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Abstract
Fitts’ Law describes the speed-accuracy trade-off of humanmovements, and it is an elegant

strategy that compensates for random and uncontrollable noise in the motor system. The con-

trol strategy during targeted movements may also take into account the rewards or costs of

any outcomes that may occur. The aim of this study was to test the hypothesis that movement

time in Fitts’ Law emerges not only from the accuracy constraints of the task, but also depends

on the perceived cost of error for missing the targets. Subjects were asked to touch targets on

an iPad
1

screen with different costs for missed targets. Wemanipulated the probability of error

by comparing children with dystonia (who are characterized by increased intrinsic motor vari-

ability) to typically developing children. The results show a strong effect of the cost of error on

the Fitts’ Law relationship characterized by an increase in movement time as cost increased.

In addition, we observed a greater sensitivity to increased cost for children with dystonia, and

this behavior appears to minimize the average cost. The findings support a proposedmathe-

matical model that explains howmovement time in a Fitts-like task is related to perceived risk.

Introduction
Human movements are constantly performed in risky environments. Avoiding risk is so funda-
mental to natural movements that it is not surprising that behaviors change in different set-
tings. When, for instance, we walk near the edge of a cliff or we move near delicate glass, there
is a tendency to make smaller, slower, more cautious movements. We define the term “risk” to
be the expected cost of behavior. Risk is thus the product of the probability of error and the
cost of error [1–2]. A low cost but high probability of error is not risky, likewise, a high cost but
low probability of error is not risky. For instance, walking on a very narrow wooden board sus-
pended just a few centimeters above the floor, or walking across a safely enclosed bridge hun-
dreds of meters above a canyon are both low-risk. It is only when high likelihood of error is
combined with high cost of error that we face high-risk actions.

An important source of error is noise or unpredicted variability in movement. Experimental
and computational studies have shown that multiple noise sources in the nervous system, from
cellular to behavioral levels, contribute to trial-to-trial motor variability [3]. Moreover, the
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noise in motor commands tends to increase with the level of the motor command, known as sig-
nal-dependent noise [4–6]. Therefore, as the magnitude of motor commands increases, the vari-
ability of the movement increases, which consequently affects the probability of error of a
particular action. The speed-accuracy trade-off of voluntary movements is a typical example of
how the sensorimotor systemmay compensate for signal-dependent noise. Fitts’ Law is a widely
known description of the mathematical relationship between movement speed and accuracy [7].
Traditionally, Fitts’ Law states that the movement time (MT) required to hit a target increases
with movement distance (D) and decreases as target size increases (W), such that MT = a + b
log2 (2D/W), wherein a and b are empirical constants, and log2(2D/W) represents the Index of
Difficulty (ID). The inverse of slope 1/b is considered the Index of Performance, since the higher
its value, the less MT is affected by increases in task difficulty (i.e. ID). If random and uncontrol-
lable noise in the motor system increases as the movement speed increases, then increasing accu-
racy can only be achieved by decreasing the speed of movement [4]. In other words an increment
of ID would decrease the movement speed in order to minimize the probability of missing a tar-
get. Thus, in the Fitts’ Lawmodel, movement time is determined by the probability of error.

In recent years, planning and control of goal-oriented aiming movements have been
described within the framework of decision-making under risk. In typical decision-making, the
subject has to take into account not only the uncertainty of motor outcome after selecting the
plan, but also the rewards or costs of any outcomes that may occur [8], [9–11]. For example,
when different rewards are given related to movement endpoint variance, subjects tend to
change their movement speed [12]. Some other elegant studies have shown that when partici-
pants perform pointing movements to a target with a penalty region around it, they shift their
mean endpoints in response to changes in penalties and location of the penalty region relative
to the target region [13–15]. Thus, these studies support the hypothesis that subjects can incor-
porate estimates of both the inherent motor variability and the cost of failure when planning
and controlling fast goal-oriented aiming movements.

We thus hypothesized that movement time is determined not only by the accuracy required
for the task, but also by the cost of errors. This requires a modification of Fitts’ Law to incorpo-
rate an additional term for cost, so that movement time depends on risk rather than just accu-
racy. The usual form of Fitts’ Law would arise in the situation where cost of error is constant,
so that movement time would then vary only as a function of probability of error (determined
by the relationship between speed and target size).

To test our hypothesis, subjects were asked to point at targets in a Fitts-like paradigm in
which different costs were assigned for missing the target. We examined differences in intrinsic
motor variability by comparing children with normal development and children affected by
childhood dystonia. Childhood dystonia is a movement disorder in which involuntary sus-
tained or intermittent muscle contractions cause twisting and repetitive movements, abnormal
postures, or both [16]. In childhood dystonia there is augmented intrinsic variability, signal-
dependent noise in motor execution, and abnormal tone [17, 18]. Therefore, we expected that
increased motor variability would lead to higher sensitivity to the cost of error, slower move-
ments, and decreased Index of Performance.

We propose a model that explains how movement time in a Fitts-like task is related to risk.
We also compare our results to alternative models that incorporate cost of error in other plau-
sible ways.

Amodel of cost and probability of error in the speed-accuracy trade-off
A risk-aware control framework has been recently proposed as a theory of motor control,
which links ideas in optimal control with existing literature on risk behavior in humans [1].

Speed-Accuracy Trade-Off and Risk
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Since the probability and cost of failure may vary throughout the workspace, the theory sug-
gests that the nervous system estimates these values and plans appropriately. A recent study
has shown that during a driving simulation game, humans modulate behavior based on both
the cost and the probabilities of possible outcomes in response to environmental uncertainty
[2]. Thus we predict that the movement time required to hit the target (MT) is a function of
the cost and likelihood to miss the target:

MT ¼ KðCE ↺PEÞ þ ZB ð1Þ

where K is a constant that translates the expected cost of error to the MT, CE is the cost of
error, and PE the probability of error (missing the target). The constant ηB represents the mini-
mummovement time to reach the target when PE tends to zero, such as with large targets or
small movement amplitude. This value is thought to be dependent on subject-specific proper-
ties of the sensorimotor system that are unrelated to noise, such as baseline levels of tone, co-
contraction, overflow, and mechanical impedance (Fig 1A and 1B). Alternatively, it is possible
that cost could have no effect (Fig 1C and 1D):

MT ¼ KðPEÞ þ ZB ð2Þ

Fig 1. Model of cost and probability of error in the speed-accuracy trade-off. Theoretical model of predicted movement time (MT) over Index of Difficulty
(ID) by taking into account the effects of different magnitude of signal-dependent noise (KSDN, left vs right panels) and cost of error at the target (CE, black
solid vs grey dashed lines). Panels A and B predict that CE would not affect the offset of Fitts’ linear relationship (constant ηB), Eq 1; panels C and D predict
that CE would not have effects on MT, Eq 2; and in panels E and F, CE would have effects on both the slope of the relationship between MT and ID and the
offset (CE x ηB), Eq 3.

doi:10.1371/journal.pone.0139988.g001
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or that cost could be associated with both probability of error and the minimummovement
time (Fig 1E and 1F):

MT ¼ KðCE ↺PEÞ þ CE ↺ZB ð3Þ

According to the signal-dependent noise theory [4, 6, 19], PE increases with either an
increase in movement amplitude or a decrease in target size. Under this hypothesis, the scaling
of MT with ID in Fitts’ Law is a strategy employed by the motor system to compensate for sig-
nal-dependent noise and minimize the probability of missing a target [4,7,20,21]. Furthermore,
it has been shown that the magnitude of signal-dependent noise is also dependent on the state
of the sensorimotor system; for example it may increase under muscular fatigue [22] or with
pathological conditions of the central nervous system [17, 18]. We described PE in the speed-
accuracy trade-off framework as follows:

PE ¼ KSDNðIDÞ ð4Þ

Where KSDN represents a constant related to inherent signal-dependent noise and ID is the
Index of Difficulty according to the Fitts’ Law formulation: log2 (2D/W). Thus, Eq 1 can be
expressed as:

MT ¼ KðCE ↺KSDNðIDÞÞ þ ZB ð5Þ

In Fig 1, the panels on the left and right sides represent the prediction of MT as a function
of ID with low and high signal-dependent noise (KSDN) respectively, predicted with Eq 1 (Fig
1A and 1B), 2 (Fig 1C and 1D) and 3 (Fig 1E and 1F).

In goal-oriented pointing movements, failing to hit a target results in a cost, i.e. negative
value. The cost of missing the target can be represented in different ways, for example, the
experimental design may include penalties (e.g. negative score), or repeating trials, which
requires more effort. In addition to losing value due to missing the target, the performer squan-
ders the benefit that he/she would gain from successfully hitting the target. Thus, the cost of
error can be considered as CE = CM + CP, where CM is the cost of the missed opportunity of
success, and CP is the penalty due to missing the target. We can rewrite Eq 5 as follows:

MT ¼ KðCM þ CPÞ↺KSDNðIDÞ þ ZB ð6Þ

The model predicts that higher signal-dependent noise (KSDN) increases the effect of cost of
error (CE) on movement time. Thus, we hypothesize that children with dystonia (higher KSDN)
will respond with a greater increment of movement time in a Fitts-like task (ID) under differ-
ent cost of error (CE), due to the increase in risk. We also predict that the minimummovement
time (ηB) will not respond to changes in CE, because we believe ηB is based on fundamental
properties of the sensorimotor system that are independent of cost. Thus, we anticipate that
the intercept in the Fitts’ Law relationship will likely differ between groups (dystonic and con-
trol) but remain the same with changes in cost of error for each child.

Materials and Methods

Subjects
Sixteen children with a clinical diagnosis of either primary or secondary dystonia affecting one
or both hands (13.7 years old ± 4.2 SD) and 15 healthy children (9.7 years old ± 2.5 SD) partici-
pated in the current study. The children with dystonia were recruited from the movement
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disorders clinic at Children’s Hospital of Los Angeles (CHLA). Their characteristics are out-
lined in Table 1.

Participants were excluded if there was clinical evidence of spasticity or corticospinal injury
in the upper extremities, including hyper-reflexia, a spastic catch, or weakness. The University
of Southern California Institutional Review Board approved the study protocol (IRB# UP-09-
00263). Children’s parents gave informed written consent for participation, and all children
gave written assent. Authorization for analysis, storage, and publication of protected health
information was obtained from parents according to the Health Information Portability and
Accountability Act (HIPAA). The study protocol was performed in accordance with the Decla-
ration of Helsinki.

Procedure
The experimental setup was the same as used previously [18]. Each participant attended a sin-
gle experimental session of approximately one hour. All dystonic participants were previously
rated on the Barry-Albright Dystonia scale (BAD) [23].

Participants sat in a chair or their own wheelchair in front of a table whose surface height
was adjusted at the midpoint between the hip and the xiphoid process. They placed the hand
that was not used for the task on their lap.

An iPad
1

(Apple Inc, Cupertino, CA, USA) was located on the table in portrait mode in
front of the participants at a distance that ranged between 40 to 55 cm. An adjustable metal

Table 1. Characteristics of children with dystonia. BAD, Barry-Albright Dystonia Scale.

Participant Age Gender Diagnosis Left arm BAD
score

Right arm BAD
score

Preferred
arm

Arm used for the
task

P1 14 F Primary dystonia; DYT1- 2 3 Left Left

P2 18 M Secondary generalized dystonia; vitamin E
deficiency

1 1 Right Right

P3 18 M Secondary generalized dystonia; cerebral
palsy

3 3 Left Left

P4 7 M Secondary generalized dystonia; cerebral
palsy

1 1 Left Left

P5 16 F Secondary generalized dystonia; Glutaric
acid urea type 1

3 3 Left Left

P6 18 M Primary dystonia; DYT1+ 1 1 Left Left

P7 11 M Primary dystonia; DYT1+ 0 1 Left Right

P8 11 M Secondary generalized dystonia; cerebral
palsy

1 1 Left Left

P9 16 F Secondary generalized dystonia; right
hemiplegia

0 3 Left Right

P10 9 M Primary dystonia; DYT1+ 2 2 Left Left

P11 11 M Primary dystonia; DYT1+ 3 2 Right Right

P12 19 F Secondary generalized dystonia; cerebral
palsy

2 2 Right Right

P13 9 M Secondary generalized dystonia; cerebral
palsy

2 2 Right Right

P14 18 F Secondary generalized dystonia; cerebral
palsy

3 1 Right Right

P15 16 M Dystonic tremor 2 1 Right Right

P16 8 M Secondary generalized dystonia; cerebral
palsy

2 3 Left Left

doi:10.1371/journal.pone.0139988.t001
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bookstand supported the iPad
1

to allow the participants a comfortable screen view. The size of
the screen was 19.5 x 14.6 cm. Custom software was developed for the experimental task and
distributed to the testing device via the Apple Inc. app store ("Bubbles-Burst" app, developed in
the XCode 3.2 development environment, iOS 4.2 operating system; Apple Inc., Cupertino,
CA, USA).

The subjects were required to touch targets on the iPad
1

screen with the index finger of
their preferred (less-affected) arm. Two children with dystonia (P7 and P9) were asked to per-
form the task with their non-preferred arm since the preferred was not affected by dystonia
(BAD score equal to 0, see Table 1). Subjects were asked to maintain their trunk posture
upright without touching the table or the bookstand with their pointing arm. Each trial was ini-
tiated by touching a 4 x 4 cm “start” button centered on the screen. Targets appeared at one of
nine different locations on the screen, and subjects moved their finger sequentially from one
target to the next. The targets were square with an image of three blue bubbles (Fig 2). Subjects
were asked to touch and “burst the bubbles”. Subsequent targets appeared in a sequential man-
ner on the screen at a random interval between 0.7 and 1.2 s and disappeared at the instant
when the next one appeared. The subject was required to maintain contact with the last target
until the next target appeared, without returning to the start button position. The location of
the subsequent target was chosen pseudo-randomly. The study design consisted of 2 different
experimental conditions: 1) a score penalty (Yes Penalty, YP) for missed targets and 2) no pen-
alty (No Penalty, NP) for missed targets (see later in the methods for details). Note, YP and NP
correspond to CP > 0 and CP = 0 in the theoretical model respectively, and CM > 0 for both
models.

Each experimental condition (YP or NP) consisted of 180 targets divided into 4 blocks: 45
targets in each block with a one-minute interval following each set of 45 targets to avoid
fatigue. In total, the participants performed 360 trials (180 x 2) divided into 8 blocks. The order
of the two penalty conditions (YP or NP) was chosen randomly for each participant. For each
penalty condition, six target distances (D = 4.5, 6.6, 8.0, 9.1, 13.2, and 16.0 cm) and three target
widths (W = 1, 2, 3 cm) were used, yielding 18 different target conditions with different Indices

Fig 2. Task layout. A-B-C) A representative sequence of two consecutive trials with different target distance and target width with unspecified location of the
subsequent target.

doi:10.1371/journal.pone.0139988.g002
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of Difficulty, ID = log2 (2D/W) [5], varying from 1.60 to 4.99 bits. This resulted in 10 trials for
each ID for each penalty condition. The locations of the targets were chosen to match the six
experimental distances and the 18 target conditions (ID) were shown in a pseudo-random
order throughout the 180 trials, which resulted in nine Cartesian coordinates displayed in a
rectangular grid (Fig 3A). The software was programmed to avoid target locations that would
be hidden by the hand or forearm at the start of the movement. It is worthwhile to notice that
at the end of the four blocks within each penalty condition the subject had performed exactly
the same target distances, widths and Indices of Difficulty.

A score, rewarded in number of bubbles, was visually provided at each touch, just above of
the target, based on the movement time and actual ID. The subjects were told that the score
was computed as follows: Score (S) = (2.5 x ID)/MT, where MT is the Movement Time, ID is
the Index of Difficulty and 2.5 a constant term in order to return a tangible and reasonable
score of performance.

At the end of each block of 45 sequential targets, the iPad
1

displayed the Total Score (TS,
[45 x S]) showing the “total number of bubbles” achieved. In the Yes Penalty condition (YP), a
penalty of thirty bubbles points [e.g. “-30 bubbles”] was given for each missed target (Fig 3B).
The penalties were, in that case, subtracted from the TS at the end of each block. In the No Pen-
alty (NP) condition no bubbles [e.g. “0 bubbles”] were subtracted from TS in case of missed tar-
get (Fig 3C). Negative total scores in YP condition were possible at the end of each block.
Before the test a practice block was performed consisting of two trials for each ID for both NP
and YP conditions.

The actual instructions to the subjects were: “Touch and burst the bubbles as fast as you can
to get the highest score, if you miss the target you will not lose bubbles”, or “Touch and burst
the bubbles as fast as you can to get the highest score, if you miss the target you will lose thirty

Fig 3. Target locations and penalty conditions. A) The nine locations of the targets on the screen (black circles) are shown; the dashed lines indicate the
movement distances between targets. B) A representative sequence of three consecutive trials with different target distance and target width with score
penalty for missed targets (Yes Penalty condition, YP). The score at each trial was based on the speed of the movement and the actual ID; note the values
displayed in the figure were chosen only for demonstrative purpose. In case a target was missed, as the last move (c) shows, a 30 bubbles penalty was
subtracted from the Total Score (TS, see methods) at the end of a block of 45 sequential targets. C) A similar representative sequence of three consecutive
trials with different target distance and target width with none penalty for missed targets (No Penalty condition, NP). In this case, if a target was missed then
no penalty was subtracted from the TS.

doi:10.1371/journal.pone.0139988.g003
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bubbles each time you miss” for NP and YP conditions respectively. Different auditory feed-
back was played for a hit or a missed target. Subjects were encouraged to maintain motion
close to the plane of the iPad

1

without an excessive displacement in the perpendicular direc-
tion. However, sliding the finger along the iPad

1

to the next target was not permitted, and suc-
cess required that the first contact with the finger on the screen be within the desired target.
The entire experimental test required less than an hour for each subject.

The raw data collected from subjects has been made available as (S1 Dataset).

Data Analysis
Custom software computed the Movement Time (MT) and the endpoint at the target for each
movement. Later, the data were transferred to a laptop computer (MacBook Air, OS X, 10.8.4,
Apple Inc., Cupertino, CA, USA) and analyzed using Matlab 7.10 software (Mathworks Inc.,
Natick, MA, USA). The MT was determined as the time interval between release of the index
finger from the screen and the next contact with the screen. The location of the touch (and
whether or not it fell within the target) was determined from the operating system pointer
location.

The endpoint variability at the target (Var) was computed as the area of the ellipse contain-
ing the touch locations on the screen of each target width for each experimental condition with
95% confidence. This ellipse was obtained by applying Principal Component Analysis (PCA)
to determine the direction of maximum and minimum dispersion of the distribution in the x-y
plane. The eigenvectors of the covariance matrix were taken as the axes of the ellipse, while the
lengths of the axes were determined by the corresponding eigenvalues [24, 25].

In order to test Fitts' Law, linear regressions were performed by the method of least squares
for the averaged MT values across subjects within each group. The correlation coefficient was
used to indicate the goodness of fit of MT (only successful trials) as a function of ID [26]. The
intercept a of the linear regression equations and the fraction of successful touches
(S = successful touches / 180) were calculated. We also computed the Index of Performance as
the inverse of the slope b of the linear regression equations (IP = 1/b, [20]). The linear regres-
sion was also used to test the scaling effects of ID over (ΔMT).

We used a linear mixed-effects model to test the effects of group (Group factor: healthy chil-
dren vs children with dystonia, random effect) and penalty condition for missed targets (Pen-
alty factor; YP vs NP), and interaction effects for the variables S, intercept a and IP.

In addition to the Group and Penalty factors, we also considered two ranges of Index of Dif-
ficulty (ID factor; Easy: 1.59–3.17, mean = 2.55 and Hard: 3.19–4.99, mean = 3.99 bits/s) and
target width (Target factor: small 1cm, medium 2 cm and large 3 cm;). We ran an independent
sample t-test to test the difference between groups for the average change in movement time
between penalty conditions (ΔMT) within each subject. Means (M) and standard deviations
(SD) were computed for outcome variables. We used a criterion of P< 0.05 to signify a signifi-
cant difference. The statistical analysis was performed using SPSS 16.0 (SPSS Inc, Chicago, IL,
USA).

Results
No subject withdrew from the study and there were no complaints of fatigue. No negative total
scores were experienced in the YP condition in either group. We report statistical results for
four independent measures: success rate (S), movement time (MT), index of performance (IP),
and intercept (a). The linear mixed-effects model showed significant effects for Group and
Penalty on success rate S [F(1,29) = 6.121, p< 0.05 and F(1,35) = 22.659, p< 0.001 respec-
tively]. Children with dystonia had on average lower S (M = 0.85, SD = 0.13, 95% CI [0.81,
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0.90]) than healthy children (M = 0.94, SD = 0.05, 95% CI [0.89, 0.98]). On average S with YP
condition was greater (M = 0.92, SD = 0.09, 95% CI [0.89, 0.95]) than the NP condition
(M = 0.87, SD = 0.12, 95% CI [0.83, 0.90]) considering both groups together. No significant
interaction was observed between Group and Penalty.

There was a significant effect on MT for Group [F(1,29) = 20.728, p< 0.001], Penalty [F
(1,1079) = 117.125, p< 0.001] and ID [F(1,1079) = 189.063, p< 0.001], with only significant
interactions for Penalty and ID [F(1,1079) = 8.344, p< 0.01]. On average children with dysto-
nia were significantly slower (M = 0.585 s, SD = 0.108, 95% CI [0.536, 0.633]) than healthy chil-
dren (M = 0.430 s, SD = 0.094, 95% CI [0.380, 0.480]). On average MT was significantly less in
the NP condition compared to YP (M = 0.482 s, SD = 0.111, 95% CI [0.447, 0.517] and
M = 0.533 s, SD = 0.138, 95% CI [0.498, 0.568] respectively) and with Easy respect to Hard IDs
(M = 0.475 s, SD = 0.125, 95% CI [0.440, 0.509] and M = 0.543 s, SD = 0.133, 95% CI [0.505,
0.576] respectively) considering both groups together (Fig 4A).

MT showed a significant linear regression on ID for both groups on the two penalty condi-
tions. In children with dystonia the correlation coefficients were 0.871 [F(1,17) = 50.487,
p< 0.001] and 0.894 [F(1,17) = 63.694, p< 0.001] for NP and YP respectively. In healthy chil-
dren the correlation coefficients were 0.800 [F(1,17) = 28.461, p< 0.001] and 0.876 [F(1,17) =
52.971, p< 0.001] for NP and YP respectively (see Fig 5).

There was a significant difference of intercept a between groups [F(1,29) = 7.735, p< 0.01].
On average children with dystonia had higher intercept in all conditions (M = 0.415 s,
SD = 0.150, 95% CI [0.352, 0.478]) than healthy children (M = 0.291 s, SD = 0.110, 95% CI
[0.226, 0.357]. There was not a significant difference of intercept a between NP and YP. No sig-
nificant interactions were found.

IP showed a significant effect of both Group [F(1,29) = 9.069, p< 0.01] and Penalty factors
[F(1,29) = 16.379, p< 0.001] with no interactions between Group and Penalty. On average,
control children had a greater IP (M = 31.32 bits/s, SD = 10.42, 95% CI [25.83, 36.83]) than
children with dystonia (M = 20.05 bits/s, SD = 10.42, 95% CI [14.72, 25.38]). Moreover, IP was
affected by the Penalty for missing a target such that YP resulted in less information transmit-
ted (M = 20.27 bits/s, SD = 12.81, 95% CI [15.66, 24.90]) than NP (M = 31.10 bits/s,
SD = 12.81, 95% CI [26.49, 35.72]), see Fig 4B. There was a significant difference between
groups for ΔMT [t(29) = -2.557, p< 0.05], and on average children with dystonia had a larger
increase of MT with YP (M = 0.082 s, SD = 0.060) than controls (M = 0.029 s, SD = 0.054).

The pattern of results shown in Fig 5 resembles Fig 1A and 1B where healthy children are
similar to the Low KSDN group and children with dystonia are similar to the High KSDN group.
In Fig 1, both groups are modeled to have the same minimummovement time (ηB), while in
Fig 5, the dystonia group has a large movement time offset. Thus, it appears that both KSDN

and ηB are larger for children with dystonia as compared to healthy children. The lack of signif-
icant effects on the intercept between the penalty conditions NP and YP suggests that the
model in Fig 1E and 1F is not the best match for the results in Fig 5. While we cannot rule out
the possibility that cost is associated with minimum movement time, the lack of a significant
difference suggests that this contribution to the intercept is relatively small compared to the
cost associated with probability of error.

Fig 6 shows the endpoint distribution of the fingertip on the screen for all four experimental
conditions in a typical healthy child (right panels) and patient P2 (left panels). The grey shaded
area circumscribes the ellipse defined by the two principal components of the dispersion of the
distribution in the x-y plane on the iPad

1

’s screen. The black lines represent the eigenvectors of
the principal components, which were taken as the axes of the ellipse, while the length of the
axes were determined by the corresponding eigenvalues.
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Fig 4. Movement time and Index of Performance. Plots showing the means and standard errors of the Movement Time (MT) (Panel A) and Index of
Performance (IP) (Panel B) for both groups (healthy children and children with dystonia). Black bars: No Penalty condition, NP; white bars: Yes Penalty
condition, YP. Asterisk mark (*) indicates a statistical difference p < .05.

doi:10.1371/journal.pone.0139988.g004
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There were significant effects for Group, Penalty and Target size on Var [F(1,27) = 5.269,
p< 0.05, F(1,135) = 36.212, p< 0.001 and F(2,135) = 52.454, p< 0.001 respectively]; no sig-
nificant interactions were observed between effects (Fig 7). On average Var was larger in chil-
dren with dystonia (M = 0.481 cm2, SD = 0.301, 95% CI [0.378, 0.585]) than healthy children
(M = 0.321 cm2, SD = 0.139, 95% CI [0.221, 0.421]). NP condition showed larger Var
(M = 0.452 cm2, SD = 0.267, 95% CI [0.379, 0.526]) than YP (M = 0.350 cm2, SD = 0.211, 95%
CI [0.277, 0.424]). The Pair-wise comparisons showed the largest Var for the big target
(M = 0.511 cm2, SD = 0.246, 95% CI [0.435, 0.586]) than medium and small targets (p< 0.001,
M = 0.394 cm2, SD = 0.242, 95% CI [0.319, 0.470] and p<0.001, M = 0.298 cm2, SD = 0.200,
95% CI [0.223, 0.374] respectively). Furthermore, the performances with the medium target
resulted with larger Var than the small target (p< 0.001).

Discussion
Risk is a ubiquitous feature of human movements, mostly due to unpredictable and unknown
dynamics of the environment. We have defined risk as the Expected Cost, which is the product
of the probability of error and the cost of error. The speed-accuracy trade-off is a fundamental
principle of human motor control that may reduce the probability of error in attempting to hit
a target [21]. The robustness of this principle (and its widely known mathematical formulation
Fitts’ Law [7]) has been validated over the last 60 years across multiple motor behaviors and
experimental conditions [21]. However, the recent consideration of motor planning and con-
trol of goal-oriented aiming movements within the framework of decision-making under risk

Fig 5. Fitts’ Law relationship.Meanmovement time (MT) for both groups separated by penalty conditions (filled circles—No Penalty, NP; unfilled circles—
Yes Penalty, YP) as a function of the Index of Difficulty (ID). The straight lines show the best fits by the least squares method.

doi:10.1371/journal.pone.0139988.g005
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suggests that the relationship between speed and accuracy may also be influenced when costs
of erroneous outcomes vary [11–13]. We thus hypothesized that movement time in Fitts-like
tasks emerges not only due the distance and size of the target (i.e. ID), but also due to the cost

Fig 6. Representative endpoint distribution at the target. Endpoint distribution of the fingertip on the screen for both penalty conditions (No Penalty, NP;
Yes Penalty, YP) in a typical healthy child (on the top panels) and patient P2 (at the bottom panels). The grey shaded areas circumscribe the ellipse defined
by the two principal components of the dispersion of the distribution in the x-y plane on the iPad

1

’s screen. The black lines represents the eigenvectors of the
principal components which were taken as the axes of the ellipse, while the length of the axes were determined by the corresponding eigenvalues.

doi:10.1371/journal.pone.0139988.g006
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of errors. To test the hypothesis, subjects were asked to perform pointing movements with dif-
ferent costs of missing targets. We also manipulated the probability of error by comparing
healthy children to children with dystonia, who are characterized by augmented signal-depen-
dent noise. The findings of the study show a strong effect of cost of error on the Fitts’ law rela-
tionship with a proportional increase of the movement time with an increase of cost.
Moreover, they show that increased inherent motor variability in children with dystonia is
appropriately associated with greater sensitivity to the cost.

We have identified a close relationship between motor variability as measured by end-point
variability (1.50 times higher for children with dystonia) and as measured by Index of Perfor-
mance (1.56 times higher for children with dystonia). We believe that the same neurophysio-
logical deficits underlie both manifestations of motor variability even though they are
measured in different ways. Future studies on other populations with large movement variabil-
ity (e.g. cerebellar ataxia [27]) will help determine if there is a direct relationship as we propose
or if other factors are responsible.

The results are in line with the mathematical model proposed in which the movement time
reflects the estimation of likelihood of error and cost of missing a target (Fig 1A and 1B).

While we have focused on explicit cost of error as the main cause underlying differences in
movement time, it might also be due to greater implicit cost of error. Indeed the cost of missed
opportunity in children with dystonia is smaller with respect to healthy children since, overall,
they were slower and had lower scores, and so errors resulted in a lesser impact on their scores.

Fig 7. Results endpoint variability. Plot showing the means and standard errors of the endpoint variability at the target (Var) of penalty condition for both
groups (healthy children and children with dystonia) for all the Indexes of difficulty (ID). Black bars: No Penalty condition, NP; white bars: Yes Penalty
condition, YP. The asterisk mark (*) indicates a statistical difference p < .05.

doi:10.1371/journal.pone.0139988.g007
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There appeared to be a close connection between the relative motor variability of the groups
and the relative index of performance (which is directly proportional to the explicit cost of
error according to our model formulation). Thus, the parsimonious explanation is that vari-
ability is the main driver. However, we cannot rule out implicit cost, which we did not measure.
Future studies aimed at distinguishing between explicit and implicit cost will help further
understand differences between the populations.

Fitts’ Law and probability of error
One theory of the origin of Fitts’ Law has been explained as a strategy to compensate for sig-
nal-dependent noise of the sensorimotor system [4]. Under this theory an increment of accu-
racy entails a decrement of speed in order to suppress the noise resulting from the motor
command. Interestingly, the law can be seen within the framework of statistical decision theory
[11, 13], such that a decrease of movement speed results in a greater likelihood to successfully
hit the target (see also below). Indeed, it is worthwhile to note that in the original Fitts’ study
[7] one of the essential experimental criteria was to control the error rate at the target (main-
tained below 5%). Only by maintaining a constant probability of error does Fitts’ Law emerge.
Consequently, any increase of inherent motor variability could lead to changes in the Fitts’
relationship.

Recent work suggests that increased signal-dependent noise during motor execution
describes the motor variability in childhood dystonia [17, 18]. The results of this study further
corroborate the theory of augmented signal-dependent noise in dystonia. Children with dysto-
nia had a wider endpoint distribution at the target than typically developing children in both
penalty conditions, accompanied by a lower percentage of successful hits. Poorer speed-accu-
racy trade-off in Fitts-like tasks due to neurological disorders has been previously reported
[28–30]. Thus, although the scaling between movement time and Index of Difficulty was pre-
served, children with dystonia showed an upward shifted effect on the Fitts’ linear relationship
compared with typically developing children, with a lower Index of Performance. It is worth-
while to note that notwithstanding severe motor deficits, children with dystonia were able to
perform the task with minimal errors at the targets (~15%). Therefore, to compensate for
increased inherent motor variability, children with dystonia reduced movement speed appro-
priately in order to reduce the probability of missing the target. The Index of Performance
describes a greater sensitivity to an increment in the Index of Difficulty that further explains
their compensatory strategy as the probability of error increases.

We found a non-significant tendency for larger variance in the direction of the movement
compared with the direction perpendicular to movement. Although the endpoint distribution,
defined by PCA, was elongated in the direction of the movement, this tendency was not consis-
tent across subjects, in particular for children with dystonia. Future work would be needed to
investigate the effects of risky environments on spatial features of movement variability in
speed-accuracy trade-off tasks.

To summarize, where the cost of error is kept constant, our findings show that Fitts’ Law
emerges as expected, with an estimated interaction of task difficulty (i.e. ID) and inherent vari-
ability of the motor system in order to minimize the probability of error at the target.

Movement time in Fitts-like tasks is related to risk
Recent work in motor control formulates movement planning in terms of statistical decision
theory, essentially converting the problem of movement planning to decision-making under
risk [10, 11]. In most cases, human subjects choose strategies that come close to minimizing
the cost of behavior, for example maximizing expected gain [10] in motor tasks by combining
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noisy sensory input with prior information [31, 32], changing experimental stochastic variabil-
ity [14, 33], and changing payoffs [13].

Recently the theory of “Risk-Aware Control” has proposed a new mathematical formulation
in which movement planning and control are governed by estimates of risk based on uncer-
tainty about the current state and the knowledge of cost of errors [1]. The theory allows for safe
behavior in an unpredictable environment including in the presence of increased motor vari-
ability due to injured states of the CNS. An interesting prediction of the theory is that motor
behavior will be modified by the perceived risk even if failure has not yet been experienced [1–
2].

Our results are in accordance with previous studies that showed the ability of young adults
to shift their mean points of contact with a computer screen in response to changes in penalty
and location of penalty [13–15]. Recent results also showed that typically developing children
and children with dystonia changed their movement strategies in response to changes in the
level of perceived motor variability [33]. Our findings have shown that typically developing
children and children with dystonia also demonstrate the ability to modulate their speed and
movement variability in response to changes of cost of errors in the absence of any changes in
the biomechanical and dynamical characteristics of the task.

Several interpretations have been offered for the intercept of the linear regression model in
Fitts’ Law [34, 35]. Our findings suggest that intercept “a”may reflect components that are
independent of distance and target size. Indeed, studies showed higher levels of muscle tone,
co-contraction, and overflow as additional deficits of the motor system in childhood dystonia
[36–38]. The independence of intercept “a” with the cost of error suggests an unrelated effect
of motor planning with the offset of the Fitts’model. In our model the intercept “a” is repre-
sented by the term ηB.

The Index of Performance has been applied as a fundamental metric in quantifying infor-
mation transmission in Human-Computer Interaction input devices [34, 39]. The impact that
the perceived cost of missing targets has on the rate of information transmission while interact-
ing with input devices may have widespread applications on designing touchscreen user inter-
faces for subjects who depend upon augmentative and assistive communication (AAC)
technology.

Awareness of risk guides all of our actions, and this is essential for successful performance
of motor actions in unpredictable environments. This study provides evidence that planning
and control of Fitts-like tasks emerge from a weighted estimation of the cost of error and the
likelihood of failure in order to minimize the risk of undesirable motor outcomes. Our results
demonstrate that the cost of failure, together with signal dependent noise, affects the planning
and control of movement in the speed-accuracy trade-off. The altered control plan could result
in an overall reduction in muscular drive to reduce variability and/or alternative neuromuscu-
lar strategies may be used to respond to risky environments (e.g. muscle co-activation or higher
co-contraction). To our knowledge, it is still unknown to what extent risk affects the choice of
these neuromuscular strategies. Future studies that systematically measure changes in EMG as
cost of error is manipulated will likely be able to distinguish between these possibilities. In par-
ticular, it will be interesting to determine how disease states impact the contribution of differ-
ent strategies used by the central nervous system. For example, it is possible that children with
dystonia tend to favor the cocontraction strategy while healthy children tend to reduce overall
muscular drive.

The framework of decision-making under risk may provide new insights for understanding
the underlying neurophysiological mechanisms of injured CNS states in which the control of
movement or the perception of risk during motor planning are altered [16, 40–42].
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Supporting Information
S1 Dataset. Raw data. Data is organized by penalty conditions (No Penalty and Yes Penalty)
with subjects on the columns (1–15 Healthy Children and 16–31 Children with Dystonia) with
the Indices of Difficulty and target size on the rows for Movement Time (MT) and Endpoint
Variability (Var) respectively.
(TXT)
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