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Abstract

Background

Human African trypanosomiasis or sleeping sickness, caused by the parasite Trypanosoma

brucei, leads to neuroinflammation and characteristic sleep/wake alterations. The relation-

ship between the onset of these alterations and the development of neuroinflammation is

of high translational relevance, but remains unclear. This study investigates the expression

of interferon (IFN)-γ and IFN-inducible chemokine genes in the brain, and the levels of

CXCL10 in the serum and cerebrospinal fluid prior to and during the encephalitic stage of

trypanosome infection, and correlates these with sleep/wake changes in a rat model of the

disease.

Methodology/Principal findings

The expression of genes encoding IFN-γ, CXCL9, CXCL10, and CXCL11 was assessed in

the brain of rats infected with Trypanosoma brucei brucei and matched controls using semi-

quantitative end-point RT-PCR. Levels of CXCL10 in the serum and cerebrospinal fluid were

determined using ELISA. Sleep/wake states were monitored by telemetric recording. Using

immunohistochemistry, parasites were found in the brain parenchyma at 14 days post-infec-

tion (dpi), but not at 6 dpi. Ifn-γ, Cxcl9, Cxcl10 and Cxcl11 mRNA levels showed moderate

upregulation by 14 dpi followed by further increase between 14 and 21 dpi. CXCL10 concen-

tration in the cerebrospinal fluid increased between 14 and 21 dpi, preceded by a rise in the
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serum CXCL10 level between 6 and 14 dpi. Sleep/wake pattern fragmentation was evident

at 14 dpi, especially in the phase of wake predominance, with intrusion of sleep episodes into

wakefulness.

Conclusions/Significance

The results show a modest increase in Cxcl9 and Cxcl11 transcripts in the brain and the

emergence of sleep/wake cycle fragmentation in the initial encephalitic stage, followed by

increases in Ifn-γ and IFN-dependent chemokine transcripts in the brain and of CXCL10 in

the cerebrospinal fluid. The latter parameter and sleep/wake alterations could provide com-

bined humoral and functional biomarkers of the early encephalitic stage in African

trypanosomiasis.

Author summary

Human African trypanosomiasis, also known as sleeping sickness, is caused by infection

with the parasite Trypanosoma brucei. Although the number of reported cases has

declined in recent years, the disease still represents a challenge. During the second, menin-

goencephalitic, stage of the disease trypanosomes invade the brain. Consequently the

infection can only be cured with toxic drugs which enter the brain, and is fatal if left

untreated. Identifying the onset of this stage is therefore of crucial importance for thera-

peutic decisions. Using experimental infection in rats, we investigated the expression of

interferon-γ and interferon-dependent chemokine genes involved in the disease progres-

sion. In parallel, we determined when the characteristic alterations of the sleep/wake cycle

emerge in relation to the onset of the encephalitic stage, which was assessed histologically

by the detection of parasites in the brain tissue. The results indicate that detection of per-

turbation of the sleep/wake cycle, especially the intrusion of sleep episodes into wakeful-

ness, followed by an increase in CXCL10 concentration in the cerebrospinal fluid, could

provide combined functional and humoral biomarkers of the early encephalitic stage of

African trypanosomiasis.

Introduction

Human African trypanosomiasis (HAT) is a neglected tropical disease that is still endemic in

foci in rural regions of sub-Saharan Africa. The disease is caused by infection with specific sub-

species of Trypanosoma brucei (T. b.). T. b. gambiense is found in West and central Africa and

causes a chronic form of the disease, and T. b. rhodesiense found in East Africa causes a more

acute form. T. b. gambiense HAT accounts for over 95% of reported cases [1], with reported

case numbers declining considerably in recent years [2, 3]. The WHO’s aim is to eliminate

HAT as a public health problem with a target date of 2020, and to achieve a complete interrup-

tion of HAT transmission with a a target date of 2030 [4]. This aim is supported by sustained

surveillance [3], but is facing considerable challenges [1]. Concerns are being raised about the

viability of eliminating the disease within the WHO time-frame due, among other issues [1],

to underreporting [5], and to the finding of T. b. gambiense reservoirs in skin or adipose tissue

of asymptomatic individuals [6].
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Early after T. b. transmission, which occurs through bites of the insect vector (tsetse flies of

the genus Glossina), the parasites invade the hemolymphatic system and peripheral organs.

This first, hemolymphatic, stage can be effectively treated with Suramin or Pentamidine, drugs

that have been in use for over 50 years. If the disease remains untreated, the parasites enter the

CNS and the infection progresses to the second, meningoencephalitic, stage. A wealth of evi-

dence points to T. b. traversal of the blood-brain barrier (BBB) as the key pathogenetic event

leading to this second stage [7]. Alternative or additional mechanisms of brain infection, based

on parasite diffusion via a meningeal route and/or the blood-cerebrospinal fluid (CSF) barrier

and/or perivascular spaces, have also been proposed [8, 9]. Clinically, the disease evolves into a

complex neuropsychiatric syndrome with disruption of sleep/wake patterns [10–12] that gave

HAT the popular name of sleeping sickness.

Due to the nonspecific clinical signs and symptoms of the hemolymphatic stage of HAT, it

is likely that most patients present in the meningoencephalitic stage, which, if left untreated, is

almost always fatal [11]. The trypanocidal drugs used to cure the first stage of HAT poorly

cross the BBB, and toxic drugs are instead widely used for the treatment of the second stage

[11]. Staging of HAT and determining viable disease biomarkers thus represent key issues with

obvious therapeutic implications. Staging of HAT is currently based on criteria indicated by

WHO [4] related to the presence of parasites and/or counts of white blood cells in the CSF.

However, such criteria lack sensitivity and therefore the identification of new staging tools is

of critical importance [11–13].

In humans and in rodent models, T. b. infection results in a neuroinflammatory pathology

with regional microglia activation [14, 15] and experimental data have indicated that T-cell

recruitment to the brain paves the way for parasite entry [7]. Pro- and anti-inflammatory

mediators, in particular the chemoattractant chemokines CXCL10 and CXCL13, have been

investigated as candidate of CSF biomarkers for the encephalitic stage of T. b. infection [16].

Combined panels of neuroinflammatory markers have been proposed for T. b. gambiense [17,

18] and T. b. rhodesiense [19] HAT staging. In these panels, CXCL10, an interferon (IFN)-

inducible chemokine, was especially effective as a potential marker for the CNS disease, and

has been proposed to represent an early indicator of CNS involvement in HAT [19].

Experimental data have pointed to a pivotal role of IFN-γ released from activated T-cells in

T. b. traversal of the BBB [7, 20], and of CXCL10 in facilitating the accumulation of T-cells in

the neuropil [16]. Invasion of the cerebral parenchyma by African trypanosomes has been

shown to occur over time, after an initial interval following peripheral infection [7, 21]. How-

ever, the temporal relationship of trypanosome neuroinvasion with neurological signs and

symptoms, of crucial importance to facilitate optimal management of HAT patients [19],

requires further investigation.

Sleep/wake alterations in HAT are represented by two main changes [22, 23], documented

also in rat models of the infection [24, 25]. These alterations include sleep/wake cycle disrup-

tion, with episodes of daytime somnolence and nocturnal insomnia, and alterations of the

structure of sleep. Recent experimental data have indicated that the changes in sleep structure

can precede parasite neuroinvasion and cannot, therefore, provide a biomarker of the onset of

the encephalitic stage [21]. The emergence of sleep/wake cycle fragmentation in relation to

parasite entry into the brain parenchyma remains to be assessed.

On this basis, the present experimental study aimed to clarify the relationship between

altered levels of IFN-inducible chemokines, in particular CXCL10, and changes of the sleep/

wake cycle during T. b. infection. Using a rat model and histological assessment of parasites

within the brain parenchyma, the expression of genes encoding Ifn-γ and the IFN-inducible

chemokines Cxcl9, Cxcl10, Cxcl11 in the brain was here evaluated, CXCL10 levels were mea-

sured in the serum and CSF, and sleep/wake parameters were investigated in parallel.
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Materials and methods

Ethics statement

Animal handling and surgery were performed following the “Principles of laboratory animal

care” (NIH publication No. 86–23, revised 1985), with a protocol approved by the Animal

Care and Use Committee of the University of Verona (CIRSAL) and authorized by the Italian

Ministry of Health (protocol n˚18/2012-B), in strict adherence to the European Communities

Council (86/609/EEC) directives and the ARRIVE guidelines, minimizing the number of ani-

mals used and avoiding their suffering.

Animals and infection

Adult (3–6 month-old) male Sprague-Dawley rats were purchased from Harlan Laboratories

(Milan, Italy) and housed in the animal facilities at the Medical School of the University of

Verona under veterinarian control and standard environmental conditions of temperature

and humidity and a 12h/12h light/dark cycle (lights on at 7 am, corresponding to Zeitgeber
time, ZT, 0), with free access to food and water.

Rats were infected by intraperitoneal (ip) injection with pleomorphic T. b. brucei parasite

strain An Tat 1/1 (100 parasites/g body weight) derived from stabilate EATRO 1125 kindly

provided by the Laboratory of Serology, Institute of Tropical Medicine Prince Leopold, Ant-

werp, Belgium). Parasitaemia was assessed at 3 and/or 5 days post-infection (dpi) in a blood

sample from the tail vein.

Experimental design

In this model, animal death occurs at 4–5 weeks post-infection [26]. On the basis of our recent

study [21], 6 dpi was here used as time point preceding parasite neuroinvasion, and 14 dpi as

time point corresponding to initial parasite neuroinvasion, as also here verified histologically.

Later time points (19, 21, 30 dpi) were used for analyses during the progression of the menin-

goencephalitic stage.

Infected rats and matched uninfected controls were randomly destined for the quantifica-

tion of CXCL10 in the serum and CSF by enzyme-linked immunosorbent assay (ELISA) at dif-

ferent post-infection time points (Table 1). The brains of these animals, as well as those of

matched animals, were destined for the analysis of the expression of Ifn-γ and IFN-inducible

chemokine genes or immunohistochemical verification of the occurrence of parasites in the

Table 1. Rats destined for each analysis.

Sampling ELISA PCR IHC EEG/

EMGSerum CSF

ctrl n = 7 n = 5 n = 3 n = 6+

6 dpi n = 4 n = 3 n = 3 n = 4

14 dpi n = 9 n = 6 n = 3 n = 5

19 dpi n = 5§

21 dpi n = 7 n = 4 n = 3

30 dpi n = 5 n = 3

+ Recording over time
§ Archival data

Abbreviations: CSF, cerebrospinal fluid; ctrl, control (uninfected); dpi, days post-infection; EEG/EMG, electroencephalography/electromyography

(telemetric recording for sleep/wake analyses); IHC, immunohistochemistry (blood vessel wall and parasite detection)

https://doi.org/10.1371/journal.pntd.0005854.t001

Chemokines and sleep/wake changes in Trypanosoma brucei infection

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0005854 August 18, 2017 4 / 18

https://doi.org/10.1371/journal.pntd.0005854.t001
https://doi.org/10.1371/journal.pntd.0005854


brain parenchyma at 6 and 14 dpi (Table 1). The rats used for these analyses were not

implanted with probes for telemetric recording to avoid any confounding factor due to a

potential inflammatory reaction. Additional animals were therefore used for continuous tele-

metric monitoring of sleep/wakes states before and after the infection (Table 1).

PCR analysis

The levels of Ifn-γ, Cxcl9, Cxcl10 and Cxcl11 transcripts relative to the activity of the house-

keeping gene cyclophilin (Cyc) were determined in the brain using end-point RT-PCR at 6, 14,

21 dpi and uninfected controls (Table 1). As described elsewhere [27], total cellular brain RNA

was prepared by homogenization in RNA-Bee-(amsbio-UK). Random hexamer primed cDNA

synthesis was performed on 2 μg RNA using SuperScript III (Invitrogen-UK). End-point

RT-PCRs were completed using RedTaq Ready Mix (Sigma-UK) in a total reaction volume of

25 μl containing 5 μl cDNA and 0.3 μM primers against the specific gene transcripts (Table 2).

All PCRs were performed in the linear amplification range over 25–30 amplification cycles

(Table 2) comprising an initial denaturation step of 94˚C/5 mins, a core cycle comprising

(94˚C/1 min−55˚C−65˚C/1 min−72˚C/1 min) followed by a final extension of 72˚C/10 mins

[27]. PCR products were separated by TAE gel electrophoresis, visualised by ethidium bromide

staining and quantified by densitometry using an UVIdocD55XD documentation system

(Uvitec UK).

CXCL10 analyses

Samples of CSF, blood, and brain were collected at different times after infection and in

matched uninfected rats (Table 1). The rats were deeply anesthetized by ip injection of pento-

barbital (0.05 mg/g body weight), and CSF was collected by the insertion of a borosilicate glass

capillary tube in the cisterna magna through the dura mater, as previously described [28]. CSF

samples with blood contamination were excluded from the study. Blood samples were col-

lected by cardiac puncture, allowed to clot for 2 h at room temperature, and centrifuged for 20

minutes at 2000 x g. The collected serum samples were aliquoted, stored at -20˚C and subse-

quently analyzed by an ELISA assay. Immediately after CSF and blood collection, the anesthe-

tized rats were sacrificed by cervical dislocation. The brains were excised, frozen in liquid

nitrogen, and stored at -80˚C until processing for PCR or immunohistochemistry (Table 1).

The volume of CSF samples was sufficient for the analysis of only one molecule and

CXCL10 was selected for the analyses on the basis of previous results in a murine model of the

disease and in the CSF of T. b. gambiense HAT patients [16]. The levels of CXCL10 in the

serum and CSF were quantified using the Quantikine Mouse CXCL10/IP-10/CRG-2 immuno-

assay by R&D Systems (Milan, Italy). Since rat ELISA kits are not commercially available, a

mouse CXCL10 (IP10; CRG2) with 80% affinity for rat CXCL10, previously validated for mea-

surement of CXCL10 levels in the rat serum [29], was used. Samples were processed according

to the supplier’s instructions. Serum samples were analyzed in triplicate, while CSF samples

Table 2. Primer sequences, product length and amplification cycles performed in end-point PCR analysis.

Gene Forward Primer (5’>3’) Reverse Primer (5’>3’) CycleNo. Product length

Cyc ACCCCACCGTGTTCTTCGAC CATTTGCCATGGACAAGATG 25 300bp

Ifn-γ CAAGGCACACTCATTGAAAGCCTA TTATTGGCACACTCTCTACCCCAGA 30 431bp

Cxcl9 TGAAGTCCGTTGCTCTATTCCTCA TTAGATGCAGAGCGCTTGTTGGTA 25 411bp

Cxcl10 CCTGCATCGACTTCCATGAACAGA TGGGGCATGGCACATGCTGA 25 520bp

Cxcl11 GTGAAAGTGGTCAAAATGGCAGCA ATGTGCCTCGTGTTATTTGGGGAA 25 520bp

https://doi.org/10.1371/journal.pntd.0005854.t002
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were analyzed in single or duplicate due to volume constraints. The optical density (OD) read-

ing at 450 nm was corrected for optical imperfection in the plate. The data were linearized by

plotting the log of the mouse CXCL10 concentrations versus the log of the OD and the best fit

line was determined by regression analysis.

Immunohistochemical procedure and confocal microscopy

Frozen brains collected as above were used for immunohistochemistry (Table 1). Coronal sec-

tions were cut at a 20 μm thickness using a cryostat, collected in series, air dried and fixed in

cold acetone at 4C˚ for 10 min prior to staining. The sections were pre-incubated in a solution

of 2% normal donkey serum and 0.3% Triton X-100 in 0.1M phosphate buffer, pH 7.4. The

sections were then incubated overnight at 4˚C in a mixture of primary antibodies to visualise

blood vessel walls and parasites. Blood vessel walls were immunolabeled using goat polyclonal

anti-glucose transporter (GLUT)-1 antibodies (1:100; Santa Cruz Biotechnology, Santa Cruz,

CA, USA), and parasites with rabbit polyclonal antibodies which recognize the T. b. variant

surface glycoprotein of the AnTat 1:1E stabilate (1:500; kindly supplied by the Institute of

Tropical Medicine, Antwerp, Belgium). After rinsing in PBS, the sections were incubated in a

solution of secondary antibodies containing Alexa Fluor 488-conjugated donkey anti-goat

IgGs and Alexa Fluor 568-conjugated donkey anti-rabbit IgGs (InVitrogen Corporation,

Carlsbad, CA, USA; 1:1000). The sections were then rinsed in PBS, and mounted with using

Dako mounting medium (Dako, Hamburg, Germany).

Images were acquired with the confocal microscope Leica SP5 (Leica, Manheim, Germany).

Serial Z-planes (1.8 μm) images were captured with the Leica Application Suite software, and

collapsed into a single image to which colors were assigned. Lateral views were obtained using

Imaris 7.4 software (Bitplane, Zurich, Switzerland) after optimization of contrast and

brightness.

Telemetric recording and electroencephalogram (EEG) analysis

For neurophysiological analyses, surgical implantation of the radiotelemetric probes and

recordings of EEG and electromyography by radiotelemetry (Data Science International

[DSI], St. Paul, MN, USA) were performed under deep anesthesia (20 mg/kg i.p. Zoletil (tileta-

mine +zolazepam, Virbac, Cédex, France). Following baseline recordings, performed 10 days

after surgery, the rats were infected as described above. Thereafter, recordings were continued

until 14 dpi, when the rats were anaesthetized and killed by cervical dislocation.

Data obtained at 6 and 14 dpi versus baseline were analyzed using MatLab software (The

MathWorks, Natick, MA, USA). EEG and electromyography signals were visually scored for

10 s epochs. Four different states—wakefulness (W), slow wave sleep (SWS), rapid eye move-

ment (REM) and sleep-onset REM sleep (SOREM)—were distinguished according to standard

criteria in rodents [30–32]. SOREM episodes are a sleep structure alteration in which, instead

of the normal SWS-REM sleep sequence, REM sleep is preceded by W. According to a previ-

ous study[31], SOREM episodes were defined as a period of at least 40 s of W followed by

REM sleep events spanning 10 s or more. The mean REM sleep latency, which was calculated

as previously described [33], and the other vigilance state parameters were analyzed for a 24h

(ZT0-ZT24) period. In addition, a hypnogram at 19 dpi was derived from archival material

collected during a previous study [25] for a qualitative comparison with the present data.

Statistics

PCR data was investigated by general linear model analysis followed by Tukey’s post-hoc test

using Minitab Version 17 (Minitab Inc, State College, Pennsylvania, USA.) software.
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Statistical analyses of ELISA and EEG data were performed using the SPSS software (Chi-

cago, Illinois, USA). For the ELISA data, comparisons between the control and infected groups

as well as between different time points were evaluated with one-way analysis of variance

(ANOVA), followed by the Tukey post-hoc test. For the EEG data, comparison with the base-

line values were carried out using one-way repeated measure ANOVA, followed by the Bonfer-

roni post-hoc test for pairwise comparison.

Data are presented as mean ± standard error of the mean (SEM). In all the analyses, statisti-

cal significance was set at p� 0.05.

Results

Expression of inflammation genes

End-point RT-PCR analysis revealed a common temporal expression profile of the four genes

during disease progression (Fig 1A) although there was some degree of inter-gene variation in

message levels (Fig 1B). No changes were apparent at 6 dpi. However, a modest, though signifi-

cant upregulation in Cxcl9 (0.511 ± 0.058, p = 0.001) and Cxcl11 (1.044 ± 0.109, p = 0.004)

expression was detected in rats at 14 dpi compared with uninfected controls (0.054 ± 0.024,

0.182 ± 0.026, respectively). An increase in the expression of Ifn-γ (0.765 ± 0.108) was also

noted at 14 dpi compared to uninfected controls (0.244 ± 0.052) but this failed to reach statisti-

cal significance (p = 0.051). A further approximately three-fold increase (p<0.001) in the

expression of the Ifn-γ, Cxcl9 and Cxcl11 genes (2.264 ± 0.182, 1.623 ± 0.051, 2.671 ± 0.187

respectively), was found between 14 and 21 dpi.

No significant changes were found in the Cxcl10 mRNA levels during the initial time points.

However, expression of this gene was significantly elevated (p<0.001), by six-fold or greater, at

21 dpi (1.911 ± 0.204) compared with levels seen at day 0 (0.259 ± 0.036), 6 dpi (0.217 ± 0.029)

and 14 dpi (0.318 ± 0.74). Summary statistics are provided in Supplementary Table 1.

CXCL10 levels in the serum and CSF during the progression of the

infection

A progressive significant increase of CXCL10 concentration was found both in the serum

(one-way ANOVA: F (4,27), p<0.0001) and in the CSF (F (4,16), p<0.0001) of T. b. brucei-
infected rats. Interestingly, significant differences documented by post-hoc testing showed that

the increase occurred at different time points in the two biological fluids over the analyzed

course of the infection (Fig 2).

In the serum (Fig 2A), the level of CXCL10 in uninfected rats was 1.35±0.68 pg/ml. Dur-

ing the hemolymphatic stage of the disease (between 0 and 6 dpi), the level of the chemokine

increased (10.08±0.62 pg/mol) but the difference versus controls did not reach statistical

significance (p = 0.85). During the progression of the infection, a significant increase of

CXCL10 level in the serum (43.61+5.98 pg/mol) versus controls (p<0.0001) and versus 6 dpi

(p = 0.0031) was recorded at 14 dpi. Significantly higher levels of CXCL10 in the serum of

infected rats versus controls persisted at subsequent time points (21 dpi: 43.05±6.53 pg/ml,

30 dpi: 48.13±5.84 pg/ml; p<0.0001 at both time points).

The analysis of the CSF (Fig 2B) showed that in the infected rats CXCL10 levels significantly

increased above control levels (10.03±3.51 pg/ml) during disease progression (21 dpi: 94.84

±21.10 pg/ml, p = 0.0062; 30 dpi: 147.6±35.54 pg/ml, p<0.0001), with a significant increase

between 14 dpi (29.03±7.95 pg/ml) and 21 dpi (p = 0.030), as well as between 6 dpi (24.19

±2.11 pg/ml) and 21 dpi (p = 0.055).
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Fig 1. mRNA levels of Ifn-γ and IFN-dependent chemokines in the brain following T. b. brucei infection. (A) PCR reaction products from triplicate

samples for each time point were electrophoresed through a single 2% agarose gel and the corresponding band intensities quantified using an Uvitec gel

documentation system. A progressive increase in signal strength can be seen as the infection progresses. (B) Graphs display a summary of the

densitometry data, normalised against Cyclophilin expression, and resulting statistical analysis. Data are expressed as the group mean and 95%

confidence interval. n = 3 in all groups. *significantly (p<0.001) higher gene expression levels were detected at 21 dpi compared with all other time points.

Horizontal lines indicate a significant difference between group means. Corresponding p-values are given above the line.

https://doi.org/10.1371/journal.pntd.0005854.g001
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Initial parasite neuroinvasion

No trypanosomes were detected within the brain parenchyma of rats sacrificed at 6 dpi

although parasites were observed within brain capillaries and in the choroid plexus. At 14 dpi,

parasites had progressed into the neuropil of all the brains examined. In addition, trypano-

somes were frequently observed traversing blood vessel walls (Fig 3).

Sleep/wake alterations

The hypnograms at 6, 14 and 19 dpi showed a progressive fragmentation of the sleep-wake pat-

tern, especially during the dark phase (Fig 4), in which wake was predominant in baseline

recordings as expected in normal conditions in nocturnal rodents. Such fragmentation became

evident at 14 dpi and was exacerbated at 19 dpi, with an increase of SOREM episodes, espe-

cially during the dark period.

Quantitative evaluation of the vigilance states (W, SWS, REM sleep) was pursued compar-

ing recordings at 6 and 14 dpi with baseline recordings prior to the infection. The light and

dark periods were analyzed separately. During the light period (Fig 5A), the main findings

were represented by a significant decrease of the mean REM latency and of the mean duration

of REM sleep episodes, as well as by a significant increase in the number of state transitions at

14 dpi. No changes in either the time spent in each state or in the mean duration of W and

SWS episodes were observed at this time point.

Occasional, isolated SOREM episodes were observed before infection as also reported in

healthy humans [34]. In the infected animals, 3 out of 6 rats displayed SOREM episodes during

the light period at 6 dpi, which frequently occurred in clusters. By 14 dpi all rats exhibited

these changes in their sleep structure.

At this point (14 dpi) the sleep/wake changes were more marked during the dark period

than during the light period (Fig 5B). In particular, the total time spent in W decreased

whereas the total time spent in SWS increased during the dark period. In addition, a highly sig-

nificant increase in the number of state transitions was observed, accounting for the fragmen-

tation evident in the hypnograms at 14 dpi (Fig 4). Alterations were also documented in the

Fig 2. CXCL10 levels increase in serum and CSF of T. b. brucei-infected rats during disease

progression. (A) In the serum, a steep increase in serum CXCL10 levels is observed between 6 (n = 4) and

14 (n = 9) days post-infection (dpi) compared with control group (n = 7), and the increase persists at 21 dpi

(n = 7) and 30 dpi (n = 5). (B) In the CSF, CXCL10 levels increase significantly at 21 dpi (n = 4) and further

increase at 30 dpi. Dots represent individual rats, bars indicate mean group values ± SEM (*p < 0.05,

**p<0.01, ***p<0.001, Tukey post-hoc test following one-way ANOVA).

https://doi.org/10.1371/journal.pntd.0005854.g002
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mean duration of W episodes, which decreased by 6 dpi, with a more marked decrease at 14

dpi. No changes in the total time spent in REM sleep or in the mean duration of SWS and

REM sleep episodes were observed, nor were there any changes in the mean REM latency.

SOREM episodes were observed during the dark phase, and their number significantly

increased at 14 dpi (Fig 5B).

Overall, the analysis of vigilance states pointed out that sleep-wake fragmentation was

already marked at 14 dpi, with rapid cycling between sleep state episodes and a progressive

invasion of sleep into wakefulness in the dark period (Figs 4 and 5).

Discussion

The findings of this study show an increase in the levels of Cxcl9 and Cxcl11 mRNAs in the

brain at the time of initial parasite neuroinvasion (between 6 and 14 dpi), which continued to

rise during the progression of the disease, and significant increases in the levels of Cxl10 and

Ifn-γmRNAs in the brain were apparent by 21 dpi. When CXCL10 levels were analyzed in the

serum, significantly increased concentrations were found at 14 dpi, coinciding with initial par-

asite neuroinvasion. This response appeared to be delayed in the CSF, and augmented

CXCL10 levels were detected in the CSF at 21 dpi complementing the ongoing neuroinflam-

matory reaction. Furthermore the analysis of sleep/wake changes showed an initial fragmenta-

tion of vigilance states, especially during the period of wakefulness predominance, at the time

Fig 3. Parasites crossing blood vessels in the brain parenchyma 14 days after infection. Blood vessels

(red) are visualised by-glutamate transporter 1 (GluT1) immunoreactivity, Trypanosoma brucei brucei (Tbb)

are in green (A-E). (A) Intravascular parasites are frequently observed in the cerebral cortex. (B) An

extravascular parasite crawling along the external walls of a blood vessel. Intravascular parasites are also

visible. (C) Maximum intensity projection showing a parasite transmigrating with the orientation of the

flagellum (arrow) that seems to indicate passage from the bloodstream to the neuropil. (D-E) Orthogonal

views of a single plane (xy; yz; xz) of the parasite cell body outside the blood vessel (D, asterisk in C) and

flagellum (E, arrow in C) within in the blood vessel.

https://doi.org/10.1371/journal.pntd.0005854.g003
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of parasite neuroinvasion, when SOREM episodes, whose onset preceded this event, showed a

significant increase (Fig 6). The present data on the timing of parasite penetration into the

brain parenchyma is in agreement with our previous findings [7, 21], and the observation of

parasites crossing blood vessels to enter the neuropil further supports parasite traversal of the

BBB as main pathogenetic event of this brain infection [7, 21].

The increase of Ifn-γ gene expression in the brain, here found between 14 and 21 dpi, is

supported by data in a more chronic rat model of T. b. brucei infection with a course of two

months, in which Ifn-γmRNA levels showed a small increase between 22 and 35 dpi in the

choroid plexus and peaked throughout the brain at 43 dpi [35]. Though of pathogenetic rele-

vance, IFN-γ was not identified as an effective marker when its level was measured in the CSF

of T. b. gambiense HAT patients [15].

The IFN-dependent chemokines CXCL9, CXCL10 and CXCL11 bind to a common recep-

tor, CXCR3, which is expressed by activated T-cells, and the role of CXCL10 is especially criti-

cal for the recruitment of activated T-cells to the central nervous system in a variety of diseases

[36]. In the brain, both neurons and glia can express Cxcl10 [36] and astrocytes contribute to

the production of CXCL10 in African trypanosomiasis [16]. The present data on increases of

Cxcl10 gene expression in the brain as well as of the level of this chemokine in the CSF during

Fig 4. 24 h hypnograms in rats recorded before and after T. b. brucei infection. Hypnograms shown are examples from one animal at each point

studied. Note that a progressive sleep-wake fragmentation and increase in the number of SOREM episodes (S) are observed during both the light and

dark phases (indicated by the bars) compared with the baseline (bsl) recorded prior to the infection. The hypnogram at 19 dpi (day post-infection) was

analyzed from archival material [25]. (Zeitgeber time, ZT, 0 corresponds to the lights-on time).

https://doi.org/10.1371/journal.pntd.0005854.g004
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Fig 5. Changes in the sleep/wake pattern. Quantitative data of vigilance state parameters are presented as mean ± SEM (*p < 0.05, **p < 0.01,

***p < 0.001, Bonferroni post-hoc test following one-way repeated measure ANOVA). Values at 6 and 14 days post infection (dpi) are compared with

baseline values (bsl, before infection) (n = 6). (A) In the light phase, the time spent in each state as well as the mean duration of W and SWS episodes is

not significantly altered at 6 and 14 dpi. A significant decrease of both the mean duration of REM sleep episodes and REM latency is found at 14 dpi. At

the same time point, the number of state transitions and the number of SOREM episodes increase significantly. (B) In the dark phase, the time spent in W

decreases significantly at 14 dpi, whereas the time spent in SWS increases. No changes are observed in the total time spent in REM sleep. A significant

decrease in the mean duration of W episodes is observed from 6 dpi. In addition, the number of state transitions and SOREM episodes increases

significantly at 14 dpi.

https://doi.org/10.1371/journal.pntd.0005854.g005
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Fig 6. Summary of the changes in the investigated parameters during the first three weeks of infection.

As assessed by parasite detection in the brain parenchyma, 6 days post-infection (dpi) corresponds to the first,

hemolymphatic, stage, and 14 dpi to initial parasite neuroinvasion; 19 dpi and 21 dpi correspond to early

encephalitis. The study of transcripts showed a progressive increase in the expression of Ifn-γ, cxcl-9, cxcl-10

and cxcl-11 mRNAs in the brain, which persisted at 21 dpi. CXCL10 increased in the serum at the time of initial

parasite neuroinvasion and in the cerebrospinal fluid (CSF) during early encephalitis. Wake (W), rapid eye

movement (REM) sleep, slow wave sleep (SWS) indicate the vigilance states analyzed during the light (L) and

dark (D) periods. Significant increases and decreases are indicated by directional arrows; + indicates the onset

of sleep onset REM episodes (SOREM). Note that an initial fragmentation of vigilance states (an increase of the

time spent in SWS and of the number of state transitions, together with a decrease of the total time and the

mean duration of W episodes) became evident at the time of parasite neuroinvasion (14 dpi), especially during

the period of wakefulness predominance (dark phase), with intrusion of sleep episodes into wakefulness. The

onset of SOREM episodes, which were observed from 6 dpi onward, preceded this event. Although a more

restricted definition was used in the present study than in our previous investigation [22], a significant increase

in the number of SOREM episodes was observed from 14 dpi.

https://doi.org/10.1371/journal.pntd.0005854.g006
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T. b. encephalitis in rats are in agreement with those previously obtained in a murine model,

in which differential gene expression was identified using microarray analysis. In this study,

increased Cxcl9 expression was detected from 6 to 28 dpi, and Cxcl11 transcript levels could

not be examined since the mouse strain used in this model is a natural null mutant for this che-

mokine [16]. In the present rat model, the modest increase of Cxcl9 and Cxcl11 mRNAs coin-

ciding with the time of initial parasite neuroinvasion could point to these chemokines as

candidate CSF biomarkers of the onset of the encephalitic stage. A limitation of the present

study is that the level of these chemokines in the CSF during the infection could not be mea-

sured due to the restricted sample volume available and thus remains to be assessed in future

studies.

The changes in the concentration of CXCL10 in the serum and CSF here identified could

reflect the systemic and brain progression of T. b. infection, respectively. During systemic

inflammation CXCL10 is produced by monocytes and endothelial cells in a variety of patholo-

gies, which include autoimmune diseases [37], inflammatory bowel diseases [38], chronic liver

diseases and especially hepatitis C [39, 40]. Therefore CXCL10 levels in the serum may not

provide specific information with regard to disease progression in HAT, although the present

study suggests that increases of circulating CXCL10 levels in HAT patients should be carefully

considered. Concerning the CSF, increases of CXCL10 have been demonstrated in other CNS

infections, such as encephalitis caused by viruses and cerebral malaria [36, 41, 42]. The combi-

nation of neurological signs characteristic of HAT with high CXCL10 level in the CSF could

therefore be of particular diagnostic relevance for the evaluation of the severity of this disease,

especially T. b. gambiense HAT. Even in T. b. rhodesiense HAT, in which no direct link was

found between neurological signs and neuroinflammatory responses [43], CXCL10 level was

found to increase in the CSF in late stage disease [44], and CXCL10 has been utilized in combi-

natorial panels with potential efficacy for T. b. rhodesiense HAT staging [19].

Two aspects of vigilance states, sleep structure and sleep/wake cycle, were here examined.

Concerning the first, the present findings support previous data indicating that the onset of

SOREM episodes can precede parasite neuroinvasion [21]. Concerning the changes in the

sleep/wake cycle, an increase in the number of state transitions indicative of sleep/wake frag-

mentation, associated with a decrease of the mean duration of W episodes, was found at the

time of parasite neuroinvasion during the phase of wake predominance. This was accompa-

nied by an initial phase inversion, with intrusion of sleep into wakefulness. The findings indi-

cate that a disruption of the sleep/wake pattern is likely associated with the initial encephalitic

stage, as supported by previous experimental studies [24–26], here extended to include an

assessment of parasites in the brain parenchyma, and parallel gene expression and CXCL10

analyses.

Sleep/wake changes documented in African trypanosomiasis are different from those of

occurring during systemic infections, which are part of the so-called “sickness response” and

are characterized by SWS increase [45], and from those occurring during other cerebral infec-

tions [46]. Concerning pathogenetic mechanisms, cytokine effects on the master circadian

pacemaker, the hypothalamic suprachiasmatic nucleus, could account in African trypanosomi-

asis for disturbances of the sleep/wake cycle [7], as well as for phase advance of the synchro-

nizer hormone melatonin, whose rhythm of secretion is, however, maintained in HAT

patients [47] and the rat model of the infection [48]. Factors secreted by African trypanosomes,

such as prostaglandin D2, could affect vigilance states [8]. However, prostaglandin D2 is a

potent endogenous sleep-promoting substance [49], whose effect cannot, therefore, account

for the distinct changes of the sleep/wake cycle here observed.

Of note, the early meningoencephalitic stage examined in this study corresponds to a tem-

poral window especially critical for therapeutic decisions. In T. b. brucei-infected mice,
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treatment with the early stage drug Suramin was found to exert a curative effect in the initial

phase of parasite neuroinvasion, but was no longer effective at 21 dpi [50]. An objective evalua-

tion of sleep/wake changes could, therefore, be of special interest for translational implications

when the disease could still be susceptible to treatment with trypanocidal drugs which poorly

cross the BBB. Sleep/wake fragmentation can be objectively documented in humans by the

non-invasive and user-friendly procedure of actimetric recordings [51, 52], as verified also in

T. b. gambiense HAT patients [53].

In conclusion, the present findings indicate that the onset of sleep/wake fragmentation dur-

ing 24 h, and in particular episodes of somnolence during the day, together with an increase of

CXCL10 levels in the serum and followed by an increase of CXCL10 level in the CSF, could

provide a sensitive biomarker for initial African trypanosome neuroinvasion. Therefore, sleep/

wake changes together with CXCL10 level in the CSF, by itself or in a combinatorial approach

with other neuroinflammatory markers, could be highly relevant for a diagnosis of the early

encephalitic stage of T. b. infection.
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