 366 million in 2030 (Wild et al., 2004). Over 4.3 million cases of 

diabetes in Italy were reported in 2000. The global prevalence of diabetes for all age-

groups was estimated to be 2.8% in 2000 (Wild et al., 2004). Nowadays, it is alarmingly 

rising from 4.7% to 8.5% in the adult population (WHO, 2016). In diabetes, nerve 

damage is mentioned among the major complications such as heart attack, stroke, kidney 

failure, leg amputation and vision loss (WHO, 2016). Moreover, it could also result in 

fetal death during pregnancy due to poorly managed diabetes (WHO, 2016).  

 

Diabetic neuropathy (DNP) is the most common microvascular complication of diabetes 

mellitus (DM) (Shaikh and Somani, 2010; Bansal et al., 2006), which occurs in more than 

50% of patients and affects nerve fibers of peripheral nervous system (Erbas et al., 2016; 

Said, 2007). It leads to allodynia, nerve conduction slowing and progressive sensory loss 

(Parkar and Addeoalli, 2014). This may affect on the level of opioid receptors expression 

in the heart of neuropathic model of diabetic rats. Several investigators have studied 

about diabetes to battle its complications. Thus, this study may contribute to filling the 

gap through a study that aimed to characterize the expression of opioid receptors (mu, 

delta, and kappa) in the STZ-induced neuropathic model of diabetic rat heart. 
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4.2. Materials and methods 

4.2.1. Experimental design 

The experimental design consisted of two groups of Sprague-Dawley rats: control (n=11) 

and treated (n=10) groups. The control group was given 50mM citrate buffer. The treated 

group was injected with Streptozotocin (STZ) at a single dose of 65mg/kg/bw diluted 

with citrate buffer.  

 

4.2.2. Experimental animals and housing 

Adult male Sprague-Dawley rats (weighing 300-350g) were obtained from Charles River 

Laboratories, Italy. They were housed 2 per cage in a setup cage system at 

Interdepartmental Center of Experimental Research Service/CIRSAL, the University of 

Verona at a temperature controlled room (21±2oC) with food (ad libitum) and water 

available under a 12 hours’ light/dark cycle. They were acclimatized for a week before 

the beginning of the experiment in order to adapt them to the laboratory conditions. All 

tests were done during the light hours. The study was carried out in accordance with the 

ethical guidelines for investigations of experimental pain in conscious animals 

(Zimmermann, 1983; CIRSAL, University of Verona).   

 

4.2.3. Drugs and citrate buffer (0.1M) preparation 

Citrate buffer (100ml) was prepared by adding 100ml of ddH2O to 294.12mg of 

trisodium citrate dehydrate and 210.14mg of citric acid monohydrate each separately. 

Thereafter, 55.5 ml and 45.5ml of each solution were mixed to obtain citrate buffer (pH 

4.5). The buffer was filtered with a 20um filter using filtration vacuum before used. This 

buffer was prepared during rats` fasting time. Streptozotocin (STZ) mixed anomers (STZ, 

product ref. S0130-500MG, Lot. No. WXBC2044V, SIGMA-Aldrich Chemie GmbH 

Kappelweg Schnelldorf, Germany) was dilute in 1ml of citrate buffer (10mM, pH 4.5) to 

maintain the stability of STZ solution in 1.5ml microcentrifuge tube covered with 

aluminum foil for each rat. Streptozotocin solution was immediately administered within 

5min of dissolving to prevent degradation of the drug. 
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4.2.4. Preparation of STZ-induced rat model and sample collection 

 

In STZ-induced model of diabetic rats’ preparation, pilot experiment for dosing of the 

drug (STZ) was optimized at different doses to assess survival of rats after STZ i.p. 

injection for the chronic diabetic condition. Among the 10th rats used for the pilot 

experiment weighing ≥400g subjected to the procedure, the survival rate was 70%. Then, 

younger and weighing 300-320g rats freshly prepared 65mg/kg (32.5mg/ml) of STZ 

dissolved in 10mM citrate buffer (45.5ml 0.1M citrate acid and 55.5ml 0.1M Na2HPO4, 

pH 4.5) was injected i.p to overnight fasted Sprague-Dawley rats after measuring fasting 

blood glucose level.  

 

Animals were placed on a regular diet after 4hrs of STZ i.p injection. STZ-injected 

animals exhibited hyperglycemia within 24hrs. The animals with fasting blood glucose 

levels ≥250 mg/dl were considered diabetic (Rao et al., 2010; Thakur et al., 2011). 

 

The rats in all groups were sacrificed after six weeks. Heart tissue samples were collected 

from all chambers and septum of the heart both in paraformaldehyde for paraffin 

embedding and in liquid nitrogen for isolation total RNA (RT-qPCR) and proteins 

(western blot).  

 

4.2.5. Body weight and fasting blood glucose level measurement 

Body weights of all groups of the rat were taken at the beginning before STZ injection 

and after three and seven weeks of i.p. injection. Rats were pre-warmed with red lump to 

have more blood in the tail.  The blood collection site of the tail was wiped with 70% 

ethanol (DIAPATH S.p.A, Lot: 2016X01177, Ref. A0123) prior to placed droplet of 

blood on a glucometer test strip. A blood sample obtained by pricking the lateral tail vein 

using a sterile needle and then the blood was gently milked from lateral tail vein and 

placed droplet of blood on a glucometer test strip and read using STAT STRIP
Xpress-i 

glucometer mg/dl (SN 138038215324, Nova Biomedical UK) and STAS-STRIP GLU 

SENSOR (Lot: 0315123309). Fasting blood glucose levels was measured after 24hrs, two 

and six weeks of STZ-induction.  
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4.2.6. Tissue processing, paraffin embedding, and sectioning 

The tissue processing, paraffin embedding, and sectioning were performed as described 

in the second and third chapters. 

 

4.2.7. Hematoxylin and Eosin staining for histopathological study 

Routine H&E staining histo-technique was performed as indicated in the previously 

studies to evaluate any structural abnormalities and level of neuropathy in sections of 

sciatic nerves. Any structural abnormalities of the sciatic nerve in H&E stained tissue 

sections were analyzed with the help of pathologist. 

 

4.2.8. Immunohistochemistry: Immunoperoxidase and Immunofluorescence 

Immunohistochemical studies, such as immunoperoxidase and double 

immunofluorescence (IF) were used done as described in previous studies to evaluate 

MOR-1, DOR-1, KOR-1 and CGRP-1 immunoreactive cardiomyocytes, and analyzed for 

relative distribution of opioid receptors on STZ-induced diabetic and control rat tissue 

sections. 

 

In immunoperoxidase staining was performed using markers for detection of MOR-1, 

DOR-1 and KOR-1 (a rabbit polyclonal antibody (H-80): Cat. No. sc-15310, a goat 

polyclonal antibody (M-20): Cat. No. sc-7492, and a mouse monoclonal antibody (D-8): 

Cat. No. sc-374479, respectively).  Secondary Abs (anti-rabbit IgG (H+L) biotinylated 

(BA- 1100, Lot no. ZA0319) and anti-goat IgG (H+L) biotinylated (BA- 9500, Lot no. 

Z0326), and anti-mouse Abs made in a horse for MOR-1, DOR-1, and KOR-1, 

respectively). Primary Abs markers were diluted 1:250, while secondary at 1:1000 in 

PBS containing 2% NHS and 0.25% Triton X-10. 

 

Double immunofluorescence was also performed for the concurrent visualization of 

MOR-1, DOR-1 and KOR-1 immunoreactive signals on cardiomyocytes in overnight 

incubation with mixture of primary antibodies (MOR-1, DOR-1, KOR-1) with three hrs 

different fluorescent secondary antibody Alexa Fluor 568 donkey anti-rabbit IgG (H+L) 

(1:1000, Ref. A10042, Lot no. 1668655, Eugene DR. USA), Alexa Fluor 488 donkey 
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anti-goat IgG (H+L) (1:1000, A11055, Lot no. 1627966, Eugene DR. USA), and anti-

mouse species-specific fluorescent secondary antibodies raised in donkey supplied from 

Life Technologies, Italy, Europe. The cell nuclei stained blue using Hoechst 33342 at a 

dilution of 1:10,000 (Thermo Fisher Scientific). Finally, drops of mountant were added 

on sections and cover with rectangular microscope cover glasses (ECN631-1574, Lot: 

29339 017, 24x50mm), Germany. The pressure was applied gently over cover glasses to 

remove bubbles before sealing of edges of cover glasses with nail polish and then stored 

at -20oC until analysis was done by inverted confocal microscope.   

4.2.9. Immunoblotting 

Immunoblotting analysis with the method indicated earlier. Protein concentration was 

measured using BCA assay (Fig. 34). An equal amount of protein (35µg/25µl) was 

loaded from tissue homogenate in the wells of the SDS-PAGE gel, along with Mol. Wt. 

marker (SIGMA, Aldrich). 

 

Figure: 34. BCA standard curve for protein concentration measurement: BCA assay was 

done to measure unknown protein concentration after standard curve was plotted using known 

BSA protein concentrations. The unknown concentration of solutions of different groups of rats` 

heart tissue samples was calculated at 560nm. 

 

The membrane incubated with specific primary antibodies anti-DOR-1 (goat) and anti-

KOR-1 (mouse) at a dilution rate of 1:1000 in blocking buffer overnight, and then 
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incubated with appropriate secondary antibodies. The bands were visualized by enhanced 

chemiluminescence.  

 

4.2.10. Microscopy, optical density measurement and analyses of MOR-1, DOR-1, 

and KOR-1 immunoreactivity 

Microscopy, counting, and analyses of DOR-1, KOR-1, and CGRP-1 IRC were done as 

indicated in previously studies. Prior to counting, slides were blindly assigned with code 

number and sections thickness was measured. Counts of KOR-1 immunoreactive 

cardiomyocytes were performed using 20X objective at 3 to 3.5µm.  

 

The only observed longitudinal full length of KOR-1 immunoreactive cardiomyocyte in 

the focal field of the live preview was used as a counting unit. Four sections were 

selected randomly from each sample. The counting was done using Image-Pro Plus 

software (7.0, 2009, QImaging, Media Cybernetics, Silver Spring MD, USA) installed on 

a computer with workspace preview for KOR immunoreactive cells using circle classed 

symbol and tag points to count the number of immunopositive cells. 

 

Optical density measurement was done for DOR-1 and CGRP-1 using Figi version of 

ImageJ to quantify the strength of immunoperoxidase staining in heart tissue sections of 

MOR, DOR, and CGRP-1 proteins in STZ-induced diabetic rats. Optical density/OD 

methods (Image-adjust, color-deconvolution/H DAB)-threshold with dark background) 

indicated by Jensen, 2013 was used with the following formula: OD = log (255 ÷ Mean 

Intensity). 

 

Laser scanning confocal microscope (Carl Zeiss LSM 510, Göttingen, Germany) was 

used for obtaining multicolor optical images from sections of specimens of STZ-induced 

diabetic and control heart. Immunofluorescence images were further harmonized by 

using Leica LAS AF lite software for better contrast. 
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4.2.11. Cryosectioning, RNA isolation, and synthesis of cDNA 

 

The same method was applied as indicated the earlier study of Heterotopic transplanted 

heart for cryo-sectioning, RNA isolation, cDNA synthesis, and quantitative Real-Time 

PCR.The primers sequence used for real-time PCR SYBR Green amplification were 

forward rat 5`-3` (Oprm1, CTAACCACCAGCTAGAAAATC; Oprd1, 

AATCGTCCGGTACACTAAG; Oprk1, GTCATCATCCGATACACAAAG) and 

reverse rat 5`-3` (Oprm1, TTTGAATGCAGGATCAGATG; Oprd1, 

AACATGTTGTAGTAGTCAATGG; Oprk1, GGCCAAGAATTCATCAAGTAG) 

supplied by SIGMA Aldrich. 

 

4.2.12. TUNEL Assay 

 

The TUNEL assay was performed as indicated earlier. All TUNEL staining solutions 

were prepared ahead using the protocol and AP cell death detection kit supplied from 

Roche for fluorescent and light microscopic analysis.  

 

4.2.13. Statistical analysis 

 

Repeated measures ANOVA with Bonferroni comparison test were used to evaluate body 

weights and fasting blood glucose levels before and after STZ-injection of rats.  
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4.3. Results 

 

4.3.1. Observation, body weight, fasting blood glucose level measurement, and 

histopathology of pancreas 

 

The pilot experiment evaluating survival rate of rats after i.p. STZ-injection revealed 

higher rate (90%) of death in older and >400g weighing rats within 1 week. Thereafter, 

younger rats weighing 320-380g were injected with STZ. Rats became diabetic within 

24hrs following the injection, and they displayed common symptoms of diabetes such as 

weight loss, polyuria, glucosuria, drowsiness, polydipsia (Okon et al., 2015), and 

behavioral signs of toxicity (erection of hairs, slow locomotion) Fig. 35. 

 

Figure: 35. Streptozotocin-induced diabetic and normal rats: Rats before and after (Fig.35 B) 
STZ-i.p. injection. STZ-induced diabetic rats showed (Fig.35 B) showed excessive thirst, 
drowsiness, erection of hairs, and production of large volume of urine. 
 
Body weights were measured at the beginning, and 24hrs, 3 weeks and 7 weeks following 

STZ-injection. Average body weights of rats following three (337±12, P<0.05) & seven 

(319±15.57, P<0.001) weeks of the injection showed statistical significant reduction 

compared to initial body weight (350±6.124). However, 24hrs following the injection did 

not show any significant difference matched up to initial body weight (Fig. 36).  

 

Fasting blood glucose levels were measured before, and after 24hrs and 7weeks of STZ-

injection. Average fasting blood glucose levels (FBGL) following 24hrs (348.33±38) and 

seven weeks (497.44±26.5) of STZ injection were found statistically significant 

compared to initial fasting blood glucose levels (110.44 ±10.36) P<0.001. The proportion 
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of FBGL was 22.2%, 70%, and 7.78% after 24hrs, 7 weeks, and initial FBGL, 

respectively (Fig. 36). 

 

Histopathological observation of H&E stained pancreatic tissue sections in diabetic rats 

showed abnormal distribution and damage of of langerhans islet cells such as shrinkage 

and necrotic of islet beta-cells due to the effect of Streptozotocin (Fig 36 B2). In the 

contrary, the control rats demonstrated normal islets distributions.  

 

Figure: 36. Higher percentage of fasting blood glucose level and histopathology of 
pancreatic tissue sections of diabetic rats: A: The pie chart illustrating the percentage of FBGL 
which was measured at the beginning of the experiment, after 24hr and 7 weeks of STZ-injection. 
B1&B2: Pancreatic tissue of normal and diabetic rats. B2: Pancreatic tissue sections showed 
abnormal distribution and damage of of langerhans islet cells such as shrinkage and necrotic of 
islet beta-cells due to the effect of Streptozotocin, H&E stain 400x magnification) FBGL, Fasting 
blood glucose level; CTRL, Control; DM, Diabetic mellitus, STZ, Streptozotocin; i.p, 
Intraperitoneal.  
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4.3.2. Histopathological observation of H&E stained sciatic nerve and heart tissue 

sections in diabetic and control rats` heart 

 

Histopathology of sciatic nerve and heart tissue sections was evaluated.  Transverse (Fig 
37. A1, B1) and longitudinal (Fig. 37 A2, B2) sections of sciatic nerve tissue of STZ-
induced diabetic rats demonstrated an increase in connective tissue (CT) fibrosis around 
the epineurium and axonal swelling (Fig.37. B1, B2) which are common pathological 
features of neuropathic nerve; however, these changes were not observed in non-diabetic 
rats (Fig.37. A1, A2). Heart tissue sections of diabetic rats showed abnormally arranged 
and disorganized cardimyocytes with first stage of fibrosis. However, normal, single and 
oval centrally located nuclei of myocytes with regularly arranged cardiac fibers were 
observed in control rats (Fig.37. D). 

 

Figure: 37. FFPE tissue histopathological evaluation of diabetic rat heart and sciatic nerve 

tissue sections: A: The above figures illustrated the effect of STZ- induced diabetes on 
microscopic morphological changes in rats` sciatic and heart tissue. Cross-section (Fig.37. A2) 
transverse sections (Fig. 37. B2) of sciatic nerve showed CT with fibrosis around epineurium and 
axonal swelling in STZ-induced diabetic rats (400x magnifications) scale bar = 50microns. C: 
Heart tissue sections of diabetic rats (DM) showed abnormally arranged and disorganized 
cardimyocytes with first stage of fibrosis. However, normal, single and oval centrally located 
nuclei of myocytes with regularly arranged cardiac fibers were observed in control (200x 
magnifications) scale bar = 100microns. STZ, Streptozotocin; CTRL, control sciatic nerve tissue 
section; CT, Connective tissue; FFPE, Formalin fixed paraffin embedded; DM, Diabetic Mellitus; 
CTRL, Control. Scale bar, 50microns 
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4.3.3. Immunoperoxidase stained DOR-1, KOR-1, MOR-1, and CGRP-1 

immunoreactive myocytes and their optical density in heart tissue of diabetic 

and control rats 

Microscopic observation of DOR-1 and KOR-1immunoperoxidase-stained tissue sections 

of heart demonstrated poor expression in diabetic rats compared to control heart tissue 

sections (Fig.38). Moreover, CGRP-1 immunoreactivity expressed densely as a sparse 

individual fiber of myocytes (OD: 0.45±0.04, CTRL, 0.101 DM, p=0.01) and correlated 

with the expression of DOR-1 (CTRL, 0.45±0.05; DM, 0.094±0.04, p=0.01); however, 

MOR-1 was not expressed in both groups. As shown in the graph, KOR-1 IRC counts 

significantly declined (7.4±2.702) in STZ-induced diabetic rats compared to control 

(10.4±2.881) P=0.0036.  
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Figure: 38. Chamber wise representative images of immunoperoxidase stained DOR-1, 

KOR-1, CGRP-1, and MOR-1 immunoreactivity in diabetic and control rat heart tissue 
sections: The immunoperoxidase DOR-1 and KOR-1 reactivity  showed poor and lightly stained 
immunoreactive fibers expression in diabetic rat heart tissue sections. On the contrary, control 
heart tissue showed marked expression of DOR-1, KOR-1, and CGRP-1, but, not MOR-1. The 
above graphs represent OD of DOR-1 and CGRP-1, and IRC count of KOR-1 quantified using 
Figi version of ImageJ from which OD calculated and Proplus live preview IRC count, 
respectively. The strength of immunoperoxidase DOR-1 and CGRP-1 proteins reactivity in heart 
tissue sections was significantly reduced in diabetic rats compared to control. Number of KOR-1 
IRC in diabetic rat was reduced compared to control. STZ, Streptozotocin; IRC = 
Immunoreactive cells, DOR-1, Delta Opioid Receptor; MOR-1, mu Opioid Receptor; CGRP-1, 
Calcitonin Gene Related Peptide; LV, left ventricle; RV, right ventricle; LA, left atrium; RA, 
right atrium; SEP, septum; DM, Diabetic mellitus; DIA, Diabetes; IRC, Immunoreactive cells; 
OD, Optical density. Scale bar, 100µm. 
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4.3.4. Immunofluorescence stained DOR-1, KOR-1 and CGRP-1 containing signals 

in diabetic and normal heart tissue sections 

Imunofluorescence labeled KOR-1, DOR-1, and CGRP-1 immunoreactivity was done in 
all chambers of the heart. KOR-1 and CGRP-1 immunofluoresce weak signals were 
detected in diabetic compared to control rats’ heart tissue sections. However, there was 
no any observed change for immunoreactive DOR-1 in diabetic and normal heart except 
a slight increase in number of signals in control. CGRP-1 Immunofluoresce reactive 
myocytes were apparently expressed in normal heart tissue compared to diabetic rats`s 
heart tissue sections (Fig. 39). 

 

Figure: 39. The above figure illustrates chamber wise confocal microscopy of 
immunofluorescence DOR-1, KOR-1, and CGRP-1 containing immunoreactive signals in 
fibers of diabetic and control rats` heart tissue sections: STZ, Streptozotocin; DOR-1, Delta 
Opioid Receptor; KOR-1, Kappa Opioid Receptor; CGRP-1, Calcitonin Gene Related Peptide; 
LV, left ventricle; RV, right ventricle; LA, left atrium; RA, right atrium; SEP, septum. Scale bar 
= 35.3µm.   
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4.3.5. Delta and kappa opioid receptors mRNA expression in hearts of diabetic rats 

Real-time RT-qPCR assay was used to evaluate the relative expression of Oprd1, Oprk1 
and Oprm1 in diabetic heart tissue. This assay analysis showed Oprd1 and Oprk1 mRNA 
expression in the heart tissue of rat were significantly reduced (Fig. 40) in diabetic rats. 
However, Oprm1 was not amplified even at 50 cycles in both control and diabetic rat 
heart. The significant reduced expression of Oprd1 and Oprk1 mRNA were confirmed by 
immunoblot analysis and immunohistochemical localization. Therefore, this study found 
that mRNA encoding Oprd1 and Oprk1 transcripts were detected in hearts of rat with 
down-regulation in diabetic heart (Fig. 40).  

 
Figure: 40. Relative Oprd1 and Oprk1 mRNA expression:  Real-time RT-qPCR was used to 
evaluate the expression of Oprd1 and Oprk1 mRNA in diabetic rats` heart. The expression of 
Oprd1 and Oprk1relative quantification normalized against reference gene (rGAPDH). The fold 
changes were calculated using 2-DeltaDeltaCt. Oprd1, Gene encodes Delta Opioid Receptor; Oprk1, 
Gene encodes kappa opioid receptor; GAPDH, Gene encodes Glyceraldehyde-3-phosphate 
dehydrogenase; NH, Normal heart. 
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4.3.6. Expression of κ- and δ- opioid receptors immunopositive proteins in hearts of 

diabetic and normal rats 

In western blot analysis, KOR-1 and DOR-1 expression were evaluated in both diabetic 

and normal heart tissue. Expression of KOR-1 proteins was significantly reduced in 

diabetic heart (0.17±0.033) compared to control rats heart (0.73±0.09), p=0.0059 (Fig 

41). Moreover, optical density of DOR-1 reactive proteins insignificantly declined in 

diabetic heart (0.32±0.1) compared to control heart (0.74±0.04), p=0.06. 

 
 
Figure: 41. Western blotting analysis of KOR-1 and DOR-1 immunoreactive proteins in 
diabetic and control heart tissue of rats. 30µg of protein was loaded to each well. Data 
expressed as mean±SD, P<0.05, standardized with α-tubulin. KOR-1, Kappa opioid receptor; 
DOR-1, Delta opioid receptor; DM, Diabetic Mellitus; IR, Immunoreactive; OD, Optical density.  
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4.3.7. Apoptotic nuceli in heart tissue sections of diabetic and normal rats and 

TUNEL positive nuclei counts 
 

TUNEL assay was performed to evaluate number of apoptotic nuclei in diabetic and 
normal heart tissue sections. A significant elevation TUNEL positive myocytes in 
diabetic rats` heart (9±082) was found compared to control hearts of rats (2.25±0.95) 
P<0.001. Moreover, it was also observed more apoptotic nuclei in diabetic heart tissue 
sections compared to normal heart (Fig. 42). 

 

Figure: 42. Representative photomicrographs of TUNEL positive nuclei myocyte of  STZ-
induced diabetic and control rat heart tissue sections: There was frequent appreance of 
TUNEL stained apoptotic nuclei in diabetic rat heart tissue compared to control. TUNEL+ 
Hematoxylin (H). STZ; Streptozotocin. TUNEL positive nuclei in diabetic rats’ heart tissue 
sections showed a significant elevation compared to CTRL. Mean±STD, P<0.05 was considered 
as significant. STZIDM, Streptozotocin induced diabetic mellitus. STZ; Streptozotocin; CTRL, 
Control; TUNEL, TdT, Terminal deoxynucleotidyl transferase; dUTP, 2'-deoxyuridine 5'-
triphosphate; Nick End Labeling; +VE CRTL, Positive control; -VE CTRL, Negative control. 1, 
LV; 2, RV 
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4.4. Discussion 

 

It has been established previously that opioid receptors are present in the heart (Theisen 

et al., 2014; Sobanski et al., 2014; Cao, 2003; Patel et al., 2006; Weil et al., 1998; 

Howells et al., 1986). The findings of this study confirm the presence of κ and δ opioid 

receptors in streptozotocin (STZ)-induced diabetic rats` heart tissue. However, MOR-1 is 

not expressed in STZ-induced diabetic rats myocardial tissue. 

 

Apart from, the exhibits reduction of optical density of KOR-1 and DOR-1 

immunoreactivity in STZ-induced diabetic rats` heart, this reduction is correlated with a 

sensory neuronal marker (CGRP-1). Co-localization of the neuronal marker (CGRP-1) 

and kappa opioid receptor signals are detected in hearts of diabetic rats. The selective 

expression of these distinct receptors (Gullberg, 1986) in diabetic heart might show neuro 

sensitivity of opioid receptors in the diabetic heart.  

 

The findings of this study have shown that mRNA encoding Oprk1 and Oprd1 are 

expressed in rat heart of all chambers and with down-regulation in the diabetic heart. 

Furthermore, western blot analysis has shown lower KOR-1 proteins in diabetic heart. 

The neuropathic conditions observed in the histopathology of diabetic heart and lower 

neuronal marker (CGRP-1) might be one of the reasons for the reduction of δ & κ opioid 

receptors at the protein and mRNA levels. In our TUNEL analysis, it is also shown a 

significant elevation of apoptotic nuclei in the diabetic heart. These alterations suggest a 

tendency of reduction in the pharmacological activities of opioids in the regulation of 

cardiac tissue of neuropathic heart and susceptibility of diabetic rats to a possible 

mechanism that increases the susceptibility of neuropathic heart to ischemia and 

reperfusion injury. 

 

Based on the findings obtained, we further proposed in ischemia-reperfusion model of the 

STZ-induced diabetic to figure out the effects of opioid receptors in ischemia-reperfusion 

injury and intracellular signaling proteins for down-regulation of the receptors in the 
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neuropathic model of STZ-induced diabetic rats using non-selective antagonist 

(naloxone) for the receptors.  
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CHAPTER FIVE 

5. Effects of opioid receptors on signaling proteins in ischemia-
reperfusion injury in STZ-induced diabetic and neuropathic model 
of rats 

5.1. Introduction 

 

Studies have shown possible mechanisms of cardioprotection gained through different 

models (pharmacological, ischemic, and exercise preconditioning) and mediating effects 

of opioid receptors against IRI by cytoprotection abolishing effects of selective and non-

selective antagonist (Headrick et al., 2015; Castedo et al., 2005). The down-regulation of 

opioid receptors in heterotopic transplanted heart shown in our previous three 

characterization studies directs to do further convenient study in transplanted heart after 

ischemia and reperfusion (IR) to find out which signaling pathways involved in the 

alteration of on the expression of the delta and kappa opioid receptors in transplanted 

heart. However, due to the technical complexity to combine transplantation and IR 

models, we shifted the study to diabetic neuropathic and IR-induced rat models.  

 

Therefore, this study was aimed to compare levels of pro-survival signaling proteins 

phosphorylation, the extent of fragmented DNA (apoptotic nuclei), and infarct size in IR-

induced rats in the presence of naloxone. Moreover, concurrently any histopathological 

abnormalities of heart tissues in diabetic IR-induced rats were evaluated. This study 

contributes insight and better understanding on levels pro-survival signaling proteins due 

to inhibition of the receptors.  

 

The diabetic condition of rats was confirmed through lower fasting blood glucose level, 

body weight, and abnormal distribution of islet cells (shrinkage, necrotic islet cells) of 

pancreas prior to IR-induced cell signaling studies after blockade of receptors.  A 

histopathological observation was also confirmed neuropathy in sciatic nerve in diabetic 

rats. 
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Co-expression of delta and kappa ORs with neuronal markers (CGRP-1) in the heart 

tissue that is shown in our current, and (CGRP-1, PGP9.5) in previous studies done by 

Sobanski et al., (2014) implicate their connection with the down-regulation of opioid 

receptors in neuropathic and diabetic rats. Activation of DOR suppresses calcineurin and 

activates extracellular signal-related kinases (ERK1/2) which are thought to interact with 

the mechanism involved in cardioprotection (Rungatscher et al., 2013).  

 

5.1.1. Ischemia and reperfusion 

 

Ischemia is a serious condition in which there is inadequate blood flow and oxygen to a 

specific part of the body and can occur in any muscle group, organ, or tissue in the body 

(VDF, 2012) from a major contributor (atherosclerosis) due to risk factors, such as 

smoking, advanced age, high cholesterol, high blood pressure, diabetes, a family history 

of cardiovascular disease, sedentary lifestyle, and obesity (VDF, 2012). It contributes to 

the pathophysiology of many conditions, including myocardial infarction, peripheral 

vascular insufficiency, stroke, and hypovolemic shock (Collard and Gelman, 2001).  

 

Cellular processes are rapidly activated in response to ischemia reperfusion-induced 

stress. The ischemic part is a region of tissue that is immediately distal to an occluded 

artery, undergoes rapid, anoxic cell death within minutes of ischemia formation. 

Irreversible processes including mitochondrial collapse, rapid energy depletion, and ion 

pump failure result in large increases in intracellular calcium, extracellular potassium, 

and edematous cell swelling which are characteristics of necrotic cell death. Reperfusion, 

restoration of blood flow to an ischemic part is essential to prevent irreversible cellular 

injury. However, reperfusion may expand tissue injury in excess of that produced by 

ischemia alone (Collard and Gelman, 2001). Ischemia–reperfusion injury (IRI) is a 

cellular damage after reperfusion of previously viable ischemic tissues. 
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5.1.2. Roles of opioid receptors in ischemia-reperfusion injury 

 

Evidence regarding the role of local opioids and opioid receptors in regulation of 

cardiovascular physiology and IRI has shown that activation of opioid receptors in the 

reduction of myocardial IRI through selective δ-opioid agonists when given acutely 

before ischemia and reperfusion (Tanaka et al., 2014).  In a study, using administration of 

a potential and selective kappa opioid agonist, it has also shown antiarrhythmic effects 

depending on the activation of the k-opioid receptor (Tsibulnikov et al., 2015).  

 

Figure: 43. Intracellular signal pathways coupled to the opioid receptors showed in 

ischemia-reperfusion injury of heart tissue and cardioprotection and apoptotic 
pathways: Opioid receptors antagonist leads to inactivation of P13K/Akt and risk 
pathways MAPKs (ERK) JAK-STAT signaling, phospho-regulation of effector 
molecules such as GSK3β and m-TOR. Naloxone (opioid receptor non-selective 
antagonist) may contribute to inactivation of the cardioprotective survivor activating 
factor enhancement (SAFE) pathways. 
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5.1.3. Pathophysiology of ischemia and reperfusion injury 

 

Ischemia/reperfusion injury/IRI remains a serious problem affecting graft survival and 

outcome of transplantation. In its severest form, I-R injury results in multiple organ 

dysfunction syndromes (Verma et al., 2002). The myocardium can tolerate only up to 

15min of severe and even total myocardial ischemia without resultant cardiomyocyte 

death (Verma et al., 2002). The restriction of blood supply to heart tissues that damage of 

cardiomyocytes can be reversible with prompt arterial reperfusion (Verma et al., 2002). 

The ischemic part undergoes rapid and anoxic cell death within minutes of ischemia 

formation. Irreversible processes including mitochondrial collapse, rapid energy 

depletion, and ion pump failure result in large increases in intracellular calcium, 

extracellular potassium, and edematous cell swelling which are characteristics of necrotic 

cell death.  

 

In general, the ischemia, in cellular metabolic and ultrastructural levels, results in a 

variety of changes, including alteration of membrane potential, an increment of 

intracellular ions (Ca2+/Na2+) and hypoxanthine, reduction of ATP, phosphocreatine, and 

glutathione. It can also result in cellular acidosis. Ischemia-induced decreases in cellular 

oxidative phosphorylation results in a failure to resynthesize energy-rich phosphates, 

including ATP and phosphocreatine. Membrane ATP-dependent ionic pump function is 

thus altered, favoring the entry of calcium, sodium, and water into the cell. Furthermore, 

adenine nucleotide catabolism during ischemia results in the intracellular accumulation of 

hypoxanthine, which is subsequently converted into toxic reactive oxygen species (ROS) 

upon the reintroduction of molecular oxygen. 

 

During ischemia, cellular ATP is degraded to form hypoxanthine. Normally, 

hypoxanthine is oxidized by xanthine dehydrogenase to xanthine. However, during 

ischemia, xanthine dehydrogenase is converted to xanthine oxidase. Unlike xanthine 

dehydrogenase, which uses nicotinamide adenine dinucleotide as its substrate, xanthine 

oxidase uses oxygen and therefore, during ischemia, is unable to catalyze the conversion 

of hypoxanthine to xanthine, resulting in a buildup of excess tissue levels of 
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hypoxanthine. When oxygen is reintroduced during reperfusion, conversion of the excess 

hypoxanthine by xanthine oxidase results in the formation of toxic ROS. 

 

Reperfusion, restoration of blood flow to an ischemic part is essential to prevent 

irreversible cellular injury. However, reperfusion may expand tissue injury in excess of 

that produced by ischemia alone (Collard and Gelman, 2001). Ischemia–reperfusion 

injury (IRI) is a cellular damage after reperfusion of previously viable ischemic tissues. 

The principal mechanisms underlying IRI include oxidative stress during preservation 

and production of excess reactive oxygen species (ROS). Reperfusion of ischemic tissues 

results in the formation of toxic ROS which are potent oxidizing and reducing agents that 

directly damage cellular membranes by lipid peroxidation.  

 

Ischemia, in cellular oxidative phosphorylation, results in a failure to re-synthesize 

energy-rich phosphates. Reperfusion of ischemic tissues results in the formation of toxic 

ROS (superoxide anions, O2 2; hydroxyl radicals, OH2; hypochlorous acid, HOCl; 

hydrogen peroxide, H2O2; nitric oxide–derived peroxynitrite), which are potent 

oxidizing and reducing agents that directly damage cellular membranes by lipid 

peroxidation.  

 

In general, ischemia and reperfusion result in a local and systemic inflammatory response 

characterized by the production of oxidant, complement activation, leukocyte–endothelial 

cell adhesion, transendothelial leukocyte migration, platelet-leukocyte aggregation, 

increased microvascular permeability, and decreased endothelium-dependent relaxation 

(Carden and Granger, 2000; Collard and Gelman, 2001). 

 

5.1.4. Epidemiology of ischemic heart disease 

 

Cardiovascular disease represents the leading cause of death, morbidity and mortality and 

responsible for 17% of all health care related costs (Bokkelen and Werner, 2013). 

Ischemic heart disease (IHD), which comprises of primarily coronary heart disease (Fig. 

44), is the prime manifestation of cardiovascular diseases (CVDs) and causes 46% of 

mortality in men and 38% in women (Wong, 2014). It is a leading cause of death 



131 

 

worldwide (WHO, 2014) and has become a true epidemic that respects no borders. In 

2012, out of 17.5 million people died from CVDs, 7.4 million people died of IHD (Fig. 

43) (WHO, 2014). Three-fourths of global deaths due to coronary heart disease occurred 

in the low and middle-income countries (Gaziano et al., 2010). The burden is expected to 

increase more in these countries in 2030 (Bovet and Paccaud, 2012). The need of method 

of cardioprotection from IR-injury is crucial because hospital mortality in patients with 

acute myocardial infarction is increasing (7.3% in Europe and 13.8% in Russia) 

(Tsibulnikov et al., 2015).  

 

Figure: 44. The 10th leading cause of death in the world: Ischemic heart disease, a number one 
cause of deaths over the past decade, 2000-2012. Reproduced from World Health Organization, 
2014. 
 
 
5.1.5. Signaling pathways 

Many signaling pathways are involved in cardioprotection. Although the role of opioid 

receptors on cardioprotection is well addressed, their protective effects are compromised 

in diabetic hearts as shown in the reported by Lei et al., (2015). It has been reported that 

PKC, PI3 kinase/Akt, ERK1/2, STAT3, and GSK-3β phosphorylation impairment in 
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diabetic hearts (Lei et al., 2015; Wider and Przyklenk, 2014) are the possible potential 

mechanisms that make the diabetic hearts more susceptible to IRI and less sensitive to 

opioid conditioning (Lei et al., 2015). Cross talk of the PI3K-AKT-mTOR pathway with 

Ras/Raf/MAPK pathways is common routes that control responses (Calvo et al., 2009). 

The findings of this study have shown diabetic heart in the presence of naloxone might be 

implicated in a possible mechanism for defective cardioprotection in the diabetic heart. 

 

Akt is one of signaling protein is a serine/threonine kinase that belongs to family of 

protein kinases (protein kinase A/protein kinase G/protein kinase C-like) which possesses 

Threonine308 (Thr308) and Serine473 (Ser473) phosphorylation sites in in the kinase 

domain and in the regulatory domain (Vivanco and Sawyers, 2002). It affects activation 

and proliferation by regulating proteins of cell-cycle machinery, blocking transcription of 

the cell cycle inhibitor, inhibiting anti-proliferative effects of cyclic dependent kinase 

inhibitor (p21, p27) and glycogen synthase kinase-3 (GSK3), activating expression of 

pro-proliferative target genes by preventing β-catenin degradation (Osaki et al., 2004; 

Sarbassov et al., 2005).  

 

The phosphatidylinoisitol 3-kinase (PI3K)- AKT pathway is situated in downstream 

tyrosine kinase receptors (TKRs) and regulates essential cellular functions such as 

proliferation, growth, and survival (Vivanco and Sawyers, 2002). The main downstream 

effectors of the PI3K-Akt pathway involvement is its proliferative and survival responses 

(Vivanco and Sawyers, 2002). The frequent alteration of PI3K-Akt signaling pathway in 

cancers is also mentioned (Calvo et al., 2009). Findings of DeBosch et al., 2006 has 

shown evidence that regulatory role of Akt1 in promoting physiological cardiac 

hypertrophy (growth) while another opposite signaling pathological hypertrophy in mice 

(DeBosch et al., 2006; Walsh, 2006). 

 

Mitogen-activated protein kinase (MAPK/ERK) cascades are a chain of proteins that 

communicates a signal from receptor to DNA that expresses proteins that produce 

changes in the cell. This pathway comprises of many proteins which communicate by 

adding phosphate groups to a neighboring protein (Orton et al., 2005). They are key 
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signaling pathways involved in the regulation of normal cell proliferation, survival, and 

differentiation; and abnormal regulation of MAPK cascades contribute to human diseases 

(Roberts and Der, 2007). ERK is activated by the Raf serine/threonine kinases. Raf 

activates the MAPK/ERK kinase (MEK)1/2 dual-specificity protein kinases, which then 

activate ERK1/2 (Roberts and Der, 2007).   
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5.2. Materials and methods 

 

5.2.1. Experiment design 

The experimental design consisted of 25 Sprague-Dawley rats, weighing 340-380g. Ten 

rats were subjected to characterization study; ten of them were induced at a single dose 

(65mg/kg) injection of STZ diluted with citrate buffer. Rats were survived for seven 

weeks. The control rats were given 50mM citrate buffer. The animals for signaling study 

were designed with ten for STZ-induced diabetic and for 5 controls IR (Table. 7). These 

rats were classified into three groups. Each group consisted of 5 animals. The first group 

was assigned to 20 min of ischemia and 1hr reperfusion/IR-induction with administration 

of naloxone. The second group assigned to be diabetic-IR-induced control. The third one 

subjected to IR-induced control. The naloxone (1mg/kg) obtained from AOUI supplied 

from SIGMA Aldrich was administered via femoral vein. Following NAL administration, 

ligation of left anterior descending artery (LAD) for 20min to induce ischemia, and then 

60 min reperfusion were performed (Table. 7). 

 

In addition, three groups of Sprague-Dawley rats, weighing 350-360g were also used to 

measure the level of infarct size. First group was subjected with IR-induced in the 

presence of naloxone, second group was ischemia-reperfusion induced-control, and the 

third one was healthy controls. Rats weighing 360g were also used to measure the level 

of infarction in IR-induced rats following administration of naloxone, without naloxone 

after IR and in healthy control rats. 

Table: 7. Group of rats, treatments, and duration of ischemia and reperfusion 
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5.2.2. Experimental animals and housing 

 

Male Sprague-Dawley rats (weighing 320-380g) were housed 2 per cage in a setup cage 

system at Interdepartmental Center of Experimental Research Service/CIRSAL, the 

University of Verona at a temperature controlled room (21±2oC) with food (ad libitum) 

and water available under a 12 hours’ light/dark cycle. They were acclimatized for 7 days 

before the beginning of the experiment in order to adapt them to the laboratory 

conditions. All tests were done during the light hours. The study was carried out in 

accordance with the ethical guidelines for investigations of experimental pain in 

conscious animals (Zimmermann, 1983; CIRSAL, University of Verona).   

 

5.2.3. Drugs, and citrate buffer preparation, 

The Streptozotocin mixed and citrate (0.1M) was prepared as indicated earlier in chapter 

four. 

 

5.2.4. Body weight and fasting blood glucose level measurement 

Body weights and FBGL of all groups of the rat were taken at the beginning, 24hr, and 

end diabetic conditions as the method indicated earlier. 

 
5.2.5. Surgical procedure for ischemia and reperfusion and administration of 

naloxone 

 
After stunned the rats with diethyl ether vapors, animals were laid in supine position on a 

flat board, and intubated for oro-tracheal away with a venous cannula 10G, and then rats 

were ventilated by a mechanical respirator to rodents (Rodent Servo Ventilator) with a 

mixture of oxygen and isoflurane 1.5% for the whole duration of the intervention, with a 

fraction of 90% inspired oxygen (FiO2), a tidal volume of 10ml / kg (350-400ml) and at 

respiratory rate of 70/min. The heart was exposed by opening the chest via median 

Sternotomy with Mayo scissors and after placing a retractor between pericardium. The 

left lung border was pushed to the side using a sponge guaze. After incised skin and 

pericardium edge was stitched using 60cm prolene suture needle (lot# JGR906). LAD 
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ligation (Fig. 45) was performed for 20min to induce ischemia at left ventricle (Fig. 45B) 

using prolene 3cm was used to ligate the left anterior descending coronary artery. 

 

Myocardial ischemia was verified by blanching of the LV and by ECG changes, and then 

ligature and PE tubing were removed to perform reperfusion that restores blood flow for 

1hr after 20min occlusion in rats with the help of surgeons at department of Surgery, 

University of Verona using the protocol indicated by Kolk et al., (2009) and 

Samsamshariat et al., (2005) 

 

Figure: 45. Site of left anterior descending artery ligation and injection site for femoral vein 
in rat: The figures (A&B) showing the site of the left anterior descending (LAD) artery ligation 
and (A) injection of naloxone through femoral vein. SVC, superior vena cava; IVC, inferior vena 
cava; LV, left ventricle; RV, right ventricle; RA, right atrium; LA, left atrium; PT, Pulmonary 
trunk; RCCA, right common carotid artery; LCCA, left common carotid artery; BCT, 
Bracheocephalic trunk; RSA, right subclavian artery; LSA, left subclavian artery; INFV, Injection 
of Naloxone through Femoral Vein. 

The opioid receptor antagonist naloxone (NAL) was obtained from AOUI supplied from 

SIGMA Aldrich. Naloxone (0.4mg/kg solution) was administered through femoral vein 

to each treated rat. Following NAL administration, 20 min ischemia and 60 min 

reperfusion were performed. 
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5.2.6. Tissue processing, embedding, and sectioning for TUNEL, IHC, H&E 

 

The collected tissues were fixed with 4% paraformaldehyde and washed with PBS (pH 

7.35, 0.1M). They were dehydrated with increasing ethanol concentration (70% 1x, 90% 

2x, 100 1x). Following dealcolization by two changes of xylene (100%), specimens were 

infiltrated with two changes of molten paraffin wax at 56oc to replace the xylene. Next to 

infiltration, embedding was performed stored at 4oC overnight to form paraffin block. 

Once specimens embedded, they were cut into sections in 3µm thickness and immersed 

into warm (37oC) water bath to remove wrinkles of sections. 

 

5.2.7. Hematoxylin-Eosin staining for histopathological evaluation 

 

Routine H&E staining histo-technique was performed to analyze any structural 

abnormalities of heart and sciatic nerves tissues section with the help of neuro-anatomist 

and pathology specialists. Following tissue processing, embedding and sectioning, the 

sections were immersed in a series of descending ethanol concentration and dipped in 2 

changes of distilled water, and then stained with hematoxylin solution. After a brief 

washing with running tape water, sections were dipped in 2% eosin. Overstaining was 

controlled by washing with tap water. Sections were dehydrated with increasing alcohol 

concentration, and then ethanol was removed from the sections by two changes of xylene 

for its miscibility property with mountant. Finally, sections were covered with cover glass 

and prepared for analysis.  

 

5.2.8. Immunohistochemistry: immunoperoxidase 

 

Immunoperoxidase staining was done as earlier IHC method to evaluate p-p38 (Phospho-

p38 MAPK (Thr180/Tyr182, D3F9, XP®Rabbit mAb) immunoreactive cardiomyocytes 

to analyze relative distribution of P-p38 reactive myocytes CIR, DIR, and DNIR groups. 

A marker used for detection of p-p38 was a rabbit mAb supplied from CSC.  
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5.2.9. Microscopy, p-38 immunoreactive phosphorylation and its IRC counts 

 

Microscopy, immunoreactive/IRC counting, and analyses of p-p38 were done. Counts of 

p-p38 IRC were performed using 200X magnification using Image-Pro Plus software in 

workspace preview as mentioned in previous chapter for KOR-1.  

 

5.2.10. Cryosectioning and western blot analysis 

 

Heart tissue specimens were collected and placed snap frozen in liquid nitrogen with drop 

O.C.T. medium, and then 30 cryosectioned sections from each sample were used for 

lysate preparation using cold lysis buffer (RIPA). The sample were sonicated and 

supplemented with additional protease and phosphatase inhibitors cocktail (3DMSO 

solution 020M4009, P0044-1ml, SIGMA Aldrich) to prevent degradation by proteases. 

Samples were centrifuged at 12,000rpm at 4oC. Tubes were gently removed the 

centrifuge and placed on ice and the supernatant (lysate) aspirated and placed in a fresh 

tube, and then protein concentration was measured using Pierce®BCA (Bicinchoninic 

Acid) protein assay kit, Lot # OH192608 containing detection Reagent A Lot # 

OG190483 Prod # 23228, Reagent B, Lot # OF189971 Prod # 1859078, and Albumin 

Standard, Lot # OG189315 Prod # 23209 supplied from Thermo Scientific. The assay 

solution run in PerkinElmer 2030 Multi-label Reader VICTORTMX4 connected with 

computer through INJECTOR from which standard curve was extracted (Fig. 46).  

 

Equal amount of protein (20µg/20µl) was loaded in the wells of the SDS-PAGE gel, 

along with pre-stained Mol. Wt. marker (SDS7B2, SIGMA Aldrich) to evaluate the 

expression of p-Akt, t-Akt, p-ERK, t-ERK.  
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Figure: 46. BCA standard curve for protein concentration measurement: BCA assay 
was done to measure unknown protein concentration after standard curve was plotted 
using known BSA protein concentrations. Unknown concentration of solutions of 
different groups of rats` heart tissue samples was calculated at 560nm. 
 

Lysate in sample buffer was boiled at 60oC to reduce and denature. Gel acrylamide 10% 

was used in the gel based on the size of protein. Following preparation of stack, the 

separated proteins were transferred in wet with containing 25 mM Tris-base, 0.2 M 

Gycine, 20% methanol, pH 8.5 at 300 mAmps and 100V to PVDF, Lot # RH2217091, 

Prod # 88518, 0.45um, 26.5cm x 3.75m roll (Thermo Scientific). 

 

In antibody staining, the membrane was blocked with 5% non-fat milk in TBS-T (0.1% 

Tween-20, Lot # 8T006910, A4974, 0250, CAS-No: 9005-64-5, AppliChem, Germany) 

at RT. The membrane incubated overnight at 4oC with the following specific primary 

antibodies p-AKT (Ser473, 193H12, #4058) rabbit mAb, t-Akt (pan, C67E7, #4691) 

rabbit mAb supplied from CSC, p-ERK-1&2 (Monoclonal Anti-MAP Kinase 

Activated/monophosphorylated/ Phosphothreonine, #M7802 Ab produced in mouse), and 

t-ERK-1&2 (Anti-MAP kinase, #M5670) supplied from Sigma Aldrich.   

 

After incubation with appropriate secondary antibodies at 1:10000 dilution rates for 2hrs 

at room temperature and three cycles of 5min washes, reactive protein signals/bands in 
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PVDF were developed and visualized in drops of LuminataTM Forte Western HRP 

Substrate (Cat.No. WBLUF0500, Lot No. 140525, Millipore Corporation, Billerica, MA 

01821) solutions for 1min over a supporting membrane (4 IN. X 125 FT. ROLL Lab-

PARAFILM® Pechiney Plastic Packaging, Menash, WI 54952, Chicago, IL, 60631) and 

immediately exposed to autoradiography films for 1 to 2 min using G: Box Chem.XR5 

GeneSys version 1.0.7.0 with Synoptics 5.0MP Camera and 1.4 data base version. 

Finally, densitometric quantification of the immunoreactive bands was performed using 

the ImageJ software.  

 

5.2.11. TUNEL Assay 

 

The TUNEL assay was performed as indicated in earlier chapters. All TUNEL staining 

solutions were prepared ahead using the protocol and AP cell death detection kit supplied 

from Roche for fluorescent and light microscopic analysis.  

 

5.2.12. 2,3,5-triphenyl tetrazolium chloride (TTC) staining 

 

Prior to a well described, simple and accurate 2,3,5-Triphenyl tetrazolium chloride 

(T8877, Lot# BCBR5461V, P. code 101785783, Sigma, Life Science, Austria) staining, 

1% of (1g/100ml) TTC solution was prepared in phosphate saline (PBS, 8.6pH) in dark. 

The solution was pre-warmed to 37oC in water bath before used. Hearts dissected, 

cleaned and washed with phosphate buffered saline (PBS, 8.6) at 4oC to remove excess 

blood. Hearts were chilled at -20oC freezer for 4min to slightly harden the tissue for easy 

sectioning and facilitate tissue processing. Unfixed hearts were sectioned into total of 4 

sections at 2mm transversely. The sections were placed in a Petri dish and stained in 

25ml of 1% of TTC dissolved with PBS in dark. When TTC diffused into actively 

respiring tissues, electrons were accepted from mitochondrial electron transport chain and 

the stain reduced to yield a deep pink compound/Formosan (Wang-Fisher, 2008). The 

accumulation of the Formosan stained the tissues red, and the intensity of the red color 

was proportional to the rate of respiration in the tissues.  
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The infracted heart tissue sections didn`t convert TTC and remain 

negative/unstained/white. Following TTC staining, the stained slices were fixed in 10% 

formalin solution. The stained heart slices traced onto a clear acetate sheet over a glass 

plate under room light. The stained heart sections were photographed with Digital 

Camera. The infarct area of each heart section of both sides was measured blindly using 

ImageJ analysis software (ImageJ 1.50i Wayne Rasband NIH, USA; Java 1.6.0_24 (64-

bit)) after validating the threshold. Finally, percentage of infarct size was calculated by 

total area of cardiac muscle slice. 

 

5.2.13. Statistical analysis, study setting, and ethical issues 

 

Repeated measures of One-way ANOVA with Bonferroni comparison test were used to 

evaluate body weights and fasting blood glucose levels before and after 24hrs, 3 weeks, 

and 7weeks of STZ-injection. Mean ± SD in each group and independent samples t-test 

for the significance of means of independent group was used for statistical analysis using 

IBM Corp. Released 2011. IBM SPSS® Statistics for Windows, Version 20.0. Armonk, 

NY: IBM Corp software. P<0.05 was regarded as statistically significant. 

Immunohistochemical experiments and IRC were conducted at Department of 

Neuroscience, Biomedicine, and Movement. Immuno-blotting and RT-qPCR, TUNEL, 

and TTC techniques were performed at Laboratory of Cardiovascular Sciences and 

L.U.R.M.  All experiments were carried out with the authorization of ethical Research 

Committee and Departmental Bio-bank at Department of Surgery, University of Verona. 
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5.3. Results 

 

5.3.1. TTC stained heart slice observation 

Series of TTC cellular metabolic staining was applied to evaluate levels of infarct size in 

three groups of (NIR, CIR, CTRL) of rat after 30min ischemia and 1hr reperfusion. In IR-

induced rats in the presence of naloxone, appearance of massive infarct in lower part of 

ventricle was observed compared to controls. Moderate infarct was also observed in IR-

induced-control rats` heart around apex of ventricle; however, control rats didn`t show 

any lesions in any of the slices.  

The infarct size percentage (47.42%) in NIR group was elevated compared to percentage 

(10.97%) of CIR. The changes in elevated phosphorylation in immunoreactivity p38 and 

TUNEL positive apoptotic nuclei (DNA fragmentation) of myocytes in diabetic rats 

treated with naloxone corresponds to the higher percentage of infarct size and 

morphological abnormalities of the heart tissue in diabetic rats after IR-induced in the 

presence of naloxone (Fig. 47).  

 

Figure: 47. Effect of naloxone on myocardial infarct size: The figure illustrates 2.3, 3-
tetraphenyltetrazolim chloride (TTC) metabolic staining of the rats` heart slices of three groups 
(CTRL, CIR, NIR). NIR group of rats were subjected to injection of 1ml/kg naloxone through 
femoral vein prior to 30min LAD occlusion and 1hr reperfusion. CTRL group of rats were only 
induced with ischemia and reperfusion. The third group was with no treatment and ischemia and 
reperfusion. The infarct area of each heart section was measured blindly using ImageJ analysis 
software (ImageJ 1.50i Wayne Rasband NIH, USA; Java 1.6.0_24 (64-bit)) after validating the 
threshold. Infarct area (white) and the area at risk (red). Infarct size was measured based on the 
area-based method indicated by Takagawa et al., (2007). Mean ± STD, P<0.05 was considered as 
statistical significance. CTRL, Control; CIR, Control ischemia reperfusion; NIR, Naloxone-
ischemia-reperfusion. Quantification of infarct size (IS) was expressed as percentage of area at 
risk (AAR).   
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5.3.2. Histopathological observation of H&E stained heart tissue sections in 

diabetic-ischemia-reperfusion-induced (DIR), diabetic-ischemia-reperfusion-

induced with the presence of naloxone (DNIR), and control ischemia-

reperfusion-induced (CIR) 

 

Histopathology of left ventricle of tissue sections of DNIR, DIR, and CIR was analysed 
using H&E staining. Heart tissue sections of DNIR myocardial fibrosis compared to 
controls (DIR (D2) and CIR (D1). There was no marked structural alteration observed 
between DIR and CIR heart tissue sections. However, normal, single and oval centrally 
located nuclei of myocytes with regularly arranged cardiac fibers were observed in CIR 
rats (Fig.48. D). 

 

Figure: 48. FFPE tissue histopathological evaluation of diabetic rat heart with and 

without naloxone and control after IR-induction: Light microscopic analysis of H&E 
stained heart tissue sections taken from left ventricles after ischemia and reperfusion. The 
histopathology of DNIR (Fig. 48 D3) heart tissue sections showed myocardial fibrosis 
compared to controls (DIR (D2), and CIR (D1). There was no marked structural 
difference between DIR and CIR heart tissue sections observed. STZ, Streptozotocin; 
FFPE, Formalin fixed paraffin embedded; CTRL, Control; DNIR, diabetic naloxone-
injected ischemia reperfusion-induced; DIR, diabetic ischemia reperfusion-induced; CIR, 
Control ischemia reperfusion-induced. 
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5.3.3. Effects of non-selective antagonist of opioid receptors on pro-survival 

signaling kinases and GSK-3α/β in ischemia-reperfusion-induced hearts of 

diabetic rats 

 

Measurement of optical density from western blots analysis of well-established pro-

survival signaling proteins (Akt and ERK1/2) were evaluated in three groups such as 

DNIR, CIR, and DIR rats` heart using equal amount of protein (20µg) to each well to 

10% of acrylamide gel. The extent of phosphorylation of ERK42/44 of DNIR group was 

significantly reduced in the presence of naloxone (0.186±0.01) compared to IR-induced 

diabetic control (0.23±0.01). Similarly, it was significantly reduced in IR-induced control 

group (0.31±0.01) in the absence of naloxone. The extent of phosphorylation of ERK1/2 

between three groups was significantly varied p = 0.002. 

 

Moreover, the level of phosphorylation for Akt significantly lowered in DNIR group 

(1.51±0.22) in the presence of naloxone compared to IR-controls 2.76±0.65, (p = 0.018). 

However, even though it didn`t reach the significance threshold the extent of Akt 

phosphorylation (0.158±0.6) was declined in DNIR group compared to IR-induced 

diabetic heart (0.245±0.04) p=0.055 (Fig. 49).  

 

On the contrary, the extent of phosphorylation of GSK-3β significantly (p=0.047) 

elevated (0.67±0.15) in DNIR group compared to DIR group (0.22±0.07) (Fig. 49) but, 

not significant compared to CIR (0.41±0.01) (p=0.2). On the other hand, absence or poor 

phosphorylation of GSK-3α was observed in almost all groups tested. These results might 

imply ERK1/2 and AKT pathways might be involved in regulation of these opioid 

receptors during blockade in neuropathic and diabetic rats` heart. The GSK-3β 

phosphorylation might also be modulated by Akt. 
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Figure: 49. Western blot analysis of phospho and total pro-survival proteins (ERK1/2 and 

AKT) and GSK-3α/β in DNIR, CIR, and DIR rats` heart: 20µg of proteins per 25µl of 
volume was loaded to 10% of acrylamide gel. Oneway ANOVA was used for between groups 
and independent T-test for DNIR group with DIR and CIR analysis. Mean ± STD, P<0.05 was 
considered as statistical significance. DNIR, diabetic naloxone-injected ischemia reperfusion-
induced; DIR, diabetic ischemia reperfusion-induced; CIR, Control ischemia reperfusion-
induced; NAL, Naloxone; DIA, Diabetic; IR, Ischemia/reperfusion; GSK, Glycogen synthase 
kinase. 
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5.3.4. Immunoreactive cells of phospho-p38 in diabetic with the presence (DNIR) 

and absence of naloxone (DIR) and normal (CIR) heart after ischemia and 

reperfusion in rats 
 

P38 MAP kinases are stress-activated MAP kinases. It is activated in response to many 

cellular stresses and hematopoietic growth factors (Tamura et al., 2000). It regulates 

differentiation and/or survival of various cells types, including cardiomyocytes (Adams et 

al., 2000). Elevated p38 activity is associated to decreased myocardial contractility and 

onset of heart failure (Cross et al., 2009; Adams et al., 2000). Immunoperoxidase staining 

of p-p38 immunoreactive cells showed a significant elevation of p-p38 immunoreactive 

cells (29±0.2.74) in DNIR and (15.4±4.5) in DIR compared to CIR (3.4±1.14), P<0.001 

(Fig. 50). 

 

Figure: 50. P-p38 MAP kinase immunopositive myocyes in DNIR, DIR, and CIR-induced 

rats` heart tissue sections: A reduction in number of p-p38 MAP immunopositive cells of in 
DNIR, DIR, and CIR induced rats using Oneway ANOVA. DNIR, diabetic naloxone-injected 
ischemia reperfusion-induced; DIR, diabetic ischemia reperfusion-induced; CIR, Control 
ischemia reperfusion-induced  
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5.3.5. Apoptotic nuclei of TUNEL histochemical stained hearts tissue sections in the 

presence and absence of naloxone in diabetic and normal rats after ischemia 

and reperfusion, and TUNEL positive nuclei counts of each group 

 

In our TUNEL analysis of formalin fixed tissue section STZ (diabetic) and IR-induced rat 

heart in the presence of naloxone, and diabetic control heart was found a significant 

elevated DNA fragmentation in the nuclei of myocytes in DNIR (17.75±2.14) compared 

to DIR (10.75±0.66) and CIR (4.9±0.67), P<0.001 (Fig. 51). 

 

Figure: 51.  Representative photomicrographs of TUNEL positive nuclei of myocytes of 

heart tissue sections in DNIR, DIR, and CIR induced rats after hematoxylin and HE 

counter staining: TUNEL positive apoptotic nuclei in cardiomyocytes was elevated in diabetic 
rat heart tissue sections in the presence of naloxone compared to diabetic control. Number of 
TUNEL positive nuclei in CIR, DIR, and DNIR induced heart tissue sections showing a 
significant elevation in number of apoptotic nuclei in DNIR induced rats compared to CIR-DIR. 
Mean ± STD, P<0.05 was considered as significant.  One-way ANOVA was used for analysis. 
Mean ± STD, P<0.05 was considered as significant.  One-way ANOVA was used for analysis. 
TUNEL+ Hematoxylin (H); DNIR, Diabetic, naloxone injected ischemia and reperfusion; DIR, 
Diabetic ischemia and reperfusion; CIR, Control ischemia and reperfusion; -VE CTRL, Negative 
control; LV, Left ventricle. Images TUNEL stained only acquired at 200x magnification, scale 
bar = 100microns; TUNEL and H&E stained, images acquired at 400x magnification scale bar 
50microns. 
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5.3.6. Fluorescent labeled TUNEL stained apoptotic nuclei in the presence and 

absence of naloxone in heart tissue of diabetic and normal rats after 

ischemia-reperfusion, and TUNEL positive nuclei counts 

 

In our fluorescence TUNEL analysis of formalin fixed tissue section of STZ-induced 

diabetic rat heart in the presence of naloxone, diabetic control and normal control heart 

after ischemia and reperfusion induction was done. A significant elevated DNA 

fragmentation in the nuclei of myocytes in DNIR was observed compared to DIR and 

CIR groups p<0.001 (Fig. 52). 

 

Figure: 52.  Representative photomicrograph of heart tissue sections showing TUNEL 

positive fluorescence nuclei in DNIR, DIR, and CIR: All localization of myocardial nuclei is 
shown in blue (Hoechst) fluorescence and in green (TUNEL) fluorescence staining; apoptotic 
nuclei present in DNIR and DIR. Number of apoptotic cells significantly increased in DNIR-
induced rats compared to DIR-induced rats. The graph shows percentage of apoptotic myocytes 
in DNIR and DIR-induced rats. Apoptotic index is expressed as the percentage of TUNEL 
positive nuclei relative to total Hoechst nuclei. TUNEL+ Hematoxylin (H); DNIR, Diabetic, 
naloxone injected ischemia and reperfusion; DIR, Diabetic ischemia and reperfusion; CIR, 
Control ischemia and reperfusion; -VE CTRL, Negative control; LV, Left ventricle. Fluorescent 
images acquired at 400x magnification at 100µm scale bar. 
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5.4. Discussion 

 

The opioid receptors are, activated by endogenously opioid peptides and exogenously 

opiate compounds (Waldhoer et al., 2004), which expressed in multiple organs 

(Khachaturian et al., 1987) throughout the peripheral tissues of the body (Wittert et al., 

1996; Zhu et al., 1998). The heart expresses high levels of endogenous opioids across 

species (Headrick et al., 2015; Howells et al., 1986; Theisen et al., 2014; Sobanski et al., 

2014).  

 

Although reports of Sobanski et al., (2014) proved the expression of the three (µ, δ, κ) 

classic subtypes of opioid receptors immunoreactivity in myocardial cells of human heart, 

there is a great disparities and debate regarding the distribution of opioid receptors 

subtypes in the heart chambers (Krumins et al., 1985) and between species (Karlsson et 

al., 2012). On the contrary, the increase in the level of enkephalins in ventricles of rats 

following myocardial infarction is reported (Paradis et al., 1992).  

 

In an assortment of previous studies, kappa and delta ORs expression have been reported 

in the rat heart (Ela et al., 1997; Ventura et al., 1989), where as studies have also shown 

the absence of mu-OR at mRNA in all chambers of the porcine heart (Theisen et al., 

2014) and including our studies in diabetic and heterotopic transplanted rats` heart. 

Before two decades, in earlier reports of Zimlichman et al (1996) the expression of mu-

OR has only been detected in early developmental period; however, lately reduced during 

heart ontogeny after seventh day of postnatal age in rat heart. In 2012, Karlsson and 

colleagues have reported the expression of δ and κ ORs at both mRNA and proteins 

levels in myocardial biopsies of porcine. In agreement with Karlsson et al., (2012), 

Lendeckel et al., 2005 has detected δ and κ ORs in the human atria with a selective down-

regulation of the k-OR during atrial fibrillation.   

 

Correspondingly this study has mentioned earlier the presence of, mRNA encoding 

Oprd1 and Oprk1 and, proteins (DOR-1 and KOR-1) in rat heart with a down-regulated 

at mRNA and proteins levels in diabetic, and heterotopic transplanted hearts. Moreover, 
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decline CGRP-1 optical density immunoreactivity in diabetic rats has also shown in this 

study. The lower in the strength of DOR-1 immunoreactivity level was correlated with 

the reduced optical density immunoreactivity of CGRP-1. This result may, thefore, give a 

clue that downregulation of these receptors could be due to diabetic conditions or 

neuropathy that comes with diabetes. The double immunofluorescence data of this study 

also shows co-expressions KOR-1 and CGRP-1 in rats` heart. The observed fluorescent 

simultaneous overlap of signals on cells contained these receptors in tissue sections of 

diabetic and control rat heart implies the selective expression of these distinct receptors 

(Gullberg, 1986) and their strong functional association on cardiomyocytes and 

contributions in regulation of cardiovascular function in rat`s heart.  

 

The decrease in strength of DOR-1 and KOR-1 immunoreactivity in cardiomyocytes 

might also be due to the involvement of an autocrine process of ORs in which opioid 

peptides are not released from cardiomyocytes locally and interact with ORs of the heart 

that mediate cardioprotection. The decrease in the synthesis and release of opioid 

peptides into the peripheral circulation could be due to stress (Paradis et al., 1992) and 

histopathological changes observed in the study.  

 

Akt is a well established signaling pathway and mediator of cardioprotective against IRI 

(Sun et al., 2013). It is phosphorylated and activated by PI3K and blocks the expression 

of many pro-apoptotic proteins (Caspases, Bax, Bad, p53) to promote cell survival (Yu et 

al., 2010; Cantley, 2002). Tanaka et al., (2014) also stated the involvement of AKT and 

ERK activations in cardioprotection with similar results of Heiss et al., (2009) and 

Polakiewicz et al., (1998) that have shown association of cytoprotective and anti-

apoptotic properties with activation of pro-survival kinase (AKT) due to opioid receptor 

agonists (DAMGO). Similarly, recent report has shown the compromised-protective 

effects of opioid conditioning against IRI like ischemic conditioning in diabetic condition 

(opioid-induced cardioprotection in diabetes) (Lei et al., 2015). It is also reported that the 

DOR mediated AKT signaling blockade as a result of naloxone involves Gi/o proteins in 

NG108-15 hybrid cells (Heiss et al., 2009).  

 



151 

 

In line with these reports, our signaling data provide evidence that inhibition of opioid 

receptors by non-selective antagonist (naloxone) lowers the extent of phosphorylation of 

pro-survival kinase (AKT) like wortmannin and LY294002 (Polakiewicz et al., 1998) at 

ser473 that implicate cell death in diabetic and IR-induced rat myocardium. Moreover, 

inhibition of the opioid receptors with naloxone reduces ERK1/2 phosphorylation in 

diabetic IR-induced rat heart. In other word, abnormal regulation of blood glucose and 

neuropathic conditions that could lead to downregulation of delta and kappa opioid 

receptors might imply a decrease AKT and ERK1/2 signaling in rats` heart. In this study, 

the demonstrated lower phosphorylation levels of pro-survival kinases (AKT, ERK) 

might compromise the well established protective effects of opioid conditioning against 

IRI. The lower levels of AKT phosphorylation might also possibly be regulated by a 

direct phosphorylation of mTOR (Polakiewicz et al., 1998) in naloxone injected IR-

induced rats.  

 

The lower phosphorylation of AKT and ERK1/2 phosphorylation may also infert the 

cross talk of PI3K-AKT pathway with Ras/Raf/MAPK pathways that control responses in 

regulation of opioid receptors. According to Heiss et al., (2009), naloxone induced AKT 

inactivity might also be via trans-inactivation of RTK because the inhibition of RTK that 

abolishes the effect of opioids stimulated AKT activity. The findings of our study 

indicate that opioid receptors have a potential role in reducing IRI. Hence, our study 

indicates that opioid receptors have a potential role in reducing IRI that might be affected 

by denervation, and neuropathic conditions diabetic in diabetic in rats reported in our 

unpublished data. 

 

Another finding of our study has also shown higher extent of GSK-3β phosphorylation in 

diabetic rat heart in the presence of naloxone compared to controls. It is reported that 

GSK-3 can promote apoptosis through two ways either by activating p53 (Watcharasit et 

al., 2002) or by inactivating survival promoting factors (Grimes and Jope, 2001). 

According to a study done by Wang et al., (2009), inactivation of GSK-3β prevents 

diabetes-induced cardiac energy metabolism changes, fibrosis, and inflammation. The 

observed mild fibrosis and higher apoptotic number of nuclei of myocytes in heart tissue 
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with the presence of naloxone could be due to the higher extent of phosphorylation of 

GSK-3 in this group throught Akt dephosphorylation (Fig. 53).  

 

Figure: 53. Hypothesized mechanism of naloxone induced infarct size elevation: 
Naloxone deactivates PI3K-Akt at ser that lead to apoptosis and compromise 
cardioprotection of effects of endogenous opioid peptides in rat. 
 
The p38 MAP kinases are stress-activated MAP kinases. It is activated in response to 

many cellular stresses and hematopoietic growth factors (Tamura et al., 2000). It 

regulates differentiation and/or survival of various cells types, including cardiomyocytes 

(Adams et al., 2000). The elevated p38 activity is associated to decreased myocardial 

contractility and onset of heart failure (Cross et al., 2009; Adams et al., 2000).  

 

The significant elevated p-p38 immunoreactivity shown in immunoperoxidase stained 

heart tissue in naloxone and IR-induced diabetic rats imply inhibition of opioid receptors 

that increase the bioavailability of opioid in the blood due to opioid receptors reduction in 

diabetic rats. The ischemia-reperfusion-induced and inhibited opioid receptors activated 

p38 MAP kinases phosphorylation in diabetic rats` heart coincide with the result that 

shown the elevated apoptotic nuclei of cardiomyocytes in diabetic, and IR-induced rats. 

Histopathological evaluation of this study has shown wavy shaped fibers, necrosis of 

cells and a form of pink deposition as a result of release of necrotic cells content and 

higher phosphorylation levels of p38which implicate the damage of myocytes in IR-
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induced diabetic rats. The changes in elevated p38 phosphorylation immunoreactivity and 

TUNEL positive apoptotic nuclei (DNA fragmentation) of myocytes in diabetic rats in 

the presence of naloxone corresponds to the observed appearance of massive 

infarct/lesions in IR-induced rat heart slices, higher percentage of infarct size, and 

morphological abnormalities of naloxone injected IR-induced diabetic rats.  

 

The significant downregulation of DOR-1 and KOR-1 immunoreactivity, and mRNA 

encoding Oprd1 and Oprk1 in diabetic heart might be due to apoptotic nuclei of 

myocytes, infarction, and histopathological changes observed in diabetic rat heart tissue 

and the vulnerability of diabetic rats in neuropathy. These receptors could be regulated by 

ERK1/2 and AKT that are downregulated in the presence of naloxone. 

 

The infarct and apoptotic cells death could be the reduction of opioid receptors observed 

in diabetic rats. This decreases the binding of opioids available in the blood to the 

receptors result in the reduction the known cardioprotection effects of opioid receptors. 

The bioavailable opioids effectiveness could be compromised. 

 

According to the previous studies done by Marvin et al., 1980, parasympathetic 

innervations of the heart develops before birth, while sympathetic innervations develops 

during postnatal 7 to 10 days (Robinson, 1996; Mouse et al., 2011). Except the gradual 

disappearance of MOR; DOR and KOR are increased in number in adulthood 

(Zimilichman et al., 1996) in the heart with the increased number of MOR, DOR and 

KOR within CNS (Spain et al., 1985).  

 

It is again reported that DOR co-localization with VAChT principal neurons from the 

first day of birth and with small intensely fluorescent catecholaminergic cells, and CGRP 

with in intracardiac ganglia and atrial myocardium. Moreover, the co-expression DOR 

with neuronal markers increasing with age (neonatal to adulthood) (Mousa et al., 2011) 

and these developmental expressions of opioid receptors and sympathetic and 

parasympathetic and sensory innervations of the heart imply the regulation of opioid 

receptors by cardiac autonomic innervations.  
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5.5. Conclusion 

 

This study shows down-regulation of δ and κ ORs at proteins and mRNA levels in 

diabetic rat heart. It is known that opioid receptors (δ- & κ) play beneficiary role in 

protecting the heart against IRI. However; the down regulation of opioid receptors may 

compromise the effectiveness of pharmacological activities of opioids in diabetic rats that 

could also reduce the potential role of opioid receptors in the regulation of cardiac tissue 

of diabetic conditions in rat. The downregulation might be due to neuropathic and 

diabetic conditions observed in rats` heart.  

 

The extent of lower pro-survival kinases (ERK1/2 and AKT) phosphorylation, higher p38 

phosphorylation, elevated apoptotic nuclei and percentage of infarct size, and 

histopathological abnormalities in naloxone treated and IR-induced diabetic rats suggest a 

possible mechanism of increased susceptibility of diabetic rat heart to IRI through 

mediating action of ERK1/2 and AKT pathways in opioid activities. 
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CHAPTER SIX 

6. A comparative study on expression of k- and δ- opioid 

receptors in pulmonary artery and aorta in rats 

 

6.1. Background 
 

Opioid receptors possess potential cardiovascular protective properties and play roles on 

vasodilation (Pei et al., 2003) and its agonists exert direct actions on vascular smooth 

muscle (el-Sharkawy et al., 1991; Zhou et al., 2015). Partially relaxation of the aorta in 

rat due to KOR stimulation via K (ATP) channel has also reported (Pei et al., 2003). 

Endothelium is the major regulator of vascular homeostasis and plays a key role in 

physiology and pathology of the vascular system. Stimulation KOR improves endothelial 

function in hypoxic pulmonary hypertension (Wu et al., 2013). This study was aimed to 

compare the expression of kappa and delta opioid receptors on aorta and pulmonary 

artery in rats.  

 

6.2. Materials and methods  

Aorta and pulmonary artery were taken from rats weighing 350 – 400g and processed in 

FFPE for immunohistochemical study as described in the fourth chapter. Processed 

tissues were observed under confocal inversted microscope for analysis. 
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6.3. Results 

 

6.3.1.  Double immunofluorescence stained KOR-1 and DOR-1 immunoreactive 

containing signals in pulmonary artery in rat 

 

In this study, our qualitative immunofluorescence data showed immunofluorescence 

labeled immunoreactivity signals of KOR-1 in both endothelial and smooth muscle cells 

of pulmonary artery. Kappa was also expressed in endothelial cells of aorta. The kappa-

OR was shown dominant in pulmonary artery; however, kappa was poorly detected in 

smooth muscle cells of the aortic tissue sections as compared to pulmonary artery. 

Moreover, delta opioid receptor was also detected in pulmonary artery smooth muscle 

cells (Fig. 54).  

 

Figure: 54. Crossection view of confocal double immunofluorescence microscopy of KOR-1 

and DOR immunoreactive signals in pulmonary artery and aortic tissue section in rat: 
KOR-1, Kappa opioid receptor; DOR-1, Delta opioid receptors; E, endothelium. Scale bar = 
35.5um.  
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6.3.2. Immunoperoxidase and double immunofluorescence KOR-1 labeled 

immunoreactive signals on aortic tissue sections in rat 

 

Both immunoperoxidase and immunofluorescence data showed detection of KOR-1 
immunoreactive in endothelial cells of aorta (Fig. 55). However, its immunoreactivity in 
smooth muscle of aorta was poorly expressed. 

 

 

Figure: 55. Microscopy of KOR immunoreactive smooth muscle and endothelial cells of 
aorta and pulmonary artery: A: Microscopic observation of KOR-1 immunoreactive 
endothelial cells. B: Confocal microscopy of KOR immunofluorescence reactive endothelial cells 
in aortic tissue section of rat. KOR-1, Kappa opioid receptor; E, Endothelium. Scale bar = 
35.5um for fluorescence image, 100microns for immunoperoxidase image. 
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7. General discussion, conclusion, and recommendation 

 

Down-regulation of opioid receptors (δ & κ) in denervated and neuropathic diabetic 
rat heart    

The findings of this study reveal the presence in myocardium of mRNA encoding delta 

and kappa ORs, MOR-1 immunoreactive myocytes in the orthotopically transplanted 

heart in the human, δ- and κ-ORs mRNA and proteins in heterotopic transplanted heart. 

Moreover, kappa and delta were also identified in STZ-induced diabetic rat heart. These 

findings are in agreement with previous studies showing the presence of mu, delta and 

kappa opioid receptors on cardiomyocytes of humans (Sobanski, 2014) and (δ & κ) 

animals’ heart (Theisen et al., 2014; Cao, 2003; Patel et al., 2006; Weil et al., 1998; 

Howells et al., 1986).  

 

Interestingly, this study found out down-regulation of Oprk1 and Oprd1 mRNA in both 

orthotopically transplanted (in human) and heterotopic transplanted heart (in rats). This 

implies a great contribution and influence of innervation to the functioning of opioid 

receptors in the heart. The concur findings obtained from rat and human transplants 

models have shown that heterotopic transplanted heart in rats is important in basic and 

translational studies concerningcardiac transplantation.  

 

Qualitative and quantitative analysis of our data revealed that although kappa and delta 

are identified in STZ-induced diabetic rat heart, they are poorly expressed in diabetic 

heart. It is known that patients with diabetes are at high risk of preoperative myocardial 

infarction (Lei et al., 2015) with an undefined mechanism. In this study reduction of 

mRNA encoding kappa and delta opioid receptors in STZ-induced diabetic rat heart 

could be linked to a serious complication in diabetic patients undergoing surgery, indeed  

patients with diabetes have less resistance to myocardial ischemia and reperfusion injury 

(Lei et al., 2015).  Thus, diabetic conditions could compromise the proven opioid 

conditioning against ischemia and reperfusion injury.  
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Down-regulation of neuronal marker (CGRP-1) in denervated and neuropathic 

diabetic rat heart    

In our study of Calcitonin gene-related peptide (CGRP-1) in transplanted and diabetic 

heart to see how it is expressed in denervated and neuropathic heart, this neuronal marker 

was detected as a sparse individual fiber of myocytes in transplanted heart (human and 

rat) and diabetic heart. However, analysis of the optical density reveals that this marker is 

poorly expressed in transplanted and diabetic heart.  

 

CGRP-1 is a neuropeptide found in both sensory and motor neurons (Rosenfeld et al., 

1983; Kashihara et al., 1989), playing role in cardiovascular homeostasis, and 

contributing to regeneration following nerve injury in mice (Chen et al., 2010).  The 

reduction of CGRP-1 in transplanted heart might imply a lower level of denervation in 

the heart.  It is known that the presence of an innervated heart is important for normal 

cardiovascular physiology. This could give insights to understand the transplant 

cardiovascular physiology related to opioid administration.  

 

KOR and DOR mRNA in myocardial tissue 

In this study mRNA encoding, Oprd1 and Oprk1 in rat heart were detected with down-

regulation in transplanted and diabetic heart. However, Oprm1 was not amplified even at 

50 cycles in both control and diabetic rat heart. Since the description of ORs (Pert and 

Snyder, 1973) in CNS and endogenous opioids (Hughes et al., 1975), large amounts of 

endogenous peptides (preproenkephalin mRNA) have been detectecd in rats’ cardiac 

ventricular tissue (Howells et al., 1986) in differents species (guinea pig, bovine and 

mouse hearts) This study also confirms their presence in heart tissue in both human and 

rats with downregulation in transplanted and diabetic heart. 

 

Histopathology of transplanted, diabetic, ischemic, reperfused heart 

In our evaluation of histopathology of transplanted heart, we observed severe cellular 

rejection in heterotopic transplanted heart tissue. Acute cellular rejection (ACR) is most 

common in the first 6 months after heart transplantation (HT) and is predominantly T-
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cell-mediated. Approximately 20% to 40% of heart transplant recipients experienced at 

least 1 episode of ACR in the first postoperative year (Taylor, 2010).  

 

Effects of naloxone on infarct size after ischemia and reperfusion 

In this study, we have screened effects of naloxone infarct size after ischemia and 

reperfusion. The data from naloxone and control groups are showing a higher percentage 

of infarct size in the presence of non-selective antagonist of opioid receptors in heart 

slices. In various studies, naloxone is known for its capcity to decrease cardioprotective 

effects obtained through different conditioning, such as ischemic, pharmacological and 

exercise preconditioning. We have also shown in this study that naloxone has indirectly 

abolished effects of cardioprotection by elevating percentage of infarct size leading to a 

massive infarct/lesions in rats treated with the drug.  

 

The changes in elevated p38 phosphorylation immunoreactivity and TUNEL positive 

apoptotic nuclei (DNA fragmentation) of myocytes in diabetic rats in the presence of 

naloxone is associated with the appearance of massive infarct/lesions in IR-induced rat 

heart slices, higher percentage of infarct size, and morphological abnormalities of 

diabetic rats.  

 

Apoptotic nuclei of cardiomyocytes in denervated, neuropathic and diabetes heart, 

and effects of non-selective antagonist of opioid receptors on apoptotic nuclei after 

ischemia-reperfusion induced in diabetic heart  

In this study, using fluorescent and histochemical TUNEL positive nuclei of myocytes, 

we have observedhigher number of apoptotic nuclei in cardiomyocytes as well as all 

tissue tested from the denervated and diabetic. Moreover, a higher number of apoptotic 

nuclei were also detected in the presence of antagonist (naloxone) after ischemia-

reperfusion diabetic rats` heart. The indicated denervation and diabetic conditions may 

dephosphorylate the pro-survival kinases that are responsible for inhibitions of pro-

apoptotic proteins. 
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Effect of the opioid receptors non-selective antagonist on pro-survival signaling 

pathways 

Western blot analysis of pro-survival proteins (ERK1/2 and AKT) have shown that both 

pAKT and perk1/2 have declined their phosphorylation levels in diabetic IR-induced rats` 

heart in the presence of naloxone compared to IR-induced control heart.  

 

It is known that Akt is a well established pro-survival mediator of cardioprotective 

against ischemia-reperfusion injury (Sun et al., 2013). It is phosphorylated and activated 

by PI3K and blocks the expression of many pro-apoptotic proteins (Caspases, Bax, Bad, 

p53) to promote cell survival (Yu et al., 2010; Cantley, 2002). The activated Akt 

influences cellular physiology (Hemmings and Restuccia, 2012) including regulation of 

apoptosis.  The elevated apoptotic nuclei and lower phosphorylation of Akt observed in 

this study in the condition of naloxone IR-induced diabetic heart suggests the 

involvement of Akt in mediating opioid receptors activities against ischemia-reperfusion 

injury in rats.  

 

Evidences from our study have also shown that the infarct effect of ORs antagonist 

(naloxone) is mediated by ERK1/2. This result is consistent with the results of Kim et al., 

(2011) mentioning a direct anti-infarct effect of KOR agonist via ERK1/2 which leads to 

the effective reduction of myocardial infarction by inhibition of ERK1/2 obtained from 

the anti-infarct effect of KOR agonist. 

The p38 phosphorylation changes in the diabetic heart after ischemia and 

reperfusion 

 

In this study, the ischemia-reperfusion-induced and inhibited-opioid receptors in the body 

have been associated with elevation in the levels of p38 phosphorylated immunoreactive 

cells in the myocardium. The activated p38 MAP kinases in diabetic rats` heart due to 

diabetic conditions, ischemia, and reperfusion injuries coincide with elevated apoptotic 

nuclei of cardiomyocytes in the diabetic and IR-induced heart.   
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It is known that the p38 MAP kinases are stress-activated MAP kinases and activated in 

response to many cellular stresses and hematopoietic growth factors (Tamura et al., 

2000). It regulates differentiation and/or survival of various cells types, including 

cardiomyocytes (Adams et al., 2000). Previous reports have shown that elevated p38 

activity can be associated with poor myocardial contractility and onset of heart failure 

(Cross et al., 2009; Adams et al., 2000).  

 

Thus, the activation of p38 due to stress, ischemia, and reperfusion in heart could be 

potentiated in the presence of naloxone as shown by higher phosphorylation of the 

protein. This implies that dysfunctional opioid receptors could increase the bioavailability 

of opioid in the blood due to a reduction of opioid receptors activity as observed in 

diabetic and neuropathic heart, leading to an ipairement of cardioprotective roles of 

opioids.  

 

Consistently we have observed that the ischemia-reperfusion-induced heart, inhibition of 

opioid receptors activation of p38 MAP kinases in diabetic rats` heart are associated to 

the elevated apoptotic nuclei of cardiomyocytes in diabetic rats, and with appearance of 

massive infarct/lesions in IR-induced rat heart slices, higher percentage of infarct size, 

and morphological abnormalities of naloxone injected IR-induced diabetic rat heart.  

 

Effect of naloxone on phosphorylation of GSK-3β 

 

Another finding of our study has also shown higher extent of GSK-3β phosphorylation in 

diabetic rat heart in the presence of naloxone. It is reported that GSK-3 can promote 

apoptosis through two ways either by activating p53 (Watcharasit et al., 2002) or by 

inactivating survival promoting factors (Grimes and Jope, 2001). According to a study 

done by Wang et al., (2009), inactivation of GSK-3β prevents diabetes-induced cardiac 

energy metabolism changes, fibrosis, and inflammation. Therefore, the higher 

phosphorylation of GSK-3β may implicate with the interference of glucose metabolism in 

effect of naloxone and influence the apoptosis which was seen in diabetic rats. 
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Expression of κ- and δ-ORs on aorta and pulmonary artery in normal rats 

Our findings show the presence of kappa and delta opioid receptors on endothelial cells 

of both aorta and pulmonary artery; however, DOR is weaker in expression than KOR in 

aorta and pulmonary artery. The opioid receptors have potential cardiovascular protective 

properties and play roles on vasodilation (Pei et al., 2003). In our study, kappa opioid 

receptor has been expressed dominantly in endothelial cells of aorta. Pulmonary artery 

has dominant expression of kappa opioid receptors on smooth muscle cells compared to 

aorta. Kappa is more limited endothelial cells of aorta than smooth muscle cells of aorta. 

The dominant expression of kappa opioid receptor implicates its significance to regulate 

vascular system both in aorta and pulmonary artery in rats compared to delta opioid 

receptor in rats.  

 

Implication of down-regulation of opioid receptors on ischemia-reperfusion injury  

The downregulation of opioid receptors observed in our study in transplanted and 

diabetic heart may impair the cardioprotective effects against declining cardiac tolerance 

to arrhythmogenic effects of ischemia (Maslov et al., 2013), worsen ischemia (Tsai et al., 

2015), arrhythmia as it is observed in canine (Estrada et al., 2016; Tsai et al., 2015), and 

cardiomyocyte cell death (Tsai et al., 2015). 

 

Bofetiado and colleagues (1996) have shown elevation of survival time during lethal 

hypoxia by a mechanism of neuroprotection via decreasing body temperature using delta 

agonist (BW373U86), DPDPE ([D-Pen2, D-Pen5]-enkephalin). The contribution of 

opioid compounds in stability and systemic distribution could favor clinical application. 

However, poor availability of opioid receptors and their mRNA in denervated and 

neuropathic and diabetic heart might compromise the effectiveness of the drug. 

 

In conclusion, overall our data suggest that opioid receptors have cardioprotective roles 

against ischemia-reperfusion injury and they may be mediated by pro-survival kinases 

(ERK1/2 and Akt). Phosphorylation of p38 can also involve in increasing the damaging 

rate using opioid receptors antagonist.  
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Given this important role of opioid receptors to ischemia and reperfusion injuries, they 

represent as such a potential therapeutic strategy that could be associated to surgery 

and/or transplantation to improve the patient health. Developing a drug that restores 

opioids-induced cardioprotection in diabetes can be a good way to minimize IRI in 

diabetic heart. The opioid receptors may also play a great role on endothelial and smooth 

muscle cells in vascular system dominantly KOR opioid receptor in rats.  
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9. Appendices 
 

9.1.Appendix I: Buffer preparation 

a. Diluting solutions (converting g/L to M and vice versa) 

o Amount (in moles) = amount in g/molar mass in g.mol-1 

o Concentration (M) = amount in mol/volume in L 

b. To determine volume in a certain concentration:  C1 x V1 = C2 x V2 (match units) 

c. SDS-Laemilli Buffer Solution preparation 

 
Table: 8. Buffer preparation 
 

SN  Buffer solutions  Working solutions Remarks 

1  RIPA buffer   

  1L ddH2O 
 50ml 1M Tris 7.4 
 37.5ml 4M NaCl 
 4ml 0.5M EDTA 
 10ml NP-40 
 10ml 10% SDS 

70ul/20 sections  

2 Running buffer (10X) for 1L Running buffer (1X) for 

1L 

 

  700ml ddH2O  
 10g Tris-base 
 144g Glycine 
 10g SDS 
 Add to bring to 1L 

 900ml ddH2O 
 100ml Running 

buffer (10X) 

 

3 Transfer Buffer (10X) for 1L Transfer Buffer (1X) for 

1L 

 

  30g Tris-base 
 144g Glycine 
 25g SDS 
 Add ddH2O up to 1L 

 900ml ddH2O 
 100ml Transfer 

buffer (10X) 

 

4 5X SDS loading sample buffer (100ml)   

  25ml of 250mM Tris-HCl (pH 6.8) 
(Stock 1M) 

 10g of 10% SDS 
 30ml of 30%Glycine 
 5ml of 5% BME (Add only while 

using due to its diminished vapor 
pressure and unpleasant odor 
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properties) 
 2ml of 0.02% Bromophenol blue 

(Stock 1%) 
5x Sample buffer (8.1ml) 

 3.9 ml deionized water  
 l 0.5M Tris, pH 6.8  
 0.8 ml Glycerol 
 1.6 ml 10% SDS  
 0.4 ml 2-mercaptoethanol 
 0.4 ml 1% bromophenol blue 

5 1M stock 50 mM stock  

  0.5ml 14.3 M 2-ME  
 6.6 ml dH20  
 Store at 4°C 

 5ml 1M 2-ME 
 95 ml H2O stir 
 Store at 4°C 
 Dilute to 50 µM 

(final) for use 

 

6 5% Beta-Mercaptanol   

  5ml of 50mM (0.05%) 
 100ml of 5X SDS loading sample buffer (laemmli buffer)  

 

7 10% SDS   

  50g SDS  
 Dilute in 450ml deionized H2O 
 Store at RT 

  

 

8 40% Acrylamide for 1L 30% Acrylamide  

  380g of acrylamide 
 20g of N, N'-methylbisacrylamide 
 600ml of ddH2O 
 Heat to dissolve  
 Adjust the volume to 1L with H2O, pH 

≤7 
 Filter by 0.45 µm filter paper 
 Cover with aluminum foil (in dark 

bottle) and store at 4oC 
 Acrylamide is a neurotoxin 

 30g Acrylamide 
 0.8g N`N`-bis-

methylene 
acrylamide 

 Dilute with 
deionized water 

 Store (cover with 
aluminum foil) in 
the dark at 4oC 

 

9 Lower Tris-HCl buffer 4x Tris-HCl buffer 4x/ 

stacking gel 

 

  18.17g Tris-base 
 4ml of 10% SDS  
 Dilute in 100ml ddH2O  
 pH 8.0  
 Store at 4oC 

 6.06g Tris-base 
 4ml of 10% SDS 
 Adjust pH 6.8 

 

10 APS (10%) Stock of 5ml   
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  500mg of Ammonium persulfate 
 5ml ddH2O 
 Store at 4oC 

  

11 10% ammonium persulfate (APS)   

  0.1g ammonium persulfate /APS) 
(electrophoresis) 

 1ml deionized H2O 

  

12 TBS-(10X) for 1L TBS-T (1X) for 1L  

  80g NaCl 
 2g KCl 
 30g Tris-base 
 1L ddH2O 

 900ml ddH2O 
 100ml TBS-(10X) 
 500ul Tween (%) 

 

13 5% Blocking buffer (100ml)   

  5g non-fat milk 
 100ml TBS-T (1x) 

  

14 Sodium Azide (NaN3) can be used to preserve antibody for later use, if 

stored at -20oc or -80oc depends on the antibody to a final concentration of: 

 

 0.02% (w/v), or 2:10,000 dilutions (can be used 0.02% to 0.05% 

16 DAB substrate   

 1 drop for 1ml of diluents    

17 Counterstaining (for nuclei)   

 DAPI, 1: 10,000 
Hoechst 33342, 1: 10,000 

  

 
Note: TBS-T, Tris Buffered Saline with Tween; SDS, Sodium Dodecyl Sulfate (NaDodSO4; 
anionic detergent); APS, ammonium persulfate; TEMED/TMEDA, Tetramethylethylenediamine; 
Tris, Tris (Hydroxymethyl) aminomethane; or THAM, BME, Beta-mercapitanol; Solutions 
preparation of protocol was modified in Cardiovascular Research Laboratory, U. O. Heart 
Surgery, University of Verona, VR, IT. 
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9.2. Appendix II: Protein size based approximate acrylamide percentage of gel 

 
Table: 9. Protein size estimation percentage of acrylamide gel 
 

Protein size, kDa % 

25-200 8 
15-100 10 
10-70 12.5 
12-45 15 
4-40 20 
Abcam, 2017, http:// www.docs.abcam.com, note: it is neurotoxic 

 

  
 

 


