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Abstract 

DNA-barcoding is the process of taxonomic identification based on the sequence of a 

marker gene. When complex samples are analysed, we refer in particular to meta-

barcoding. Barcoding has traditionally been performed with Sanger sequencing platform. 

The emergence of second-generation sequencing platforms, mainly represented by 

Illumina, enabled the high-throughput sequencing of hundreds of samples, and allowed 

the characterization of complex samples through meta-barcoding experiments. However, 

fragments sequenced with the Illumina platform are shorter than 600 bp, and this greatly 

limits taxonomic resolution of closely related species. Moreover, both these platforms 

suffer of long turnaround time, since they require shipping the samples to a sequencing 

facility, and complex regulations may hamper the export of material out of the country of 

origin. More recently, Oxford Nanopore Technologies provided the MinION, a portable 

and cheap third-generation sequencer, which has the potential of overcoming issues of 

currently available platforms, thanks to the production of long sequencing reads. 

However, MinION reads suffer of high error rate, therefore suitable analysis pipelines are 

needed to overcome this issue. 

In this thesis I describe the development of bioinformatic pipelines for MinION-based 

DNA barcoding. Starting from the analysis of single samples, I show how improvements 

both in sequencing chemistry and in software now allow obtaining consensus sequences 

directly in the field, with accuracy comparable with Sanger. Conversely, when analysing 

complex samples, sequencing reads cannot be collapsed for reducing the error rate. 

However, bioinformatic approaches exploiting increased read length largely compensate 

the higher error rate, resulting in high correlation between MinION and Illumina up to 

genus level, and a more marked sensitivity of MinION platform to detect spiked-in 

indicator species. 

In conclusion, the results presented in this thesis show that bioinformatic pipelines for the 

analysis of MinION reads can largely mitigate platform issues, paving the way for this 

platform to become the gold-standard for barcoding in the near future.  
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Introduction 

Laying the foundations of barcoding 

The concept of barcoding was first introduced by Hebert and colleagues, who proposed 

the adoption of genetic markers known as taxon ‘barcodes’ to aid in species identification; 

the mitochondrial cytochrome c oxidase subunit 1 (CO1) gene was first proposed as a 

global bioidentification system for animals [1]. The adoption of DNA sequences as a basis 

for taxonomic identification, through the definition of Operational Taxonomy Units 

(OTUs), aided the application of standardized protocols for the comparison of results 

among studies [2]. Subsequent analyses on a widespread group of taxa in the animal 

kingdom showed that more than 98% of congeneric species pairs showed greater than 2% 

CO1 sequence divergence (Figure 1), demonstrating the usefulness of the proposed 

barcoding system [3]. 

 

Figure 1: CO1 sequence divergence in congeneric species pairs. Data taken from [3]. 

In 2008, the international Barcode Of Life (iBOL) project was launched to transform 

biodiversity science by building the DNA barcode reference libraries, the sequencing 

facilities, the informatics platforms, the analytical protocols, and the international 

collaboration required to inventory and assess biodiversity (https://ibol.org/). 

Different barcode marker genes were established across the tree of life, as the nuclear 

ribosomal internal transcribed spacer (ITS) gene for Fungi [4,5], or the 16S ribosomal 
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RNA gene for Bacteria [6-8]. Taxonomists involved in the classification of fungal and 

bacterial communities defined conventions based on sequence identity of the marker 

gene, setting the maximum divergence within an OTU at 2% and 3% respectively [2]. 

The sequencing of barcodes not only helps filling a gap in knowledge, but also offers a 

valuable source of information for decision making processes related to very diverse 

issues [5,9-11]. In the following sections, different applications of barcoding systems will 

be presented, together with the sequencing platforms currently used for this task. A 

glimpse at future perspectives will finally delineate the upcoming directions of barcoding.   
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Application of barcoding systems 

Environmental changes and human activities are affecting the structural and functional 

role of ecosystems and may constitute a potential risk to human health [12]. The 

modification and destruction of natural habitats by humans have placed a wide variety of 

organisms at risk, resulting in what the scientific community refers to as the sixth great 

mass extinction [13]. While about 2 million species have been described to date, there are 

an estimated 5–30 million species in total on the planet [14]. This knowledge gap implies 

that our understanding of biodiversity is incomplete, and barcoding systems will have a 

fundamental role in speeding up the process of describing the complexity and diversity 

of nature, before the extinction of many species occurs [13]. Although the loss of 

biodiversity is global, the geographic patterns of species loss are non-random, with the 

most marked decline observed in tropical areas [13,15]. A necessary step to implement 

new conservation programs is training local science educators and conservationists in 

areas in which research funding and infrastructure are lacking [16]. 

Aside from enhancing our understanding of biodiversity [17], barcoding may help quickly 

identifying risks for human health, for example caused by food mislabelling [18,19], 

parasitic infections [20], invasive alien species [21,22] or shifts in the water microbiome 

composition [7,9]. In particular, seafood mislabelling may represent more than a 

consumer’s fraud, and may affect food safety when toxic and unpalatable species enter 

the market by relabelling them as palatable species; moreover, globalization has led to an 

increased demand of seafood, creating incentives for seafood fraud [19]. Despite being 

one of the most abundant group of metazoan organisms, it is estimated that less than 4% 

of nematode species are currently known to science. Since easily distinguishable 

morphological characters are scarce in nematodes, their genetic identification is 

becoming increasingly important [20]. The World Health Organization estimates that 

worldwide infections with soil-transmitted nematodes cause a human annual disease 

burden of 3.8 million years lost to disabilities (YLD) [23]. The introduction of insect pests 

considered invasive alien species (IAS) into a non-native range threatens native plant 

health, and is estimated to have a negative impact on Canada’s forests second only to 

wildfires in their effect [21]. The United Nations estimate that 1.8 billion people are still 

exposed to drinking water sources contaminated with faecal matter [24]. The current 

standard method for microbial examination of both drinking and bathing water requires 
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the isolation and enumeration of organisms that indicate the presence of faecal 

contamination, such as Escherichia coli and Enterococci. Culture dependent approaches 

may require long incubation periods, and there is a demand for more rapid and 

comprehensive screening methods to detect faecal indicator organisms and putative 

pathogens in water samples [9]. 

The sequencing of bulk community samples extends the concept of barcoding, and is 

usually referred to as meta-barcoding [25] (Figure 2). In recognition of the need to 

consider the biological community as a whole, there has been a shift in emphasis from 

studies that focus on single indicator taxa to comparative studies across multiple taxa [25]. 

For example, marine researchers have proposed the use of the Autonomous Reef 

Monitoring Structure (ARMS), a standardized sampling tool that enables comprehensive 

documentation of marine biodiversity beyond standard indicator species [26].  ARMS are 

designed to mimic the structural complexity of coral reefs and are commonly deployed 

on the marine benthos for a length of time to allow marine organisms to colonize before 

subsequent retrieval and DNA sequencing (Figure 3). 

 

 

 

 

 

 

 

Figure 2: General overview of a meta-barcoding workflow. After sample collection, 

the DNA is extracted, and a marker gene is amplified and sequenced, in order to 

identify species present in the sample. 16S = 16S ribosomal RNA gene; CO1 = 

cytochrome oxidase subunit 1 gene; ITS = nuclear ribosomal internal transcribed spacer 

gene; ONT = Oxford Nanopore Technologies.  
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Figure 3: An Autonomous Reef Monitoring Structure. Taken from 

https://www.oceanarms.org/. 

 

All these manuscripts prove that, since its conceptual definition at the beginning of the 

21st century, barcoding has grown in importance, becoming a fundamental tool for 

monitoring the health of various ecosystems.  

  

https://www.oceanarms.org/
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Sequencing platforms for barcoding 

Barcoding has traditionally been performed with Sanger, known as first generation 

sequencing, and this platform still represents the gold-standard for studying one organism 

at a time [10,14]. The analysis of complex microbial communities with Sanger platform, 

without the need for cultivation, was first described by Pace [27]. However, this approach 

required a cloning step for analysing individual sequences, making it very cumbersome 

and time-consuming [8] (Figure 4a). 

In recent years, DNA barcoding has taken advantage from the emergence of second-

generation sequencing platforms, mainly represented by Illumina, that enabled the 

parallel generation of barcodes for hundreds of specimens and greatly simplified meta-

barcoding studies for characterizing the diversity of entire ecosystems [25]. These 

platforms limit the fragment length of barcode sequences to a maximum of 600 bp when 

Illumina MiSeq is used, requiring the amplification of hypervariable regions within 

barcoding genes (Figure 4b). For large-scale monitoring projects that use Illumina HiSeq 

or NovaSeq, even shorter barcodes must be used [28]. The use of short sequences limits 

taxonomic resolution and phylogenetic information content, making them unsuitable to 

reach species-level classification [25]. Bioinformatic pipelines for Illumina meta-

barcoding are now largely standardized, and typically include the merging of overlapping 

reads from the same fragment, clustering of merged reads to obtain a set of representative 

sequences with the corresponding counts and, finally, taxonomic assignment of 

representative sequences against a reference database [8] (Figure 5). Based on a plugin 

architecture, the QIIME2 framework is largely contributing to this standardization and 

increased reproducibility of the analyses [29]. 

Sanger and Illumina sequencing platforms suffer of long turnaround time and the need 

for a dedicated infrastructure, greatly limiting their applicability in developing countries 

[28]. Moreover, complex regulations may impede biological research in biodiverse 

countries and can make it challenging to export material out of the country of origin [14]. 

More recently, Oxford Nanopore Technologies (ONT) developed the MinION, a portable 

and cheap third-generation sequencer, which allows the production of long sequencing 

reads directly in the field [10] (Figure 6). In principle, the MinION has the potential of 

overcoming the presented issues and become the gold-standard platform for barcoding 
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[16,28,30] (Figure 4c). However, MinION reads have high error rate that require ad hoc 

analysis pipelines. The development of novel bioinformatic pipelines, together with 

improvements in sequencing chemistry, represents a fundamental step to translate proof-

of-principle workflows into standardized systems for on-site sequencing by professional 

users [10]. 

 

Figure 4. Sequencing platforms for barcoding. Depending on the sequencing 

technology adopted, a different library preparation for target sequencing is performed. As 

an example, the 16S sequencing of bacteria from environmental DNA is shown. Taken 

from [8]. 
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Figure 5. Schematic overview of bioinformatic pipelines for Illumina meta-

barcoding. Forward and reverse overlapping reads from the same fragment are merged, 

and clustered to obtain OTUs. Representative sequences from each OTU are then 

aligned to a reference sequenced and assigned a taxonomy.  

 

 

Figure 6. The ONT MinION sequencer in the field. Taken from [14]. 
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Bioinformatic approaches for barcoding with Nanopore sequencing 

Nanopore sequencers identify DNA bases by measuring the changes in electrical 

conductivity generated while DNA strands pass through a biological pore and record the 

magnitude of the current in the nanopore in fast5 format. A MinION flow-cell includes 

2048 pores, connected to 512 channels, which are capable of sequencing in parallel [31]. 

A part from the sequencing chemistry, the base-caller, namely the software converting 

raw electric signal to a sequence of nucleotides, has a great impact on the sequencing 

accuracy [32]. Despite the great improvements occurred in the last years, MinION reads 

still suffer of error rate in the range of 5%-15% [10,33,34]. 

Compared with Illumina platform, there is a scarcity of bioinformatic approaches 

specifically developed for barcoding with MinION platform. However, some of the 

available approaches can be adapted to work with MinION reads, by adjusting software 

parameters [8]. The choice of the most suitable bioinformatic approach should consider 

many aspects, as the complexity of the sample under study, the quality of sequencing 

reads, the availability of a-priori knowledge and the requested computational resources. 

Barcoding approaches for studying single samples aim to obtain a consensus sequence by 

integrating the information of multiple sequencing reads. These are either based on the 

alignment of reads from a resequencing experiment to a reference sequence, followed by 

variant calling and consensus sequence generation, or by de novo assembly of sequencing 

reads. The term de novo assembly is here used in a broad sense, since de novo assembly 

is usually meant as the production of longer contigs by joining partially overlapping reads 

[35]; while reads originating from amplicon sequencing experiments don’t need to be 

assembled into longer contigs, but they only need to be collapsed to obtain a more 

accurate consensus sequence (Figure 7). This is the process of read error correction that 

is performed by assemblers such as Canu and Falcon [36,37] which, however, do not 

provide a single corrected consensus sequence. In particular, if some contaminant reads 

are generated due to nonspecific amplification, the corresponding corrected reads are 

going to be produced as well, making it nontrivial to pick one of those, representing the 

target amplification product. 
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Figure 7. MinION reads from a single sample can be aligned and collapsed to obtain 

an accurate consensus sequence. 

Clustering software can be applied to solve the contamination issue, by grouping reads 

similar to each other, and providing a consensus sequence for each cluster. However, 

since most clustering tools have been developed for Illumina platform, they struggle with 

high error rate, and fail to provide accurate consensus sequences. In particular, 

VSEARCH [38] uses the center-star method for multiple sequence alignment and 

subsequent consensus sequence computation, by aligning all the sequences in a cluster to 

the centroid sequence. For this reason, InDels in the other sequences relative to the 

centroid sequence will have little or no impact on the consensus sequence. As an 

alternative to de novo assemblers, multiple sequence aligners as MAFFT [39] can be 

applied to align a set of reads to each other, but the aligned reads should be accurately 

preprocessed, in order to remove contaminant reads. In fact, MAFFT assumes that the 

input sequences are all homologous and, accordingly, all the letters in the input data are 

aligned [39]. Known bias of Nanopore reads, which tend to underestimate the length of 

homopolymers, should be taken into account as well [32]. Moreover, multiple sequence 

aligners may lack of a consensus module, providing a consensus sequence from the 

alignment, and tools as EMBOSS [40] should be applied afterwards. Finally, tools 

specialized at correcting residual errors, a process known as polishing, may be applied to 

improve the consensus sequence accuracy, with the most frequently used software being 

Racon [41], Nanopolish (https://github.com/jts/nanopolish), and Medaka 

(https://github.com/nanoporetech/medaka). Racon is a graph-based method which 

operates on base-called data. Similarly, Medaka operates on base-called data, but uses 

neural networks applied to a pileup of individual sequencing reads against a draft 

https://github.com/jts/nanopolish
https://github.com/nanoporetech/medaka
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assembly. Conversely, Nanopolish calculates an improved consensus sequence for a draft 

genome assembly by directly exploiting information stored in raw fast5 files. 

Meta-barcoding approaches generally aim to obtain a taxonomic characterization of 

complex samples, consisting of a list of taxa detected in the sample and their relative 

abundance estimates. Given the difficulty of clustering noisy reads from a complex 

sample, correctly discriminating between sequencing errors and actual biological 

differences, the most frequently adopted approaches are based on the taxonomic 

classification of single reads [8]. At this aim, reads are either mapped or aligned to a 

reference database. Although the two terms are often used in an interchangeable way, 

mapping of sequences to taxa does not necessarily provide a base-to-base alignment and 

can be achieved using k-mer-based or FM-based indexing schemes. These strategies are 

implemented in tools such as Centrifuge [42] and Kraken 2 [43], which rely on indexed 

databases. To classify a sequence, Kraken 2 first extracts all k-mers in a sequence, namely 

all subsequences of fixed length ‘k’, and assigns them to the lowest common ancestor 

(LCA) of the nodes in the database that contain that k-mer. After all k-mers in a sequence 

are mapped, a weight is assigned to each node, corresponding to the number of k-mers 

that mapped to it. Finally, the score of each path in the classification tree is evaluated, and 

the query sequence is assigned the taxonomy of the node with the highest score [44] 

(Figure 8). Although usually quicker, these methods do not provide alignment identities, 

and their output may be less intuitive for an effective interpretation of the results. 

Conversely, aligners such as Blast [45], Minimap2 [46], LAST [47] and VSEARCH [38] 

may be used to align each sequence to a reference database, and the alignment file may 

be post-processed to retain alignments with a minimum length and percentage identity or 

to deal with multi-mapping reads. To classify a sequence, VSEARCH uses a fast heuristic 

based on k-mers shared by the query and target sequences, in order to quickly identify 

similar sequences. It then performs optimal global sequence alignment of the query with 

the most promising candidates [38]. 

Finally, the composition of the reference database is another critical aspect, since it 

strongly influences the percentage of sequences correctly assigned to different taxonomic 

levels [8]. For example, the most frequently used databases for classification of 16S 

bacterial sequences are NCBI 16S Bacterial, GreenGenes 13_8_99 and Silva 
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132_99_16S, which differ in the number of reference sequences by more than an order of 

magnitude (Table 1). This difference in size may largely affect both computational 

processing time and classification accuracy. In fact, classification of a taxon not yet 

reported in the database represents a challenging scenario for the taxonomic classifier; 

ideally, the classifier should be able to identify the nearest taxonomic lineage to which 

this taxon belongs, but no further [48]. 

 

Figure 8. The Kraken 2 sequence classification algorithm. A query sequence is 

classified based on k-mers shared with nodes of a taxonomy tree. LCA = Lowest Common 

Ancestor. Taken from [44]. 

 

Table 1. Most frequently used databases for 16S meta-barcoding analyses. 

Database name Number of sequences 

NCBI 16S Bacterial 20,160 

GreenGenes 13_8_99 203,452 

Silva_132_99_16S 369,953 
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The tools reported in this paragraph show that, although many software packages 

targeting specific tasks have been developed, bioinformatic pipelines for obtaining the 

desired results starting from raw data, and any best practice guidelines, are still lacking.  



 

19 
 

Aim of the thesis 

The MinION platform has the potential to become the gold-standard for barcoding thanks 

to its portability and limited costs, but it produces sequencing reads with high error rate. 

Tools for performing specific tasks are available, however the most suitable ones and the 

optimal parameter settings for this application are yet to be identified. On top of that, the 

available tools need to be run sequentially, while streamlined pipelines providing results 

starting from raw data would be largely beneficial to non-expert users. This thesis 

describes bioinformatic approaches aimed at reducing the impact of error rate on species 

identification, for characterizing the taxonomy of single or complex samples with 

accuracy comparable with current state-of-the-art barcoding platforms.   



 

20 
 

Materials and Methods 

Samples collection and data generation 

The samples sequenced with ONT R7.3 chemistry were either provided by the Trento 

Science Museum (MUSE) or collected in a rainforest of central-south Tanzania. DNA 

extraction was performed as described in [49], and then PCR amplification was 

performed with different primer sets. In particular, for Leptopelis vermiculatus, primers 

Amp-P3 F 5′-CAATACCAAACCCCCTTRTTYGTWTGATC-3′ and Amp-P3 R 5′-

GCTTCTCARATAATAAATATYAT-3′ [50] were used to target ~900 bp of CO1 gene. 

For Rhynchocyon udzungwensis, primers LCO1490 5’-

GGTCAACAAATCATAAAGATATTGG-3’ and HC02198 5′-

TAAACTTCAGGGTGACCAAAAAATCA-3′ [51] were used to target ~710 bp of CO1 

gene. For remaining vertebrates, primers 16S Sar 5'-CGCCTGTTTATCAAAAACAT-3 

and 16S 5' -CCGGTTTGAACTCAGATCA-3' [52] were used to target ~600 bp of 16S 

gene. Library preparation was performed using MAP-006 kit, according to 

manufacturer’s instructions. 

The samples sequenced with ONT R9.4 chemistry were collected in Ulu Temburong 

National Park (Brunei, Borneo), during an expedition organized by Taxon Expeditions 

(https://taxonexpeditions.com/). DNA extraction was performed as described in [10], 

and then PCR amplification was performed with universal LCO1490 and HC02198 

primers. Library preparation was performed using SQK-LSK108 kit, according to 

manufacturer’s instructions. 

A total of 9 water microbial samples were collected from River Tiber in Rome. Water 

filtration was performed using 0.45 µm filters by Istituto Superiore di Sanità (ISS). 

Bacterial DNA was extracted from filters using the DNeasy PowerWater Kit by 

QIAGEN, according to manufacturer’s instructions. DNA samples coming from each 

condition (environmental sample, environment sample + spike-inmin, environmental 

sample + spile-inmax) were pooled together in groups of 3, to obtain 3 final pools. Each 

pool was subjected to library preparation and sequencing with ONT and Illumina 

platforms.  For ONT sequencing, PCR primers 27F 5’-

AGAGTTTGATCCTGGCTCAG-3’ and 1492R 5’- GGTTACCTTGTTACGACTT-3’ 

were used to amplify the full 16S gene (~1500 bp). Libraries were prepared using SQK-

https://taxonexpeditions.com/
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RAB201 kit, according to manufacturer’s instruction, and sequenced on a R9.4 flow-

cell. For ONT shotgun sequencing, whole genome metagenomic libraries were prepared 

using SQK-LSK108 kit and sequenced on a R9.4 flow-cell. For Illumina sequencing, 

PCR primers 341F 5’- CCTACGGGNGGCWGCAG-3’ and 785R 5’-

GACTACHVGGGTATCTAATCC-3’ [53] were used to amplify the V3-V4 regions 

(~550 bp) of 16S gene. Libraries were prepared using the 16S metagenomic sequencing 

library preparation kit and sequenced on MiSeq instrument in 300 PE mode. 

The environmental samples were supplemented with a spike-in of indicator species at two 

different concentrations by ISS. The exogenous bacteria contained in each spike-in, and 

the corresponding concentrations, are provided in Table 2. 

Table 2. Indicator species spiked-in in the environmental sample. 

Bacteria Source 
Spike-in

min
 

(CFU/ml) 

Spike-in
max

 

(CFU/ml) 

Escherichia 

coli 
ATCC8739 

10
2
 10

5
 

Enterococcus 

faecalis 

Clinical sample 

(urine) 

Enterobacter 

cloacae 

Clinical sample 

(urine) 

Staphylococcus 

aureus 

Clinical sample 

(urine) 

Salmonella 

infantis 

Environmental 

sample 

 

All wet-lab protocols for data generation were performed by the wet-lab team of 

professor Delledonne’s laboratory. 
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Table 3. Summary of sequenced samples. 

Sample ID Sampling location Gene analysed 
Sequencing 

platforms 

Leptopelis 

vermiculatus 
Tanzania 16S 

Sanger, ONT 

MinION R7.3 

chemistry 

Rieppeleon 

brachyurus 
Tanzania 16S 

Sorex alpinus Italy 16S 

Rhynchocyon 

udzungwensis 
Tanzania CO1 

Arthroleptis 

xenodactyloides 
Tanzania 16S 

Snail1 Borneo CO1 

Sanger, ONT 

MinION R9.4 

chemistry 

Jap1 Borneo CO1 

H36 Borneo CO1 

H37 Borneo CO1 

H42 Borneo CO1 

H43 Borneo CO1 

Colen1 Borneo CO1 

Env. sample Italy 16S Illumina MiSeq 

300PE, ONT 

MinION R9.4 

chemistry 

Env. Sample + [spike-in]
min

 Italy 16S 

Env. Sample + [spike-in]
max

 Italy 16S 

Env. Sample + [spike-in]
max

 Italy Whole genome 
ONT MinION R9.4 

chemistry 
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Nanopore reads preprocessing 

Nanopore reads generated with sequencing chemistry R7.3 were base-called, 

demultiplexed and quality filtered online using the Metrichor Agent v2.23, a software 

officially provided by ONT, with the 2D Basecalling workflow. The fastq files were then 

extracted using poretools [54]. 

Nanopore reads generated with R9.4 sequencing chemistry were base-called, 

demultiplexed, quality checked and filtered with a set of scripts written in R and bash 

languages, reported in https://github.com/MaestSi/ONT_preprocessing repository. In 

brief, the user could modify a configuration file to define some options. Then, raw reads 

in fast5 format were base-called offline using Guppy v4.2.2, a software officially 

provided by ONT, with parameters “--flowcell FLO-MIN106” and “--kit SQK_LSK108” 

or “--kit SQK-RAB201” for barcoding or meta-barcoding runs respectively. Base-called 

reads were demultiplexed by Guppy v4.2.2 by requiring the presence of indexes at both 

ends of the reads and adapters were trimmed with “--require_barcodes_both_ends --

trim_barcodes” and specifying the barcoding kit “--barcode_kits EXP-PBC001” or “--

barcode_kits SQK-RAB201” for barcoding and meta-barcoding runs respectively. Reads 

with quality < 7 and abnormal read length were discarded using NanoFilt v2.7.1 [55] with 

“cat $READS_FASTQ | NanoFilt -q7 -l $MINLENGTH --maxlength $MAXLENGTH”. 

A quality report was produced using pycoQC v2.5.0.21 [56] with “pycoQC -f 

sequencing_summary.txt -b barcoding_summary.txt -o pycoQC_report.html --

min_pass_qual 7”. 

  

https://github.com/MaestSi/ONT_preprocessing
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Barcoding analysis with the ONtoBar pipeline 

The first step of the ONtoBar pipeline performs de novo assembly of Nanopore reads 

using Loman’s method, as described in [57]. Then, the assembled consensus sequence is 

aligned locally against the NCBI nucleotide (nt) database using BLAST v2.5.0+ [45], and 

the top Blast hit is retrieved. This sequence is used as a reference for the alignment of 

Nanopore reads with LAST v1060 [47]. Starting from the bam alignment file, a pileup file 

is created using Samtools v1.9 [58], and the frequency of each nucleotide per reference 

position is calculated using a custom-made script that parses the pileup file. This script 

then produces a new consensus sequence containing the most frequent nucleotide at each 

position. Finally, the obtained consensus is aligned against NCBI nt database using 

BLAST. All scripts for running the ONtoBar pipeline are reported in 

https://github.com/cianix/ONtoBAR repository. 

Barcoding analysis with the ONTrack pipeline 

The first step of the ONTrack pipeline uses VSEARCH v2.14.2 [38] to cluster reads at 

70% identity and only reads in the most abundant cluster are retained for subsequent 

analysis in order to remove contaminant sequences. Of those, up to 200 reads are 

randomly sampled using Seqtk sample v1.3-r106 (https://github.com/lh3/seqtk) and 

aligned using MAFFT v7.458 [39] with parameters -localpair -maxiterate 1000, specific 

for iterative refinement, incorporating local pairwise alignment information. EMBOSS 

cons v6.6.0.0 (http://emboss.open-bio.org/rel/dev/apps/cons.html) is then used to retrieve 

a draft consensus sequence starting from the MAFFT alignment. The EMBOSS cons 

plurality parameter is set to the value obtained by multiplying the number of aligned reads 

by 0.15, in order to include a base in the draft consensus sequence if at least 15% of the 

aligned reads carriy that base. If less than 15% of the aligned reads carry the same base 

in a specific position, and a generic base (N) is included in the consensus sequence, the 

generic base is removed using a custom script. To polish the obtained draft consensus 

sequence, up to 200 reads are randomly sampled using Seqtk sample, with a different 

seed to the one used before, and mapped to the draft consensus sequence using Minimap2 

v2.17-r941 [46]. The alignment file is filtered, sorted and compressed to the bam format 

using Samtools v1.9 [58]. Nanopolish index and nanopolish variants --consensus modules 

from Nanopolish v0.13.2 (https://github.com/jts/nanopolish) are used to obtain a polished 

https://github.com/cianix/ONtoBAR
https://github.com/lh3/seqtk
http://emboss.open-bio.org/rel/dev/apps/cons.html
https://github.com/jts/nanopolish
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consensus sequence. When the pipeline is run multiple times, the polished consensus 

sequences produced during each round are aligned with MAFFT, after setting the gap 

penalty to 0. The final consensus is retrieved based on the majority rule, namely, selecting 

the consensus sequence that was produced on the majority of times. PCR primers are 

trimmed from both sides of the consensus sequence using Seqtk trimfq. As a final step, 

the consensus sequence is aligned using BLAST v2.5.0+ against the NCBI nt database, 

which was downloaded locally; this step is optional and allows to retrieve, for each 

consensus sequence, the most similar sequences in the database, for taxonomical 

assignment purposes. The accuracy of MinION consensus sequences was evaluated by 

aligning the consensus sequences to the corresponding Sanger-derived reference 

sequences using BLAST. The percentage of MinION reads mapping to the Sanger 

sequence was evaluated by performing the alignment with Minimap2 and running 

samtools flagstat on the generated bam file. All scripts for running the ONTrack pipeline 

are reported in https://github.com/MaestSi/ONTrack repository. 

Meta-barcoding analysis with the MetONTIIME pipeline 

Reads in fastq.gz format were imported in qiime2 v.2020.8.0 using “qiime tools 

import”. Reads were then dereplicated using “qiime vsearch dereplicate-sequences” and 

“qiime vsearch cluster-features-de-novo” to obtain a set of representative sequences and 

the corresponding table with read counts. Representative sequences were then aligned to 

the reference database using “qiime feature-classifier classify-consensus-vsearch” or 

“qiime feature-classifier classify-consensus-blast”, and taxonomy tables and barplots 

describing the taxonomic classification at each taxonomic level were generated with 

“qiime taxa collapse” and “qiime taxa barplot”.  All scripts for running the 

MetONTIIME pipeline are reported in https://github.com/MaestSi/MetONTIIME 

repository. 

Nanopore shotgun metagenomics analysis 

Preprocessed reads in fastq format were classified with Kraken v2.0.9-beta [43] using 

instruction: “$KRAKEN2 --db $DB –output $SAMPLE_NAME"_kraken2_output.txt" -

-report $SAMPLE_NAME"_kraken2_report.txt" --threads $THREADS $FASTQ”, 

using a database built on RefSeq complete bacterial genomes. A taxonomy pie chart was 

then generated using Krona [59] with instruction: “ktImportTaxonomy -q 2 -t 3 -s 4 

https://github.com/MaestSi/ONTrack
https://github.com/MaestSi/MetONTIIME
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$KRAKEN2_OUTPUT -o $KRONA_REPORT”. All scripts for running the pipeline are 

reported in https://github.com/MaestSi/MetaKraken2. 

Illumina meta-barcoding analysis 

Reads in fastq.gz format were imported in qiime2 v2020.8.0 using “qiime tools import” 

after generation of manifest.txt file, and PCR primers were trimmed with “qiime cutadapt 

trim-paired”. Reads were then truncated (at 280 bp and 260 bp for forward and reverse 

reads respectively) and overlapping mates were merged with “qiime dada2 denoise-

paired”. A set of amplicon sequence variants (ASVs) was obtained, together with a feature 

table, describing the occurrence of ASVs in each sample. The database 

Silva_132_99_16S was then imported with “qiime tools import”, and then “qiime feature-

classifier extract-reads” and “qiime feature-classifier fit-classifier-naive-bayes” were 

used to train a Naïve-Bayes classifier on the V3-V4 region of the 16S gene. ASVs were 

then classified with “qiime feature-classifier classify-sklearn”, and taxonomy tables and 

barplots were generated with “qiime taxa collapse” and “qiime taxa barplot”. All scripts 

for running the pipeline are reported in https://github.com/MaestSi/QIIME2_Illumina 

repository. 

https://github.com/MaestSi/QIIME2_Illumina
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Results 

The early days of Nanopore sequencing: single-read error profile 

To test the performances of the Oxford Nanopore Technologies (ONT) MinION 

sequencer at the early stages of development, I first focused on the 16S gene of the toad 

Sclerophrys brauni, by sequencing the amplicon both with ONT MinION (R7.3 

chemistry) and with Sanger platforms. Exploiting the presence of a hairpin adapter 

linking the forward and the reverse strand of the same DNA molecule, the two sequences 

could be collapsed to obtain more accurate 2D reads. A total of 2,660 reads out of 51,273 

(5.2%) were successfully collapsed and passed quality filtering set by the base-calling 

software. Alignment of a set of 2D PASS reads to the NCBI nt database showed that the 

error rate was too high to enable accurate species identification without implementing ad 

hoc bioinformatic strategies for error correction (Figure 9). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Blast alignment of a Nanopore read to the top Blast hit from NCBI nt 

database 

I then aligned this set of 2D PASS reads to the reference Sanger sequence and inspected 

in detail their error profile. First, I noticed that only 977 reads (36.7%) successfully 

aligned to the reference sequence, probably due to the higher error rate of unaligned reads. 

The mean error rate of Nanopore aligned reads was 17%, and consisted of mismatches 
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(8%), insertions (4%) and deletions (5%). Moreover, the error rate was found to be non-

random, as shown by the spikes of low coverage in correspondence of homopolymeric 

stretches (Figure 10). This was due to a platform bias, and was already described in the 

literature [60]. Despite the high error rate of ONT aligned reads, the most frequent 

nucleotide at each reference coordinate was always the correct one. Although the correct 

nucleotide frequency decreased in correspondence of homopolymeric stretches, it 

remained the most frequent one (Figure 11). Therefore, the consensus sequence obtained 

by calling the most frequent nucleotide at each position had 100% match with the Sanger 

reference sequence (Figure 12). This result showed that only resequencing, namely the 

identification of variants with respect to a reference sequence, was feasible.  

Figure 10. Spikes of low coverage in correspondence of homopolymer stretches.  

 

Figure 11. The most frequent nucleotide in Nanopore aligned reads is always the 

correct one. 
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Figure 12. S. brauni consensus sequence generated using the Sanger as a reference 

completely matches the Sanger sequence. 
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Testing the robustness of a reference-guided assembly approach for barcoding 

In the previous section, I showed that when aligning Nanopore reads obtained from 

resequencing of a species to the corresponding Sanger sequence, the generated consensus 

sequence completely matched the Sanger. I then wanted to test the robustness of this 

approach when using a reference sequence which is not identical to the Sanger sequence. 

At this aim, I first simulated intra-species variability by introducing a different number 

of variants randomly distributed in the Sanger sequence, totaling from 1% to 3% of 

nucleotides. Still, the obtained consensus sequences completely matched the Sanger 

sequence (Table 4).  

Table 4. Reference-guided assembly is tolerant to randomly distributed variants in 

the reference sequence. 

Variants introduced Identity with Sanger 

5 (1%) 100% 

10 (2%) 100% 

15 (3%) 100% 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. S. brauni Sanger sequence shares 93% identity to S. pantherina 

sequence from NCBI. 
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Then, I picked a sequence from NCBI database for the 16S gene of S. pantherina, a toad 

belonging to the same genus of S. brauni, but from a different species, and I aligned the 

Sanger sequence of S. brauni to it. The two sequences showed 93% identity. 

I then aligned Nanopore reads of S. brauni to the S. pantherina sequence from NCBI and 

called the consensus sequence. The obtained consensus sequence was realigned to S. 

pantherina, and they showed 95% identity (Figure 13). This value was slightly higher 

than the one found using S. brauni Sanger sequence, indicating that the reference 

sequence used for calling the consensus sequence introduced some bias. Accordingly, the 

consensus sequence was not identical to the Sanger, showing only 98% identity (Figure 

14). 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. S. brauni consensus sequence generated using S. pantherina as a 

reference shares 95% identity with S. pantherina sequence from NCBI. 
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Figure 14. S. brauni consensus sequence generated using S. pantherina as a 

reference shows 98% identity with S. brauni Sanger sequence. 

Overall, these tests allowed me to conclude that when using the correct species as a 

reference, the obtained consensus sequence is 100% identical to the reference and to the 

Sanger, allowing to confirm the identified species. On the contrary, when using a different 

species as a reference, the obtained consensus sequence may contain some errors. In this 

case, the consensus sequence shows some differences with respect to the reference, but 

these differences may be underestimated due to reference bias, forcing the alignment of 

Nanopore reads to adapt to the reference. If differences are above a predefined threshold, 

usually set at 3%, it is possible to exclude that the organism belongs to the same species 

as the chosen reference. 
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A first attempt to de novo assembly 

In the previous section I showed that a reference-guided approach is suitable to obtain 

accurate consensus sequences, given that a similar enough reference is available. On the 

contrary, de novo assembly does not rely on a reference sequence, but tries to join reads 

into larger contiguous contigs [35] (Figure 15). The high error rate of ONT reads made 

de novo assembly particularly challenging. Nonetheless, the group of professor Nick 

Loman first reported the de novo assembly of a complete bacterial genome using only 

Nanopore data [57]. This landmark work showed that, when using ad hoc developed 

bioinformatic tools, issues related to the high error rate could be largely overcome, 

yielding accurate and complete genome assemblies. 

 

 

 

 

 

Figure 15. De-novo and reference-guided assembly strategies. In de-novo assembly, 

reads overlaps are found and a contig is assembled A); in reference-guided strategies, 

reads are first aligned to a reference sequence, and then the consensus sequence is called 

B). 

As a preliminary test, I performed de-novo assembly of 2D PASS reads from the toad S. 

brauni 16S gene described in the previous section, using Loman’s pipeline. The 

assembled contig was Blasted against the NCBI nt database, and it allowed to identify the 

most similar species in the database; however, some differences, mainly consisting of 

insertions and deletions were found, especially in homopolymeric regions (Figure 16). 
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Alignment to the Sanger sequence confirmed that insertions and deletions were errors in 

the assembled contig. This result showed that, despite de novo assembly of ONT reads 

was not mature yet for obtaining an accurate consensus sequence, it was accurate enough 

to identify candidate species in the NCBI nt database.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Blast alignment of a de-novo assembled contig to its top hit. 
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Combining de novo and reference-guided assembly approaches: the ONtoBar 

pipeline 

In the previous sections I showed that the choice of the reference sequence used for 

performing a reference-guided assembly is critical and has an impact on consensus 

sequence accuracy. Moreover, I showed that the de novo assembled contig could aid in 

the process of identifying candidate species. Building up from these observations, a novel 

bioinformatic pipeline was developed, which could combine de novo and reference-

guided assembly strategies to reduce both errors in homopolymeric regions and risks 

associated with arbitrary reference choice (Figure 17).  

 

 

 

 

 

 

 

 

Figure 17. Schematic representation of a bioinformatic pipeline combining de novo 

and reference-guided assembly. 

The combination of de novo and reference-guided assembly approaches was implemented 

in the ONtoBar pipeline [13]. In brief, ONT reads are de novo assembled exploiting 

Loman’s pipeline; the assembled contig is blasted against the NCBI nt database and the 

top hit is retrieved; the top hit is used as a reference sequence for performing a reference-

guided assembly; finally, the ONtoBar consensus sequence is Blasted against the NCBI 

nt database and the final Blast hit is retrieved (Figure 18). 
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Figure 18. The ONtoBar pipeline. 2D PASS reads are de novo assembled using 

Loman’s pipeline (i); the obtained preliminary consensus sequence is Blasted locally 

against the NCBI nt database and the top hit is retrieved (ii); the 2D PASS reads are 

then aligned to the top hit (iii) and a consensus sequence is produced (iv); the ONtoBar 

consensus sequence is finally Blasted against the NCBI nt database and the top hit is 

retrieved (v). 

To test the discriminatory power of the ONtoBar pipeline compared to Loman’s pipeline 

and Sanger sequencing, we performed five experiments in which different organisms and 

barcoding genes were sequenced. The same amplicons were sequenced with ONT 

MinION and with Sanger in parallel, to obtain a ground-truth reference. In particular, we 

examined the 16S gene of an amphibian (the big-eyed tree frog, Leptopelis vermiculatus), 

a squamate reptile (the beardless pygmy chameleon, Rieppeleon brachyurus), a mammal 

(the alpine shrew, Sorex alpinus), a wild frog (Arthroleptis xenodactyloides) and the CO1 

gene of another mammal, the gray-faced sengi (Rhynchocyon udzungwensis). Nanopore 

sequencing produced 92,709 reads for each sample on average, and 40,657 reads (43.9%) 
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on average were collapsed by the base-calling software to obtain more accurate 2D reads 

(Table 5). Of those, only 31,112 reads (76.5%) on average passed the quality filtering 

step. All samples had a good number of 2D PASS reads except sample A. 

xenodactyloides, for whom the whole set of 2D reads was considered. ONT reads were 

analysed both with Loman’s and ONtoBar pipelines and the similarity with NCBI 

reference was retrieved and compared to the similarity found with Sanger. On average, 

the absolute difference between Loman’s pipeline and Sanger was 5.4%, while the 

absolute difference between ONtoBar pipeline and Sanger was 0.4%. This result showed 

that Nanopore sequencing with the ONtoBar pipeline had the same discriminative power 

of Sanger sequencing and could be effectively used for species identification. Moreover, 

the consensus sequence was always 100% identical to the Sanger, except in the case of 

R. udzungwensis, for whom an NCBI reference of another species was used. 

Table 5. MinION sequencing data and identification of known species. 

 

  

Sample 

species 

Total 

Reads 
2D reads 

2D PASS 

reads 
Similarity with NCBI reference 

NCBI 

reference 

ONtoBar 

similarity 

with 

Sanger 

    Loman’s ONtoBar Sanger   

Leptopelis 

vermiculatus 
109,047 57,110 42,102 92% 98% 98% 

Leptopelis 

sp. 
100% 

Rieppeleon 

brachyurus 
97,080 16,760 8,026 92% 100% 100% 

R. 

brachyurus 
100% 

Sorex alpinus 84,913 24,807 7,706 98% 99% 99% 
S. 

alpinus 
100% 

Rhynchocyon 

udzungwensis 
167,466 104,419 97,725 88% 99% 97% 

R. 

petersi 
98.22% 

Arthroleptis 

xenodactyloides 
5,039 187 2 97% 100% 100% 

A. 

xenodactyloides 
100% 
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A novel sequencing chemistry: new opportunities for accurate de novo assembly 

In the last few years, continuous improvements in chemistry and software provided by 

ONT reflected in increased sequencing accuracy of 1D reads, that approached the 

accuracy of 2D reads. Kits based on 2D reads were then dismissed. To test the latest 

updates, we performed seven experiments in which the CO1 gene of different organisms 

from unknown species was sequenced. The same amplicons were sequenced with ONT 

MinION (R9.4 sequencing chemistry), producing 39,778 reads on average, and with 

Sanger in parallel, to obtain a ground-truth reference (Table 6). Despite requiring the 

presence of indexes at both sides of the read, thus excluding cross-contamination, we 

observed that samples H37 and Colen1 showed a high standard deviation in read length, 

pointing towards the presence of different amplification products. This was also evident 

when looking at read length distribution (Figure 19). We first analysed ONT reads with 

the ONtoBar pipeline. The similarity of the obtained consensus sequences with NCBI top 

hit was retrieved and compared to the similarity found with Sanger. This analysis showed 

that the ONtoBar pipeline was able to identify all samples as not present in the NCBI 

database. This was also confirmed by Sanger sequences, showing a similarity with NCBI 

top hit < 88% for all samples. When comparing the accuracy of the ONtoBar consensus 

sequence to the Sanger, I found out that two samples had 100% consensus accuracy, while 

the five remaining samples had slightly lower accuracy, ranging from 98.43% to 99.69%.  

Table 6. MinION sequencing data and identification of unknown species. 

Sample ID 

(unknown 

species) 

Gene 
Total  

Reads 

Mean bp read 

Length (SD) Sanger similarity with 

NCBI top hit 
NCBI top hit 

OntoBar 

consensus 

similarity 

with Sanger 

    ONtoBar Sanger   

Snail1 CO1 26,295 687 (31) 88% 88% P. flavocarinata 99.69% 

Jap1 CO1 79,654 688 (27) 86% 85% B. aeruginosa 98.87% 

H36 CO1 22,148 688 (27) 85% 86% Roraima sp. 100% 

H37 CO1 97,571 381 (211) 85% 87% Macronychus sp. 98.43% 

H42 CO1 59,604 689 (24) 86% 85% Hydrophilidae sp. 99.69% 

H43 CO1 96,181 683 (67) 87% 87% Stenelmis sp. 100% 

Colen1 CO1 43,368 351 (180) 87% 88% A. ventricosa 99.63% 
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Figure 19. Read length distribution shows multiple peaks for samples H37 and 

Colen1.  

This result confirmed that, despite higher quality data, the lack of a suitable reference 

sequence for novel species may result in errors in the consensus sequence produced with 

a reference-guided assembly approach. I therefore set out to develop a novel de novo 

assembly pipeline, which could perform accurate species identification and consensus 

sequence generation. After some preliminary tests and literature search, it was evident 

that software traditionally used for the de novo assembly of ONT reads were not suitable 

to assemble reads originated from amplicon sequencing, since they are designed to 

produce longer contigs by bridging together partially overlapping reads [36]. I then 

decided to implement a strategy based on multiple sequence alignment, generation of a 

draft consensus sequence and polishing of residual errors with a specialized tool. Since 

in a multiple sequence alignment all reads are aligned to each other, it is fundamental to 

remove unwanted reads prior to this step. Alignment of Nanopore reads to Sanger 

sequences confirmed that the presence of multiple peaks in read length for samples H37 

and Colen1 was due to different amplification products, as only 23.92% and 17.89% of 

reads mapped to the Sanger sequence respectively (Table 7). 
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Table 7. Percentage of reads mapping to Sanger before and after filtering. 

Sample ID 

(unknown species) 

%Reads 

mapping 

to Sanger 

%Filtered reads 

mapping to Sanger 

  After filtering 

by length 

After filtering 

by length + 

clustering 

Snail1 99.88% 99.97% 100% 

Jap1 99.92% 99.96% 100% 

H36 99.87% 99.95% 100% 

H37 23.92% 96.24% 99.98% 

H42 99.92% 99.97% 100% 

H43 96.60% 97.65% 99.96% 

Colen1 17.89% 98.66% 99.98% 

 

 

As a first approach for reducing the number of unwanted reads, I filtered reads based on 

their length, retaining only those in the range 630 bp-730 bp. This filtering largely 

increased the percentage of reads mapping to Sanger (Table 7) and reflected in unimodal 

read length distribution plots (Figure 20).  

 

 

 

 

 

Figure 20. Read length distribution after filtering by length. 
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However, filtering by length may not be enough in case the unwanted reads have the same 

length as the target reads. For example, sample H37 still had 3.76% reads that did not 

map to the Sanger sequence after filtering by length. For this reason, I implemented a 

preliminary clustering step which aggregates reads similar to each other, possibly 

associated with the target amplification product, and saves to separate files all reads which 

are not assigned to the most abundant cluster. This approach is based on the assumption 

that contaminants would be less abundant than the target amplification product. However, 

in cases contaminants are more abundant than the target amplification product, all reads 

in the most abundant cluster could be discarded and the process could be repeated starting 

from the identified subset of reads. To test the impact of the preliminary clustering step, 

I reproduced three scenarios with different amounts of contaminant reads, subsampling 

sets of mapped and unmapped reads for sample H37. In particular, I simulated low, 

medium and high contamination levels, corresponding to 25%, 35% and 45% 

contamination levels respectively. The obtained consensus sequence, with or without the 

preliminary clustering step, was aligned to the Sanger, and the average alignment identity 

was calculated. To obtain more robust accuracy estimates, I repeated the experiment in 

triplicate, and calculated average accuracy values. This result showed that, while in the 

absence of clustering a higher contamination level is associated with lower draft 

consensus accuracy, the preliminary clustering completely neutralized the impact of 

contaminants (Figure 21).  
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Figure 21. Impact of contaminants on draft consensus sequence accuracy. For each 

contamination level, the average draft consensus sequence accuracy across three 

replicates is reported; error bars represent standard deviation. 

I then inspected the impact of contamination on the polished consensus sequences. This 

result showed that polishing contributes reducing the impact of contaminants, since it 

requires the alignment of reads to the draft consensus sequence. Still, polishing alone does 

not allow to reach the performances of the preliminary clustering step in presence of 

contaminants (Figure 22). Overall, these tests showed that the preliminary clustering step 

is able to neutralize the impact of contaminants, by greatly increasing the percentage of 

reads mapping to Sanger (Table 7). 

 

 

 

 

 

 

 

 

Figure 22. Impact of contaminants on polished consensus sequence accuracy. For 

each contamination level, the average polished consensus sequence accuracy across 

three replicates is reported; error bars represent standard deviation. 

I then performed a downsampling analysis to identify the minimum number of reads for 

obtaining accurate consensus sequences. For each sample, I considered sets of reads 

ranging in size from 10 to 5,000, produced a consensus sequence, and evaluated the 

accuracy by comparing it to the Sanger. This result showed that consensus accuracy 

reached a plateau with 200 reads, thus making unnecessary a deeper sequencing coverage 

(Figure 23). 
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Figure 23. The impact of downsampling on consensus sequence accuracy. For each 

number of reads, the average polished consensus sequence accuracy across seven 

samples is reported; error bars represent standard deviation. 
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The ONTrack pipeline 

Based on the results reported in the previous section, I developed a novel de novo 

assembly pipeline named ONTrack [10] (Figure 24). The first step of the pipeline clusters 

MinION sequencing reads, and only reads in the most abundant cluster are further 

considered for the analysis. Up to 200 reads are then randomly subsampled and a draft 

consensus sequence is obtained. Another set composed of up to 200 reads is randomly 

subsampled and used for the polishing of the consensus sequence. To test the accuracy of 

the ONTrack pipeline, I reanalysed the samples described in the previous section. Since 

the pipeline randomly subsamples two sets of 200 reads, I compared the consensus 

sequence accuracy across three iterations of the pipeline. For each iteration, the average 

consensus accuracy ranged from 99.95% to 100%. I then picked a final consensus 

accuracy for each sample, by selecting the consensus sequence which was produced on 

the majority of times. The ONTrack final consensus sequence was 100% identical to the 

Sanger for all samples (Table 8). This value represents a 0.53% increase in accuracy with 

respect to the ONtoBar pipeline, thus highlighting that a de novo assembly pipeline could 

overcome most sequencing errors by collapsing information included in multiple reads of 

the same gene, without relying on external information (Table 9). 
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Figure 24. The ONTrack pipeline. ONT MinION reads are clustered to remove 

contaminants and only reads in the most abundant cluster are further considered (i); a 

set composed of up to 200 reads is randomly subsampled (ii) and used for obtaining a 

draft consensus sequence (iii); another set composed of up to 200 reads is randomly 

subsampled (iv) and used for polishing the draft consensus sequence (v).  

 

Table 8. ONTrack consensus accuracy across three iterations.  

Sample ID 

(unknown 

species) 

ONTrack consensus 

accuracy read set 1 

ONTrack 

consensus 

accuracy read set 2 

ONTrack consensus 

accuracy read set 3 

ONTrack final 

consensus 

accuracy 

Snail1 100% 100% 100% 100% 

Jap1 100% 100% 100% 100% 

H36 100% 100% 100% 100% 

H37 99.83% 100% 100% 100% 

H42 100% 100% 99.85% 100% 

H43 100% 100% 100% 100% 

Colen1 100% 100% 99.81% 100% 

Average 99.98% 100% 99.95% 100% 
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Table 9. Consensus accuracy of ONtoBar and ONTrack pipelines 

Sample ID 

(unknown species) 
Consensus accuracy 

  ONtoBar ONTrack 

Snail1 99.69% 100% 

Jap1 98.87% 100% 

H36 100% 100% 

H37 98.43% 100% 

H42 99.69% 100% 

H43 100% 100% 

Colen1 99.63% 100% 

Average 99.47% 100% 
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Meta-barcoding with Nanopore sequencing 

As shown in the previous section, the error rate of Nanopore reads can be largely 

overcome by collapsing multiple reads of the same genomic region. However, in case 

complex samples are analysed, each read, in principle, may belong to a different organism 

with biological differences in the amplified region. This hampers the possibility of 

performing a de novo assembly and requires alternative methods for the taxonomic 

characterization of a complex community. Compared to gold-standard methods for meta-

barcoding, such as Illumina sequencing with the MiSeq platform [4,5,11], Nanopore reads 

trade sequencing accuracy for increased mappability, allowed by the longer reads lengths 

(Figure 25).  

Figure 25. Nanopore and Illumina reads from a meta-barcoding experiment. The 

alignment of ONT and Illumina reads to species L. parvus is shown as an example. 

Since no general guideline was available for the analysis of Nanopore meta-barcoding 

reads, I first tried to cluster Nanopore reads into Operational Taxonomic Units (OTUs), 

similarly to what is usually performed with Illumina reads [4,5,11]. Despite requiring 

90% clustering identity, to account for the error rate, I observed that the number of 

clusters increased almost linearly with the number of reads, never reaching a plateau 

(Figure 26). This test showed that OTU-picking approaches are not suitable for the 

analysis of error-prone Nanopore reads, and that approaches based on the analysis of 

single-reads should be preferred instead. As a second test, I aligned each read to the 

NCBI 16S Bacterial database and inspected the alignment identity distribution of the 
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top hits. The distribution showed an average alignment identity of 92% (SD=5%) 

(Figure 27). Moreover, a second peak at low alignment identity was detected. This 

result showed that species-level identification may not be reliable for all alignments. In 

fact, most of the alignments showed an identity lower than 97%, a threshold that is 

frequently used by OTU-picking approaches for species identification [5]. While 

stringent identity filtering may help reducing the number of misassigned species, it 

would result in discarding most sequencing reads, and possibly introducing some biases 

in the estimated taxonomic composition. In fact, reads originating from species whose 

sequence is unavailable in the database would be filtered out, without retaining any 

information at higher taxonomic levels. This issue may be overcome by performing a 

consensus taxonomy assignment [61]. This approach is based on the retrieval, for each 

read, of multiple top hits surviving the filtering criteria, and the evaluation of their 

taxonomy assignment; based on that, the read would be classified at species level, if all 

hits agree at species level, or at a higher level, if the top hits agree only at a higher 

taxonomic level (Figure 28).  

 

 

 

 

 

 

 

 

Figure 26. The number of OTUs increases almost linearly with the number of 

reads. 
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Figure 27. Single-read alignment identity distribution from a meta-barcoding 

experiment. 

 

 

 

 

 

 

 

Figure 28. Consensus taxonomy assignment. As an example, a read is assigned at 

genus level, since 3 top hits belong to different species from the same genus. 
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ONT developed an online workflow for the meta-barcoding analysis of a microbial 

community based on the full 16S gene. The workflow is called EPI2ME 16S and performs 

alignment of each read to the NCBI 16S Bacterial database and consensus taxonomy 

assignment. Despite very useful for having a first impression, the workflow is not flexible, 

as it does not allow the user to change alignment parameters and database. In particular, 

the implemented database is much smaller than other frequently used databases, 

containing approximately 5.5% of sequences included in the Silva database (Table 1).  
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The MetONTIIME pipeline 

Despite enabling very quick analyses, the NCBI 16S Bacterial database may not be 

adequate for capturing the whole complexity of a microbial community. Moreover, the 

impossibility to use a more complete database hampers effective comparisons with 

previous analyses based on another database, due to naming inconsistencies and missing 

taxa. For this reason, I developed MetONTIIME, a meta-barcoding pipeline for analysing 

ONT data in QIIME2 environment (Figure 29). The MetONTIIME pipeline performs 

alignment of single reads and consensus taxonomy assignment as the EPI2ME 16S 

workflow, but it also allows the user to specify a custom database and to tune alignment 

parameters.  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 29. The MetONTIIME pipeline. ONT reads are aligned to a reference database 

and consensus taxonomy assignment is performed (i); then, taxonomy barplots and 

tables are produced (ii). 

For validating the pipeline, we first generated Nanopore sequencing data (R9.4 

sequencing chemistry) from an environmental sample obtained filtering the polluted 

water of river Tiber (Table 10). As a first test, I compared the taxonomic classifications 
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obtained using the EPI2ME 16S workflow and the MetONTIIME pipeline with the same 

database and parameters. The two pipelines showed high correlation at genus level 

(R2=0.99), thus indicating that the MetONTIIME pipeline can be used in place of the 

EPI2ME 16S workflow with very similar results (Figure 30). 

Table 10. Sequencing data generated for the validation of the MetONTIIME 

pipeline. 

Sample name 
Sequencing 

platform 

Genomic 

target 

Number of 

filtered 

fragments 

Mean bp fragment 

length (SD) 

Env. sample 

Illumina V3-V4 16S 217,085 415 (14) 

Nanopore Full 16S 53,013 1,412 (41) 

Env. Sample + [spike-in]
min

 

Illumina V3-V4 16S 253,270 415 (13) 

Nanopore Full 16S 49,314  1,414 (39) 

Env. Sample + [spike-in]
max

 

Illumina V3-V4 16S 256,460 415 (14) 

Nanopore Full 16S 59,168 1,416 (41) 

Nanopore WGS 451,469 2,641 (3,237) 
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Figure 30. Correlation at genus level between the EPI2ME 16S and the 

MetONTIIME pipelines. Relative abundance of reads at genus level is shown. 
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Nanopore meta-barcoding compared to gold-standard methods 

For further validating Nanopore meta-barcoding with the MetONTIIME pipeline, we 

generated meta-barcoding data from the same environmental sample with a platform that 

is currently considered the gold-standard for meta-barcoding analyses, namely Illumina 

data with the MiSeq platform in 300 PE configuration (Table 10) [8]. I processed Illumina 

data in QIIME2 environment and performed taxonomic classification using Silva 

database, producing taxonomy tables at different taxonomic levels [61] (Figure 31).  

 

 

 

 

 

 

 

 

 

Figure 31. Analysis pipeline for Illumina meta-barcoding data. A Naïve-Bayes 

classifier is trained on the Silva database, after extracting the region corresponding to 

the V3-V4 region of the 16S gene amplified by PCR primers (i); Illumina reads are 

trimmed, denoised and merged, to obtain representative sequences with associated 

counts (ii); the representative sequences are then assigned a taxonomy with the trained 

classifier (iii); barplots and taxonomy tables are finally produced.  

 

I then analysed Nanopore data from the same sample using the MetONTIIME pipeline 

with the Silva database, and performed comparisons between the relative abundances 

found by the two platforms at phylum, genus, and species levels. Analysis at phylum level 

showed good correlation between the two platforms (R2=0.74), with 84.4% of phyla 

identified by both platforms. When considering only phyla with >0.5% abundance, the 

percentage of shared phyla decreased to 77.8%, with 2 phyla detected only by Illumina; 

these 2 phyla were also detected by Nanopore platform, but with an abundance <0.5% 
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(Figure 32). Analysis at genus level showed again good correlation between the two 

platforms (R2=0.71), with 46.3% of genera identified by both platforms. When 

considering only genera with >0.5% abundance, the percentage of shared genera 

increased to 58.0%. All 6 proprietary Illumina genera were also detected by Nanopore 

platform, but with an abundance <0.5%; while only 5 of the 7 Nanopore proprietary 

genera were also detected by Illumina platform, but with an abundance < 0.5% (Figure 

33).  

 

 

 

 

 

 

 

 

Figure 32. Comparison between Illumina and Nanopore meta-barcoding at 

phylum level. Number of phyla identified by the two platform (i); correlation between 

relative abundance of phyla identified by the two platform (ii); number of phyla with 

relative abundance > 0.5% identified by the two platform (iii). 
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Figure 33. Comparison between Illumina and Nanopore meta-barcoding at genus 

level. Number of genera identified by the two platform (i); correlation between relative 

abundance of genera identified by the two platform (ii); number of genera with relative 

abundance >0.5% identified by the two platform (iii).  

Conversely, analysis at species level showed low correlation between the two platforms 

(R2=0.18), with only 25.1% of species identified by both platforms. When considering 

only species with >0.5% abundance, the percentage of shared species decreased to 12.0%. 

Only 3 of the 6 proprietary Illumina species were also detected by Nanopore platform, 

but with an abundance <0.5%; while only 6 of the 16 Nanopore proprietary species were 

also detected by Illumina platform, but with an abundance <0.5% (Figure 34). 
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Figure 34. Comparison between Illumina and Nanopore meta-barcoding at species 

level. Number of species identified by the two platform (i); correlation between relative 

abundance of species identified by the two platform (ii); number of species with relative 

abundance >0.5% identified by the two platform (iii).  
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The analysis of indicator species 

Overall, the results presented in the previous section indicated that Illumina and Nanopore 

platforms had good concordance up to genus level but showed marked differences at 

species level. Following the legislative decree of February 2nd 2001, No. 31 and the 

Directive 2006/7/EC of February 15th [62,63], the water quality assessment in Italy should 

rely on the culture-based analysis of 5 indicator species. For this reason, I first inspected 

if indicator species could be detected by either platform in the environmental sample. 

This analysis showed that only 2 and 3 genera out of 5 could be detected with Illumina 

and Nanopore platform, respectively. Moreover, Illumina could not detect any of the 

indicator species, while Nanopore detected only one (Figure 35). 

 

 

 

Figure 35. Analysis of indicator species with Illumina and Nanopore platforms. 

Analysis is performed at genus (i) and at species (ii) levels. 

This result led us to question if indicator species were not found in the environmental 

sample either because they were not present, or because of some technological issues. For 

this aim, we added to the environmental sample a spike-in composed of the indicator 

species at two different concentrations (min and max) and we sequenced them with the 

two platforms (Table 10).  
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Moreover, we sequenced with Nanopore the environmental sample with spike-in at max 

concentration using a shotgun metagenomics approach (Table 10). I analysed meta-

barcoding data from the spiked-in samples as described previously, and Nanopore 

shotgun data with a pipeline based on Kraken2 classifier [43] (Figure 36). 

  

 

 

 

 

 

 

 

 

 

 

Figure 36. Analysis pipeline for Nanopore shotgun metagenomics data. ONT reads 

are classified with Kraken2 using the standard Kraken 2 database for bacteria (i); 

taxonomy assignments are then used by Krona to produce taxonomy pie chart (ii). 

The analysis of indicator species at genus level showed that, after the addition of the 

spike-in, Illumina could detect up to 3 of the 5 taxa, while Nanopore could detect up to 4 

of the 5 taxa (Figure 37); moreover, an increase in the average percentage of reads 

assigned to the 5 genera after the addition of the spike-in was observed with both 

platforms. Conversely, the analysis of indicator species at species level showed that 

Illumina was not able to detect any of the indicator species, while Nanopore could detect 

up to 3 of the 5 taxa (Figures 38); moreover, Nanopore showed an increase in the average 

percentage of reads assigned to the 5 species after the addition of the spike-in (Figure 

39). Shotgun metagenomics analysis showed that all 5 genera were present in the 

environmental sample with the addition of spike-in at maximum concentration, while no 

reads were assigned to S. infantis. 
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Figure 37. Analysis of indicator species at genus level. Relative abundance of genera 

corresponding to indicator species in the environmental sample (i), after addition of 

spike-inmin (ii) and after addition of spike-inmax (iii).  
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Figure 38. Analysis of indicator species at species level. Relative abundance indicator 

species in the environmental sample (i), after addition of spike-inmin (ii) and after 

addition of spike-inmax (iii).  
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Figure 39. Relative abundance of indicator species after spike-in addition. The 

average relative abundance of indicator species at genus (i) and species (ii) level is 

shown; error bars represent the standard error.  
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Discussion 

In this thesis I have shown that barcoding with Nanopore sequencing has almost reached 

accuracy comparable with Illumina and Sanger platforms. Moreover, the bioinformatic 

analysis of Nanopore reads does not need a big computing infrastructure and takes only 

10 minutes per sample on an ASUS laptop with 16 GB RAM, i7 processor and SSD disk. 

The whole analysis does not require internet connection, since in the last few years ONT 

has provided software for sequencing and base-calling that can work offline, and 

databases for comparing consensus sequences to known species can be downloaded 

locally [10]. This has been possible thanks to a steady improvement in both the sequencing 

chemistry and software performances. Until a few years ago, Nanopore reads showed 

higher error rate and could not be used for accurate de novo assembly. Only resequencing 

was possible, and alignment of the reads to the reference sequence could either confirm 

the species, if none or few variants were identified, or suggest a different species was 

sequenced. Moreover, reads were base-called online, thus requiring a good internet 

connection [13]. After our first demonstration of barcoding in the field [13], the advent of 

a new sequencing chemistry and of a new generation of offline base-callers made de novo 

assembly in the field for species identification feasible [14,64]. However, none of these 

works proposed an automated and user-friendly bioinformatic pipeline providing 

consensus sequences in a streamlined way, as they either adopted sample-dependent 

bioinformatic processing [14], or they relied on an external database for final error 

correction [64]. The novel barcoding pipeline described in this work could address issues 

which may arise in field settings, as possible contamination or limited computing 

resources [10]. All recent works describing barcoding in the field showed that consensus 

sequences generated with Nanopore sequencing have reached high quality and have the 

potential to replace Illumina and Sanger platforms [7,10,20,26,30,65-67]. The newest R10.3 

chemistry is expected to enable the final step for consensus accuracy to reach Sanger 

quality, due to the presence of pores with a longer barrel and a dual reader head, which 

allow better consensus accuracy in homopolymer regions [65,68,69]. Moreover, smaller 

MinION flow cells (Flongles) were recently made available, suitable for experiments that 

do not require a massive throughput, thus substantially reducing sequencing costs for 

small datasets. Since a modest number of reads per sample is required for accurate 

barcoding, multiple samples could be multiplexed in a single run and still fit Flongle 
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specifications (1 Gbp), thus bringing also costs on the same level of Sanger platforms 

[10].  

If barcoding with Nanopore platform has almost reached maturity, meta-barcoding is yet 

to be optimized, due to the impossibility to reduce the error rate by collapsing the 

information coming from multiple reads of the same sequence. Preliminary proof-of-

concept studies showed the feasibility of obtaining high-accuracy consensus sequences 

from meta-barcoding experiments by integrating Unique Molecular Identifiers (UMIs) in 

PCR amplicons [68] or by performing Rolling Circle Amplification (RCA) [70,71]. These 

approaches enable the grouping of amplification products originating from the same 

molecule, either exploiting the presence a molecule specific UMI or physical contiguity 

of copies amplified by RCA. After reads from the same amplification product are 

grouped, bioinformatic pipelines similar to those developed for barcoding could be 

applied on each read bin. However, these approaches are yet to be optimized, as they 

imply laborious wet-lab protocols and they require very high sequencing throughput 

compared to the number of obtained consensus sequences [68]. Currently, Nanopore reads 

from meta-barcoding experiments are generally classified by aligning single reads to a 

reference database [9,19,25,72]. In fact, approaches based on de novo OTU picking, namely 

clustering of reads belonging to the same species, are not suitable to the analysis of 

Nanopore reads from complex samples due to the high error rate, and their 

implementation should be evaluated carefully [8,73]. A few manuscripts recently 

described a low-identity clustering step in their meta-barcoding pipeline, mainly aimed at 

reducing computational time of the analysis [7,18]; however, the implementation of this 

approach should be evaluated carefully, since the analysis of Nanopore reads with 

inappropriate OTU clustering tool could provide a completely incorrect picture of the 

diversity of the sample [8]. The implementation of a closed-reference OTU picking 

strategy with Nanopore reads was recently described [74,75]. These approaches combine 

alignment of reads to a reference database, grouping of reads based on the taxonomy of 

the top hit and consensus calling. While this approach should work well for low 

complexity samples, it may struggle with samples including closely related species, or 

species not included in the database. Despite a general agreement on the recommended 

approach, there is no consensus on the tool used for the alignment, software parameters, 

and the adopted database. The most extensively used pipeline is the cloud-based data 
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analysis EPI2ME 16S workflow provided by ONT [8]. The main limitations of this 

workflow are identified in the impossibility of changing the reference database and 

requiring a stable internet connection for the analysis, limiting portability and meaningful 

comparisons with analyses based on another database. The novel meta-barcoding pipeline 

presented in this work addresses both these issues and provides evidence that the 

increased read length of Nanopore reads alleviates their higher error rate. In fact, results 

showed good concordance up to genus level with the gold-standard method for meta-

barcoding [4,5,8,11], and proved to be even more sensitive to detect an increase in the 

average relative abundance of five spiked-in indicator species. Differences between 

Illumina and Nanopore-based meta-barcoding abundances may also be explained by taxa-

specific amplification efficiency of different PCR primers, and by the low taxonomic 

resolution at the species level for some bacterial groups [8]. Still, not all indicator species 

could be detected by Nanopore meta-barcoding analysis. For example, S. aureus could 

not be detected at genus and species level, while it was detected with a shotgun 

metagenomics approach based on Nanopore sequencing. Again, this may be either due to 

PCR amplification-related issues or to high similarity between the 16S gene of S. aureus 

and other species in the database. Similarly, S. infantis was not detected at species level 

by Nanopore meta-barcoding analysis. However, this species was not detected by the 

shotgun metagenomics analysis as well, pointing towards issues related to DNA 

extraction. Finally, differences in relative abundance obtained comparing meta-barcoding 

to shotgun metagenomics approaches may be due to the variable number of copies of 16S 

gene in bacterial genomes [8].  

In conclusion, the results presented in this work show that the development of suitable 

bioinformatic pipelines is contributing to make barcoding and meta-barcoding analyses 

with Nanopore platform more accurate and reliable, enabling on-site analysis of data 

generated with a portable genomics laboratory. In particular, this work shows that 

monitoring of biodiversity and identification of risks for human health with MinION-

based DNA barcoding now provides results comparable in accuracy to gold-standard 

sequencing platforms. The small turnaround time from sample to result will aid in the 

transition to real-time environmental monitoring, providing quick and accurate 

information for decision making processes. 
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