
COMPUTER ANIMATION AND VIRTUAL WORLDS
Comp. Anim. Virtual Worlds (2015)

Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cav.1667

RESEARCH ARTICLE

Interactive constrained dynamics for rigid and
deformable objects
Luca Vezzaro*, Davide Zerbato and Paolo Fiorini
Department of Computer Science, University of Verona Ca’ Vignal 2, Strada Le Grazie, 15, 37134 Verona, Italy

ABSTRACT

Following the continuous increase in computational power of consumer hardware, interactive virtual environments have
been recently enriched with more and more complex deformable objects. However, many physics engines are still very
limited in the way they handle interacting rigid and deformable objects. This paper proposes a constraint-based approach to
real-time simulation of coupled rigid and deformable objects capable of providing two-way interactions. Similar techniques
have seen widespread usage for either rigid or deformable objects, but not for the simultaneous simulation of both. By
extending such approaches, we show not only how interaction is possible but also how it can be performed at real-time
rates. We address contact response and also show how to implement typical constraints to enforce limitations in the degrees
of freedom and to enhance the dynamical properties of deformable objects. The method is easily integrated into existing
physics engines that use similar constraint solvers and is independent on the kind of deformable object paradigm chosen.
The provided simulation results show that the method is fast and effective in handling contacts between rigid and
deformable objects and in simulating friction and other kinds of constraints. Copyright © 2015 John Wiley & Sons, Ltd.

KEYWORDS

constraints; deformable objects; real time

Supporting information may be found in the online version of this article at the publisher’s web site.

*Correspondence

Luca Vezzaro, Department of Computer Science, University of Verona Ca’ Vignal 2, Strada Le Grazie, 15, 37134 Verona, Italy.
E-mail: elvezzaro@gmail.com

1. INTRODUCTION

The simulation of interacting rigid objects is often per-
formed using velocity-based (also called impulse-based)
dynamics and collision response schemes. Velocity-based
approaches are simple to implement, are efficient, and can
work well even when using large time steps. Non-rigid
objects, in contrast, are often specified at the position
(e.g., shape matching) or acceleration level (e.g., finite
elements). Therefore, it is difficult to develop a general-
purpose system that can handle two-way interaction
between rigid and non-rigid objects, as the physical
quantities involved are not homogeneous and it is not
straightforward how they should interact.

Robust, accurate, and realistic collision response is the
subject of most work in the area of cloth and deformable
object simulation [1,2]. These approaches usually focus on
accurate self-collision and one-way interaction with rigid
objects, and while succeeding in doing so, they require
great computational time. Full two-way coupling is also

usually not modeled. One of the few interactive examples
of two-way coupling is given in [3], while a non-interactive
example is given in [4].

With the goal of achieving real-time simulation of
constrained two-way interactions between rigid and
deformable objects, we aimed at developing a fast and
simple approach that could provide plausible deformable
object behavior, without worrying too much about achiev-
ing absolute realism. The result is a fast and effective
dynamical system capable of handling any number of inter-
acting rigid and deformable objects. We ensure real-time
performance by solving for constraints separately, in
an iterative projected Gauss–Seidel (PGS) fashion, and
achieve two-way interaction by employing a staggered [5]
approach, alternating rigid and deformable object con-
straint solvers.

We use a robust and freely available physics engine [6]
for collision detection and constraint solving of rigid
objects and introduce a separate deformable object con-
straint solver implemented using the techniques described

Copyright © 2015 John Wiley & Sons, Ltd.

Staggered rigid and deformable object constraints L. Vezzaro, D. Zerbato and P. Fiorini

in~[7]. We specify deformable object constraints at the
velocity level, not at the position level (as is usually the
case [8]), observing how this formulation can also be very
effective and how it makes for easy integration into existing
velocity-based constraint solvers.

Because it requires very limited knowledge about the
underlying deformable object paradigm, our approach can
easily be made to support a multitude of force-based
or position-based methods. We only assume deformable
objects to be discrete and described by an explicit sur-
face representation, which are reasonable requirements
considering our targets are interactive simulations. We
have evaluated the effectiveness of our approach by using
mass–spring–damper meshes [9], co-rotational finite ele-
ment models, position-based dynamics [3], and linear
shape matching [10]. Results show how we are able to
interactively tackle typical rigid–deformable contact sce-
narios (with friction), all the while providing plausible
two-way interaction between objects.

2. RELATED WORK

The field of deformable objects simulation has reached a
great level of maturity in the last few years, as summa-
rized by the recent state-of-the-art report [8]. Undoubtedly,
position-based dynamics is becoming the de facto standard
in interactive simulation, owing to its simplicity, efficiency,
and unconditional stability.

Force-based or implicit approaches [9,11] are still useful
in some applications. A recent example is [12], where the
authors proposed the use of mass–spring models for hair
simulation: by using a sophisticated integration scheme,
and thanks to strain limiting [2], stable simulation of stiff
chains was made possible.

Early position-based approaches were introduced to
model inextensible cloth [13,14]. These approaches, based
on relaxation of constraints, were later extended in [3,15]
to solve arbitrary constraints. Relaxation happens at the
position level, thus producing discontinuous velocities and
making interaction with rigid objects and friction modeling
difficult. A purely velocity-based approach to inextensible
cloth simulation that does not suffer from such limita-
tions is given in [16]. Each pair of connected particles is
kept at a constant distance by iteratively applying impulses
to them.

None of the works discussed so far explicitly addressed
two-way interaction between rigid and deformable objects.
One of the first attempts at modeling two-way interac-
tion is reported in [17]: by building deformable objects
as aggregates of rigid components and using constrained
rigid-body dynamics, the authors were able to approxi-
mate two-way interactions. More recently, Sifakis et al. [1]
showed the so-called bindings to model deformable object
interaction with rigid objects, but their approach does not
achieve interactive rates, lacks a friction model, and can
only handle anchoring constraints. Lenoir and Fonteneau
[18] used an approach based on Lagrange multipliers to

model two-way interaction, but it is limited to analytical
deformable objects.

Recently, Deul et al. [19] extended the position-based
dynamics approach to rigid objects. The need for a velocity
solver to model friction and the use of a peculiar approach
to collision response make for a quite involved frame-
work, which also requires additional work to support two-
way interaction.

All serious attempts at modeling the problem of two-way
interaction involve constraints [8,14,20] of some form. In
the simplest cases, the presence of equality constraints
only leads to a system of linear equations that is eas-
ily solved using well-known methods [21,22]. Because
non-penetration and friction cannot be modeled using
equality constraints, the linearization of systems including
these leads to what is called a linear complementarity prob-
lem (LCP) [7,23]. LCPs are commonly solved using PGS
or projected Jacobi methods.

Reducing the scale at which the physical simulation is
performed always produces an increase in accuracy and
realism. Unfortunately, this also leads to non-interactive
performance, so it is not always desirable or possible to
do that. Macklin et al. [24] and Harada [25] show how
performance can be greatly increased by exploiting the
massively parallel architecture of graphics processing units
(GPUs). While this is probably the future of physical
simulation, GPU-based implementation is still difficult to
implement and is less flexible, as all algorithms must be
parallelized and all data structures have to be made into
arrays and matrices.

3. METHOD OVERVIEW

We discretize the dynamical properties of a volume or a
thin sheet of deformable material by tracking the phys-
ical state of a finite number of particles, which we call
nodes. The state of the i-th node is given by its position
Qxi, velocity Qvi, and acting force Qfi, all 2 R3. We assume
lumped masses; thus, we associate a mass Qmi to each node,
which, in most practical cases, is uniformly distributed. For
a rigid object j, we track the following quantities: xj 2 R3,
the location of its center of gravity; qj 2 H, a unit quater-
nion specifying its orientation in space; vj 2 R3, the
linear velocity of the object; !j 2 R3, the vector-valued
angular velocity; mj, its mass; and Qj, the world-space
inertia tensor. We advance the simulation in discrete time
steps of duration h.

In the case of force-based deformable objects, we start
by computing per-node internal forces. In all cases, exter-
nal forces are added to the Qfi variables. Position-based
methods are supported by “converting” their output to
velocities. Assume Qgi to be the goal obtained by a
position-based method from QxtCh

i :

QxtCh
i D Qxi C h

�
Qvi C h Qm�1

i
Qfi

�
(1)

Comp. Anim. Virtual Worlds (2015) © 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

L. Vezzaro, D. Zerbato and P. Fiorini Staggered rigid and deformable object constraints

If we are using shape matching [10], we compute the
updated velocity as

QvSM
i D .1 � �/

Qvi C k

Qgi � Qx
tCh
i

h

!
(2)

whereas, if we are using position-based dynamics [3], the
updated velocity is

QvPD
i D � Qvi C .1 � �/

Qgi � Qxi

h
(3)

where � is a damping coefficient and k is the mate-
rial stiffness. Positions are not explicitly changed; only
node velocities are. This allows the velocity-based solver
to compute the correct impulses accounting for contacts,
friction, and other constraints.

For collision detection and rigid object dynamics, we
choose to exploit the Bullet Physics [6] engine. Thanks to
the iterative nature of the constraint-solving process, we
are able to achieve two-way coupling by alternating a sin-
gle iteration of Bullet’s rigid object solver with an iteration
of our solver.

A constraint is typically formulated as a function of
positions and orientations:

C
�
x0, q0, : : : ,xjRj�1, qjRj�1, Qx0, : : : , QxjNj�1

�
D

C
�
Xt� D 0

(4)

where R is the set of all rigid objects and N the set of all
deformable object nodes. X is a column vector containing
all node and rigid object positions. The t superscript on X
indicates the values are taken at time t.

Similar to Xt, we define the velocity of the system using
the vector Vt, which is simply the time derivative of Xt

for positions, whereas in place of the time derivative of
quaternions, it contains the angular velocities.

Using this notation, the time derivative of a constraint
function becomes

PC
�
Xt, Vt� D 0 (5)

If we stack the s constraints in the system as a column
of scalar-valued functions C and take a first-order time
derivative, we obtain (from the chain rule)

PC D JVt D 0 (6)

where J is the s-by-6n matrix of constraint Jacobians.
Intuitively, (6) tells us that the only allowed velocities are
orthogonal to all Jacobian rows. So the rows of J represent
forbidden directions in the velocity space, and the con-
straint forces Fc must act along these forbidden direction
to ensure (6) is always satisfied:

Fc D JT� (7)

where � is an (unknown) vector of impulsive constraint
forces.

We illustrate our method with an example. If we want
to constrain a single deformable object node i to a fixed
location in space y , we formulate the constraint as

Cex D
1

2
k Qxi � yk

2 D 0 (8)

Because its derivative is PCex D . Qxi � y/ � Qvi, we only
need Jex D . Qxi � y/

T , the Jacobian component for this
constraint. Then, the constrained equations of motion for
node i become

Qmi
d

dt
Qvi D J

T
ex�ex C Qfi (9)

Jex Qvi D 0 (10)

where the first expression comes from Newton’s second
law of motion (we used (7) for the right-hand side of
(9), and the second expression comes from (6)). Using an
explicit integration step for the velocities, we approximate
the velocity’s time derivative by d

dt Qvi and by substituting
the following in (9):

Qmi
QvtCh

i � Qvt
i

h
D J T

ex�ex C Qfi (11)

where the superscript indicates velocity at a given time. We
multiply both sides by Jex and enforce the constraints to be
satisfied at time tC h using (10) to obtain

JexJ
T
ex�

Qmi
D �Jex

Qvt

i

h
C
Qfi

Qmi

!
(12)

which can be solved for �. Note that position error has dis-
appeared from the equation and we can constrain only the
velocity of the node not to change along Jex, regardless of
the value of Cex. This causes the so-called constraint drift,
which is dealt with by using the Baumgarte scheme [26],
introducing a constraint bias into the system. This term is
directly proportional to constraint error and is added into
(6), obtaining

PC D JVt D �ˇC (13)

where ˇ is chosen experimentally and is subject to the sta-
bility condition ˇ � 1=h [27]. In our experiments, we have
used a value of ˇ D 0.1=h.

We also need to limit the range of � in (12) to accurately
model friction and non-contact constraints, obtaining the
following:

JexJ
T
ex�

Qmi
D
�ex

h
� Jex

Qvt

i

h
C
Qfi

Qmi

!

�� � � � �C (14)

where

�ex D �ˇ k Qxi � yk (15)

Comp. Anim. Virtual Worlds (2015) © 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

Staggered rigid and deformable object constraints L. Vezzaro, D. Zerbato and P. Fiorini

The set of all s constraints in the system can be formalized
as a linear complementarity problem [7]:

A�C b � 0

�� � � � �C (16)

where

A D hJM�1JT

b D �� C J
�

Vt C hM�1Fext

� (17)

and� is the vector of unknown impulsive constraint forces.
J is a (sparse) matrix of Jacobians, with a row for each
constraint and non-zero entries only in correspondence to
velocities of objects or nodes involved in that constraint. �
is the vector of constraint biases. F is the vector of forces
and torques acting in the system. M is a (block-diagonal)
matrix containing the node and rigid object’s masses and
world-space inertia tensors:

M D

2
666666664

m0I
Q0

. . .
Qm0I

. . .
QmjNj�1I

3
777777775

(18)

where I is a 3-by-3 identity matrix.
To ensure real-time performance, our solver uses an

iterative PGS approach. Convergence is not guaranteed
with this solver, but in most practical cases, each itera-
tion of the solver becomes closer to the optimal solution
[7]. By tuning the iteration number, the simulation can be
made more interactive or more accurate (in the limits of the
integration method used).

The following sections will discuss the details of
constraint specifications and solutions. We will not per-
form an in-depth analysis of our collision detection system,
as any algorithm could be used, provided it can supply
a contact point location, penetration amount, and contact
normal. In our case, we represent the objects’ surface using
triangle meshes and keep an axis-aligned bounding box
tree of faces, using the Gilbert–Johnson–Keerthi algorithm
[28] for contact point generation.

4. CONSTRAINTS

We exploit the sparse structure of J and M to speed up the
constraint-solving process, as described in [7]. We write a
generic constraint as

PC D
X

rb2Sr

Jrb

�
vrb
!rb

�
C

X
def2Sd

QJdef Qvdef (19)

where Sr and Sd are fields of the Constraint data structure.
In C-like syntax,

struct Constraint f

Set<SolverDeformable> Sd

Set<SolverRigid> Sr

float �, �0, �, ��, �C

g

struct SolverDeformable f

DeformableObject d

int i == the node

Vector3 QJ

g

struct SolverRigid f

RigidObject r

float m�1 == inverse mass

Vector3 Jx , Jq

Vector3 Ot == torque axis

g

We set � D �0 D 0 during initialization. We arrange
the data required for each object involved in a constraint
into separate data structures, as different constraints handle
a different amount of rigid and deformable object nodes.
The solver is very flexible, so it makes sense to specify all
constraints in a uniform manner so as to keep the solver
simple and compact and simplify the addition of new kinds
of constraints.

We are aware some of the following constraints do not
represent the state of the art, but we think they are the
most effective for introducing the solver. It will be easy to
integrate other constraints into the system once the basic
principles involved are understood.

4.1. Anchor Constraints

To anchor a node Qxi to a fixed world-space position y , we
use the previously defined constraint (8):

Cfix D
1

2
k Qxi � yk

2 D 0 (20)

which gives us Jacobians and bias: QJi D . Qxi � y/
T , � D

�ˇ k Qxi � yk. Constraint forces need not be limited in this
case, so �C D1, �� D �1.

Things become more complicated if we replace y with
a point r fixed in a rigid object’s local coordinate system:

Cfixrigid D
1

2

��xj C qj � rj � Qxi
��2
D

1

2
kdk2 D 0 (21)

We use qj�rj to represent application of the transformation
stored in qj to rj.

From (21), we derive Jacobians QJ D �dT , Jx D dT ,
and Jq D ..qj � rj/ � d/

T . This time, the Constraint
data structure holds a SolverRigid and a SolverDeformable

Comp. Anim. Virtual Worlds (2015) © 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

L. Vezzaro, D. Zerbato and P. Fiorini Staggered rigid and deformable object constraints

instance. Again, �C D 1, �� D �1. The torque axis Ot
is given by

Ot D Q�1
j

�
d �

�
qj � rj

��
(22)

If there are multiple anchors acting on a rigid object, multi-
ple impulses will be computed. We apply the mean impulse
to the object to ensure the number of anchors does not
influence the strength of the overall constraint force.

4.2. Inextensibility Constraints

Instead of computing ad hoc impulses to constrain two
nodes to stay at a given distance [16], we can model the
problem as a constraint. We want to preserve a rest distance
L between two nodes:

Cinext D
1

2

��� Qxj � Qxi
��2
� L2

�
D 0 (23)

The Jacobians are QJi D �. Qxj � Qxi/
T , QJj D . Qxj � Qxi/

T . The
rest length becomes part of the bias: � D �ˇ.L�k Qxj� Qxik/.

Theoretically, the impulsive constraint force � in this
case should not need to be limited. In practice, by tuning
the �� and �C parameters, it is possible to obtain vari-
ous kinds of interesting behaviors. For example, we have
the following:

� �C D �max, �� D ��max: inextensible material,
with limited stretch resistance. Higher values of �max
increase the resistance to stretching, but numerical
stability might suffer.

� �C D �max, �� D 0: material that resists compres-
sion but not stretching, useful for enforcing volume
conservation properties.

� �C D 0, �� D ��max: material that resists stretch-
ing but not compression, useful for damping excessive
deformations in non-stiff objects.

4.3. Non-penetration Constraints

A fast and simple approach to collision response is to intro-
duce non-penetration constraints that push objects away
from each other to eliminate the penetration detected dur-
ing the collision detection step. This approach allows reuse
of a wealth of existing implementations for collision detec-
tion and rigid object-only collision response, as we did
in our case. The downside is that tunneling artifacts may
happen and that correct and robust collision response is
difficult if not impossible in extreme scenarios. We choose
to allow for some tunneling in order to keep collision
detection time manageable. As discussed earlier, our con-
straint solver only needs to handle contacts between rigid
and deformable (deformable–rigid) objects or between
deformable (deformable–deformable) objects.

For a deformable–rigid contact involving rigid object i,
we have xcp, the contact point; ncp, the contact normal,

pointing from the rigid to soft objects; and �, the penetra-
tion amount (which is negative in case of inter-penetration
and zero for sliding contacts). Before being able to formu-
late the non-penetration constraint, we need to determine
on which face of the deformable object xcp lies. This
information is usually provided by the collision detection
algorithm. Let us call this face f D .a, b, c/. We determine
the barycentric coordinates of xcp with respect to f and use
these to compute the interpolated velocity and force at the
contact point [2]. The mass at the contact point is not inter-
polated: instead, we split the total mass of the deformable
object across contact points. We use these quantities to
create a dummy node for each contact point (we refer to the
node using the subscript notation, e.g., Qxdummy). We keep
dummy nodes at the end of our list of nodes and discard
them once done with the constraint-solving process. The
non-penetration constraint function for a deformable–rigid
contact is

Cpen D
�
Qxdummy � xi � qi � ri

�
� ncp D 0 (24)

where ri is the contact point in the rigid object’s coordinate
frame. The time derivative of the constraint function is

PCpen D
�
Qvdummy � vi �!i � .qi � ri/

�
� ncp D 0 (25)

which gives Jacobians QJ D nT
cp, Jx D �nT

cp, and Jq D
�..qi � ri/ � ncp/

T . The bias is directly proportional to
penetration, � D ˇ�, and we want the impulsive constraint
force only to push the bodies apart, so �C D1 and �� D
0. The torque axis Ot is given by

Ot D Q�1
i

�
ncp � .qi � ri/

�
(26)

The Constraint structure can then be filled with a Solver-
Rigid and a SolverDeformable instance containing the
values we have just computed.

Deformable–deformable contact is handled similarly,
but two dummy nodes need to be added. Consider two
deformable objects A and B and respective dummy nodes
QxdummyA and QxdummyB . The Jacobians are QJA D �n

T
cp and

QJB D n
T
cp. � is the same as before, as are �C and ��. We

just need to construct a Constraint structure by building
the two SolverDeformable instances. Self-collision can be
handled similarly.

Once the constraint solver has finished, a � value for
the contact constraint will be provided, but that is rela-
tive to one or more dummy nodes. To obtain � values that
can be applied to the object’s nodes, we simply consider
a rigid motion of the face containing the dummy node, so
we accumulate the � values from each dummy node to
the corresponding face vertices .a, b, c/ and average them.
The averaging step is important as usually there are multi-
ple contact constraints acting on a single node. Moreover,
the overall impulsive force for a time step should be their

Comp. Anim. Virtual Worlds (2015) © 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

Staggered rigid and deformable object constraints L. Vezzaro, D. Zerbato and P. Fiorini

mean, not their sum; otherwise, constraint forces will be
proportional to the amount of contact points. Of course,
fixed nodes should be ignored by the accumulation process.

Similarly, impulses are averaged for rigid objects to
ensure the number of contact points does not influence the
intensity of the applied impulses.

4.4. Friction Constraints

We can exploit the velocity-based nature of the constraint
solver to develop a simplified friction model, which is
effective although not completely accurate (as explained
in [27]).

Friction acts on a plane that is orthogonal to the con-
tact normal, so we build an orthonormal basis .u,w,ncp/,
where u andw are any two orthonormal vectors specifying
the plane where friction is acting. We derive these from the
relative velocity at the contact point �v:

u D
�v � ncp���v � ncp

�� (27)

w D
u � ncp��u � ncp

�� (28)

To minimize numerical errors, we check the vector lengths
before performing the normalization in (27), and if it is
close to zero, no friction constraints are created, as the
relative velocity would be close to zero and/or orthogonal
to the friction plane.

With the same information used in contact response,
we can directly specify the two friction constraints at the
velocity level. For the rigid–deformable case, we have

PCu D �v � u D 0
PCw D �v �w D 0

�v D Qvdummy � vi �!i � .qi � ri/

(29)

giving us Jacobians QJ D uT , Jx D �uT , and Jq D
.u � ri/

T , for PCu. Values for PCw are derived similarly.
The torque axes Otu and Otw are given by

Otu D Q�1
i

�
u �

�
xcp � xi

��
Otw D Q�1

i

�
w �

�
xcp � xi

�� (30)

Two Constraint structures can then be filled with
SolverRigid and SolverDeformable instances containing
the values we have just computed.

Likewise, deformable–deformable contact is given by

PCu D �v � u D 0
PCw D �v �w D 0

�v D QvdummyB � QvdummyA

(31)

giving us Jacobians QJA D �u
T and QJB D u

T , for PCu. Val-
ues for PCw are derived similarly. The friction constraint
functions have no bias, so � D 0.

We approximate the pressure acting on the contact
point using

� D mcp
ˇ̌
g � ncp

ˇ̌
(32)

where mcp is the contact point “mass” and g is the gravity
acceleration. mcp D QmdummyCmi=Ni for deformable–rigid
contact (Ni is the amount of contact points between the
current deformable object and rigid object i), while mcp D

QmdummyA C QmdummyB for deformable–deformable contact.
By setting �C D ��� D ��, the maximum allowed fric-
tion force is directly proportional to pressure, improving
realism. � can be seen as the dynamic friction coefficient.
Because interacting materials may be heterogeneous, we
combine friction coefficients from different materials by
multiplying them, as that is the approach used in Bullet.

The � values computed by the solver for friction
constraints are then distributed and averaged in the same
way we do for non-penetration constraints.

4.5. Bending Constraints

Bending constraints [3,29] are usually applied to cloth
simulations to increase the smoothness of its behavior and
avoid excessive folding. The model by Kelager et al. [29]
is easily integrated, as their position-based constraint func-
tion can be differentiated in time to obtain a constraint
on velocities. Unfortunately, numerical concerns arise
when adjacent faces have similar normals (which is often
the case).

We use instead an angle-based constraint: given an
edge . Qxi, Qxj/ and the two adjacent faces . Qxi, Qxj, QxL/ and
. Qxj, Qxi, QxR/ with initial normals nL and nR, respectively,
our goal is to keep the angle ˛ between the two normals
close to a rest angle ˛0. For our approach to work, we
assume the angle before constraint application to be close
to the rest angle; otherwise, the constraint may enforce a
“reversed” state.

With this assumption in mind, we can build a simple and
clearly approximated constraint function that works pretty
well in practice:

Cbend D . QxL � QxC/ � . QxR � QxC/ � C0
bend D 0 (33)

where QxC D . QxiC Qxj/=2 and C0
bend is the initial value of the

dot product in Cbend , with the object at rest. Setting QxD D

. QxL C QxR/ =2 and differentiating with respect to time,
we obtain

PCbend D QvL � . QxR � QxC/C QvR � . QxL � QxC/

� Qvi � . QxD � QxC/ � Qvj � . QxD � QxC/ D 0
(34)

The Jacobians are trivially determined in this case: QJL D

. QxR � QxC/, QJR D . QxL � QxC/, QJi D � . QxD � QxC/, and
QJj D � . QxD � QxC/. For the bias, we can use the
position-based error � D �ˇ

ˇ̌
nL � nR � n

0
L � n

0
R

ˇ̌
, where

nR D
�
Qxj � Qxi

�
� . QxR � Qxi/

nL D . QxL � Qxi/ �
�
Qxj � Qxi

� (35)

Comp. Anim. Virtual Worlds (2015) © 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

L. Vezzaro, D. Zerbato and P. Fiorini Staggered rigid and deformable object constraints

and n0
L and n0

R are their initial value at rest. Here is
where the reversed state issue [29] should be addressed,
but this is outside the focus of this work. In general,
�� D ��C, and this value determines the strength of
the constraint. Each bending constraint can be created by
filling out four SolverDeformable instances, one for each
node involved.

4.6. Solver

The impulsive forces applied to nodes and rigid objects by
the constraint solver are stored separately from the forces
computed by the underlying deformable object model. For
this reason, we store impulsive forces applied to the i-th
node inside QIi and impulsive forces and torques applied
to a rigid object into Ix and Iq , respectively. The solver is
initialized by creating dummy nodes required for contact
and friction processing, by calculating constraint biases,
and eventually by warm-starting constraints. Warm start-
ing is performed by initializing the constraint’s � using the
value computed in the previous time step, �0. If this is per-
formed, the impulse accumulation variables need to be ini-
tialized by adding the contribution of each constraint. Oth-
erwise, they start at zero. Warm starting usually results in
the need for less iterations of the solver but can also result
in an excess of energy in the system, thus causing instabili-
ties. The contribution of a single SolverDeformable entry is
given by

� QI D h�0 Qm�1 QJ T (36)

while the contribution of a SolverRigid entry is

�Ix D h�0m�1Jx

�Iq D h�0 Ot

(37)

The solver in Algorithm 1 uses these equations too. For
the most part, the PGS algorithm is the same used in [7].
Once the constraint solver is done iterating, the dummy
nodes’ impulses are distributed and averaged across faces,
and external and internal forces’ contributions are applied
to the deformable objects.

4.7. Time Integration

Once the constraint solver is done, we advance the state of
the system using a semi-implicit Euler scheme (also called
symplectic Euler). For a deformable object,

QvtCh
i D Qvt

i C
�
QIi C h Qm�1 Qfi

�
QxtCh

i D Qxi C h Qvi
tCh

(38)

Algorithm 1 A single iteration of the constraint solver
Input: C: set of constraints

for each c 2 C do
d 0
for each rb 2 c.Sr do

d dC rb.m�1rb.Jx � rb.JxT

d dC rb.Jq � Qrb.r
�1rb.JqT

end for
for each def 2 c.Sd do

d dC def .m�1def . QJ � def . QJ T

end for
d 1=d
�� dc.�
for each rb 2 c.Sr do
�� �� � d

h

�
rb.Jx � Ixrb.r

�
�� �� � d

h

�
rb.Jq � Iqrb.r

�
end for
for each def 2 c.Sd do
�� �� � d

h

�
rb. QJ � QIdef .ddef .i

�
end for
c.�0 c.�
c.� c.�0 C��

c.� clamp
�
c.�, c.��, c.�C

�
�� c.� � c.�0

for each rb 2 c.Sr do
Ixrb.r Ixrb.r C h��rb.m�1rb.Jx
Iqrb.r Iqrb.r C h��rb.Ot

end for
for each def 2 c.Sd do

obj def .d
node def .i
QIobjnode

QIobjnode C h�� Qm�1
objnode

def . QJ
end for

end for

Figure 1. Evolution of �� (Root-Mean-Square) as a function
of iteration. Values have been slightly perturbed along the hor-
izontal axis to improve their visibility. The dots are the root
mean square values of �� for a cloth interacting with a sphere
(Figure 3), while the crosses are for a jelly–chocolate–dish

interaction (Figure 2).

Comp. Anim. Virtual Worlds (2015) © 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

Staggered rigid and deformable object constraints L. Vezzaro, D. Zerbato and P. Fiorini

Figure 2. Two-way interaction between solid jelly cylinders, a rigid chocolate bar, and a rigid dish. The lower left jelly is mass–spring
based, the lower right is based on co-rotational finite element methods, the upper left is with the use of position-based dynamics
and the upper right is with the use of shape matching. The simulation consists of 1720 nodes, 2296 faces, 6784 springs, and 1701
tetrahedra. Constraint count reached7595, of which 3115 were inextensibility constraints and 861 bending constraints. The time

required for stepping by 20 milliseconds took 6 milliseconds on average and 14 milliseconds in the worst case.

For rigid objects, a typical approach is given by

vtCh D vt C Ix

!tCh D !t C Iq

xtCh D x C hvi
tCh

OqtCh D qt C

�
0

!tCh

�T

qt h

2

(39)

where OqtCh in (39) denotes a non-unit quaternion, which
should be normalized. This integration scheme is easy
to implement and allows for straightforward lineariza-
tion of the constraint-solving problem, but note how it
is not unconditionally stable, especially when applied
to most force-based methods for simulating deformable
objects.

5. RESULTS

A detailed analysis on stability, convergence, and perfor-
mance of the solver is already available in [7]. Figure 1,
along with satisfying visual results should serve as proof
of the correct implementation of the solver. It is interesting
to notice the convergence rate, which is very high in the
first iterations.

Figure 2 depicts a two-way interaction between
solid jelly cylinders, a rigid chocolate bar, and a
rigid dish. The lower left jelly is mass–spring based,
the lower right is based on co-rotational FEMs, the
upper left is using position-based dynamics, and the
upper right is using shape matching. Very similar
visual results were obtained, in spite of the substantial
differences between the deformable object paradigms used.

Figure 3. Real-time interaction between a mass–spring cloth
and a rigid sphere. A similar scenario took 2 minutes per
frame to simulate a decade ago [2]. The cloth is built of
51 � 51 nodes, with 5000 inextensibility and 7400 bending
constraints. The maximum constraint count reached in this sce-
nario was 20 492, with collision detection taking about 45% of

simulation time.

Also observe how the two-way interaction with the dish
and the chocolate bar is present in all four cases.

The impact of using the proposed deformable object-
specific constraint is clearly demonstrated in Figure 3.
Notice how bending constraints give a feeling of stiffness
and thickness to the cloth, improving its realism.

Anchor constraints are showcased in Figure 4, along
with other interesting effects. Two teapots of different
masses (the one on the right is heavier) interact with
each other through the rope they are attached to using
anchor constraints. Friction between the rope and the
constrained wheel is causing it to spin in the expected

Comp. Anim. Virtual Worlds (2015) © 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

L. Vezzaro, D. Zerbato and P. Fiorini Staggered rigid and deformable object constraints

Figure 4. Anchor constraints at work: two teapots of different masses (the one on the right is heavier) interact through a
constraint-based rope. The friction model makes sure the rope’s movement is causing the rigid wheel to spin in the expected way.
The rope is modeled as a “strip” composed of 50 nodes and 48 faces. One hundred and twenty-one inextensibility constraints and

47 bending constraints are used to model the rope’s dynamics.

direction; meanwhile, the heavier teapot tries to “drag” the

other one. Performance evaluations were performed in

all cases. Real-time simulation was possible up to about

30 000 constraints, with collision detection taking almost

half of CPU time in the more demanding scenarios.

Figures 5 and 6 show constraint-solving time as a func-

tion of constraint count. As already pointed out in several

sources, an iteration of this constraint solver has a linear

cost with respect to constraint count.

All simulations were run with h D 20 milliseconds,

using two iterations for the rigid object solver and two

iterations for the deformable object solver. Timing and

performance evaluation were performed using a 3.4-GHz

Core i7. Our solver and collision detection code is sin-

gle threaded at the moment, and therefore, the multi-core

architecture is not exploited.

Figure 5. Constraint-solving time as a function of constraint
count for the cloth simulation depicted in Figure 3.

Figure 6. Constraint-solving time as a function of constraint count for a jelly–chocolate–dish interaction as depicted in Figure 2.
Overall, the mean breakdown of a time step is 43% force and position dynamics computations, 32% collision detection, and 24%

constraint solving. Time integration and rigid-body simulation took negligible time.

Comp. Anim. Virtual Worlds (2015) © 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

Staggered rigid and deformable object constraints L. Vezzaro, D. Zerbato and P. Fiorini

6. CONCLUSIONS AND
FUTURE WORK

We have shown how to obtain two-way coupling between
rigid and deformable objects by running a stand-alone
constraint solver for deformable objects alongside an
impulse-based physics engine. Our approach makes very
few assumptions about the kind of deformable objects
used, and the result is a system that can work with a
multitude of deformable object simulation paradigms.

By using a generic constraint solver to achieve two-way
coupling, we are able to simulate not only free deformable
objects but also constrained ones. Experimental results
show how a number of different scenarios involving
multiple rigid and deformable objects could be simulated
at interactive rates.

The contact model is undoubtedly one of the major
weaknesses of our current implementation, as tunneling
and jittering may happen when the time step is increased
and/or objects are subject to strong forces. For these
reasons, we are exploring the possibility of integrating a
more advanced contact model such as the ones described
in [30,31]. We are also considering techniques for contact
decimation and caching as to increase performance and
robustness in contact handling.

Widespread usage of deformable objects in real-time
simulation and games is still limited by strict performance
requirements, and the proposed method may not be fast
enough for such applications. While experts in code opti-
mization will surely be able to surpass the performance
figures of our implementation, it is hard to judge by how
much. Performance increases may be obtained by using
level-of-detail/multi-resolution techniques [32], at the cost
of accuracy. Future work will consider such techniques,
but we point out how parallel implementations of the
PGS solver, similar to the one proposed in [23], may
save the trouble of developing involved data structures
and algorithms.

ACKNOWLEDGEMENTS

This work was supported by the European Union Seventh
Framework Programme FP7/2007-2013 under grant agree-
ment 248960 (Patient Safety in Robotic Surgery).

REFERENCES

1. Sifakis E, Der KG, Fedkiw R. Arbitrary cutting of
deformable tetrahedralized objects. In Proceedings of
the 2007 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation, SCA'07. Eurographics Asso-
ciation, Aire-la-Ville, 2007; 73–80.

2. Bridson R, Fedkiw R, Anderson J. Robust treatment
of collisions, contact and friction for cloth animation.
ACM Transactions on Graphics 2002; 21(3): 594–603.

3. Müller M, Heidelberger B, Hennix M, Ratcliff J. Posi-
tion based dynamics. Journal of Visual Communication

and Image Representation 2007; 18(2): 109–118.

4. Shinar T, Schroeder C, Fedkiw R. Two-way coupling
of rigid and deformable bodies. In Proceedings of the

2008 ACM SIGGRAPH/Eurographics Symposium on

Computer Animation, SCA'08. Eurographics Associa-
tion, Aire-la-Ville, 2008; 95–103.

5. Baraff D, Witkin A. Partitioned dynamics. Techni-

cal Report. The Robotics Institute, Carnegie Mellon
University, 1997.

6. Coumans E. Bullet Physics. http://bulletphysics.org [3

February 2015].
7. Erleben K. Velocity-based shock propagation for

multibody dynamics animation. ACM Transactions

on Graphics 2007; 26(2). DOI: 10.1145/1243980.
1243986.

8. Bender J, Müller M, Otaduy MA, Teschner M.

Position-based methods for the simulation of solid
objects in computer graphics. In Eurographics 2013

State of the Art Reports. Eurographics Association,

Girona, 2012; 1–22.
9. Gibson SF. 3D ChainMail: a fast algorithm for deform-

ing volumetric objects. In Proceedings of the 1997

Symposium on Interactive 3D Graphics I3D ‘97. ACM,
New York, NY, USA, 1997; 149.

10. Müller M, Heidelberger B, Teschner M, Gross M.

Meshless deformations based on shape matching. ACM

Transactions on Graphics 2005; 24(3): 471–478.

11. Nealen A, Müller M, Keiser R, Boxerman E, Carlson

M. Physically based deformable models in computer
graphics. Computer Graphics Forum 2006; 25(4):

809–836.

12. Selle A, Lentine M, Fedkiw R. A mass spring model
for hair simulation. ACM Transactions on Graphics

2008; 27(3): 64:1–64:11.

13. Gibson S, Mirtich B. A survey of deformable mod-
els in computer graphics. Technical Reports TR-97-19,

MERL, Cambridge, MA, 1997.

14. Provot X. Deformation constraints in a mass–spring
model to describe rigid cloth behavior. In Graphics

Interface, Quebec, Quebec, Canada, 1995; 147–154.

15. Jakobsen T. Advanced character physics. In Game

Developers Conference Proceedings. CMP Media,

Inc., San Jose Convention Center, CA, USA, 2001;

383–401.
16. Bender J, Bayer D. Impulse-based simulation of inex-

tensible cloth. In IADIS International Conference

Computer Graphics and Visualization 2008 (part of

MCCSIS 2008), Yingcai Xiao, Eleonore ten T (eds).

Amsterdam: The Netherlands, 2008; 202–205.

Comp. Anim. Virtual Worlds (2015) © 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

http://bulletphysics.org

L. Vezzaro, D. Zerbato and P. Fiorini Staggered rigid and deformable object constraints

17. Jansson J, Vergeest JS. Combining deformable and

rigid-body mechanics simulation. The Visual Com-

puter 2003; 19(5): 280–290.

18. Lenoir J, Fonteneau S. Mixing deformable and

rigid-body mechanics simulation. In Proceedings

Computer Graphics International, 2004, Crete,

Greece, June 2004; 327–334.

19. Deul C, Charrier P, Bender J. Position-based rigid

body dynamics. Computer Animation and Virtual

Worlds 2014. DOI: 10.1002/cav.1614.

20. Goldenthal R, Harmon D, Fattal R, Bercovier M,

Grinspun E. Efficient simulation of inextensible

cloth. ACM Transactions on Graphics 2007; 26(3).

DOI: 10.1145/1276377.1276438.

21. Bender J, Schmitt A. Fast dynamic simulation of

multi-body systems using impulses. In Proceedings of

VRIPHYS ’06, Madrid, Spain, 2006; 81–90.

22. Stam J. Nucleus: towards a unified dynamics solver for

computer graphics. In 11th IEEE International Confer-

ence on Computer-aided Design and Computer Graph-

ics, CAD/Graphics ’09, Huangshan, China, 2009;

1–11.

23. Tonge R, Benevolenski F, Voroshilov A. Mass split-

ting for jitter-free parallel rigid body simulation. ACM

Transactions on Graphics 2012; 31(4): 105:1–105:8.

24. Macklin M, Müller M, Chentanez N, Kim T-Y. Uni-

fied particle physics for real-time applications. ACM

Transactions on Graphics 2014; 33(4): 153:1–153:12.

25. Harada T. Heterogeneous particle-based simulation. In

SIGGRAPH Asia 2011 Sketches, SA ‘11. ACM, New

York, NY, USA, 2011; 19:1–19:2.

26. Baumgarte J. Stabilization of constraints and integrals

of motion in dynamical systems. Computer Methods in

Applied Mechanics and Engineering 1972; 1(1): 1–16.

27. Catto E. Iterative dynamics with temporal coherence.

In Game Developers Conference Proceedings, San

Francisco, CA, USA, 2005; 1–24.

28. Gilbert EG, Johnson DW, Keerthi SS. A fast procedure

for computing the distance between complex objects

in three-dimensional space. IEEE Journal of Robotics

and Automation 1988; 4(2): 193–203.

29. Kelager M, Niebe S, Erleben K. A triangle bend-

ing constraint model for position-based dynamics. In

Proceedings of VRIPHYS ’10, Copenhagen, Denmark,

2010; 31–37.

30. Smith B, Kaufman DM, Vouga E, Tamstorf R,

Grinspun E. Reflections on simultaneous impact. ACM

Transactions on Graphics 2012; 31(4): 106:1–106:12.

31. Otaduy MA, Tamstorf R, Steinemann D, Gross M.

Implicit contact handling for deformable objects. Com-

puter Graphics Forum 2009; 28(2): 559–568.

32. Otaduy MA, Germann D, Redon S, Gross M. Adaptive

deformations with fast tight bounds. In Proceedings

of the 2007 ACM SIGGRAPH/Eurographics Sympo-

sium on Computer Animation, SCA'07. Eurographics

Association, Aire-la-Ville, 2007; 181–190.

SUPPORTING INFORMATION

Supporting information may be found in the online version

of this article.

AUTHORS’ BIOGRAPHIES

Luca Vezzaro received his MSc in
Intelligent and Multimedia Systems
from the University of Verona (Italy)
in 2010. He then started working at
the ALTAIR Robotics Laboratory of
the University of Verona, where he did
research and development on simula-
tion technologies to be used for train-

ing in robotic surgery. Since 2013, he has worked as a
game programmer at Gameloft Iberica S.A.U. (Barcelona,
Spain), the studio responsible for Asphalt 8 and Despicable
Me: Minion Rush.

Davide Zerbato received his PhD in
Computer Science from the University
of Verona (Italy) in 2010 with a thesis
on the physics simulation of frictional
contact between deformable bodies.
His research ranges from physics
simulation of complex environment
for interactive applications to parallel

computation on graphics processing units and to assis-
tive technologies for surgery planning and execution. Since
2006, he has been a Research Assistant at the ALTAIR
Robotics Laboratory of the University of Verona and
has been involved in several European Unions projects
(Accurate Robot Assistant, Patient Safety in Robotics
Surgery, and Intelligent Surgical Robotics).

Comp. Anim. Virtual Worlds (2015) © 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

Staggered rigid and deformable object constraints L. Vezzaro, D. Zerbato and P. Fiorini

Paolo Fiorini received a laurea
degree in Electronic Engineering
from the University of Padova (Italy),
an MSEE from the University of
California at Irvine (USA), and a
PhD in ME from UCLA (USA).
From 1985 to 2000, he was with the
NASA Jet Propulsion Laboratory,

California Institute of Technology, where he worked on.

telerobotic and teloperated systems for space exploration
From 2000 to 2010, he was an Associate Professor of Con-
trol Systems at the School of Science of the University
of Verona (Italy) where he founded the ALTAIR Robotics
Laboratory with his students. He is currently a Full Profes-
sor of Computer Science at the University of Verona. His
research focuses on teleoperation for surgery, service, and
exploration robotics and is funded by several European and
Italian Projects. He is an IEEE fellow (2009).

Comp. Anim. Virtual Worlds (2015) © 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

	Interactive constrained dynamics for rigid and deformable objects
	Abstract
	INTRODUCTION
	RELATED WORK
	METHOD OVERVIEW
	CONSTRAINTS
	Anchor Constraints
	Inextensibility Constraints
	Non-penetration Constraints
	Friction Constraints
	Bending Constraints
	Solver
	Time Integration

	RESULTS
	CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGEMENTS
	References
	Supporting Information

