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Abstract
A robot intended to monitor human behavior must account for the user’s reactions to minimize his/her perceived discomfort.
The possibility of learning user interaction preferences and changing the robot’s behavior accordingly may positively impact
the perceived quality of the interaction with the robot. The robot should approach the user without causing any discomfort or
interference. In this work, we contribute and implement a novel Reinforcement Learning (RL) approach for robot navigation
toward a human user. Our implementation is a proof-of-concept that uses data gathered from real-world experiments to show
that our algorithm works on the kind of data that it would run on in a realistic scenario. To the best of our knowledge, our
work is one of the first attempts to provide an adaptive navigation algorithm that uses RL to account for non-deterministic
phenomena.

Keywords Activity recognition · Human–robot interaction · Reinforcement learning · User disengagement

1 Introduction

This work is rooted in the field of Socially Assistive Robotics
(SAR), and more specifically in the UPA4SAR project.1 The
project focused on the design of adaptive robotic systems to
monitor people with dementia. In the context of this project,
robots need to monitor older people in their households to
ensure they are following a healthy routine (e.g., get enough
sleep, take their medicines, do not skip meals, etc.) by keep-
ing track of their Instrumental Activities of Daily Living
(IADLs) while possibly not interfering with them.Motivated
by these requirements, we define and implement a Rein-

1 http://www.upa4sar.unina.it.
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forcement Learning (RL) strategy for a robot’s approaching
behavior to adapt to the user’s preferences. The main idea
is that our robots should not negatively interfere with the
users, for instance by scaring them or altering their behavior.
Our algorithm learns a strategy to monitor the user, mainly
considering the user’s activity and awareness of the robot.
This is because a high disengagement level implies that the
user is not being distracted by the presence of the robot, thus
allowing for effective monitoring.

Our implementation is a proof of concept, in which we
simulate a 2D world consisting of a robot and a human that
carries out an activity. To show that our approach would in
principle work in a realistic scenario, we trained our RL algo-
rithm using data from real experiments. The robot is assumed
to be under the control of the RL algorithm at all times. We
also simulate the user’s reaction to the approaching robot
in terms of his/her disengagement. To make the simulation
of such complex phenomena as realistic as possible, we set
our simulation parameters according to previous real-world
HRI experiments. We also simulate the process of detecting
user activity from the wearable stream and the camera stream
alternatively and estimate the user’s disengagement level to
fine-tune the stopping distance from the user without caus-
ing him/her distress. We implemented a second specialized
policy (alongside the one presented in [21]) that is explic-
itly trained to decide how and whether to take a final step
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toward theuser according to his/her disengagement level. The
importance of considering the disengagement level towards
the robot lies in the fact that it is often desirable not to dis-
tract the user being monitored. The consequences of taking
an extra step toward the user could result in the user stopping
his/her current activity, which is unwanted in most scenarios.

It is worth noting here that in our work we have two
policies that tackle the navigation and disengagement maxi-
mization tasks separately. Obviously, one could have trained
a single police do thewhole job. However, the idea behind the
double-policy approach, which partly constitutes the novelty
of our contribution, is to have a modular approach, in the
sense that one can concatenate the second policy to any nav-
igation algorithm (including classical non-RL navigation)
and still achieve the desired result (i.e., maximize disengage-
ment).

Results show that the approach is promising for deploy-
ment, although further investigations in a real setting must
be made to validate it.

2 Background and RelatedWork

In this section, we briefly overview some recent approaches
dealing with socially aware navigation that use RL tech-
niques to incorporate user feedback and tackle problems
involving activity recognition. It is crucial to emphasize
that our work focuses on non-interactive tasks [23], and, in
particular, on monitoring elderly individuals in their home
environment when they are affected by cognitive impair-
ments such as Alzheimer’s disease or dementia [5]. In these
situations, the person may be unable to actively engage with
the robot, or they might even be averse to the robot’s pres-
ence. Indeed, the literature reveals mixed responses from
the elderly, particularly those with cognitive impairments.
In [2] it is pointed out that while some SARs have been
successful, others have elicited unfavorable responses from
the elderly, suggesting the need for careful design consider-
ations. Studies such as [31] further reinforce this argument
by documenting that elderly participants often did not asso-
ciate positive connotations with using robots in elder care,
considering it stigmatizing. Discussion in [19] suggests that
certain factorsmight dissuade caregivers fromutilizingSARs
with elderly individuals who have cognitive impairments.
These factors are implied by the robot’s presence, include
the robot’s size, privacy concerns, fear of robots replacing
humans, and overall negative attitudes towards technology.
Taken together, these findings underscore the importance of
our approach, focusing on non-interactive tasks and min-
imizing the robot’s intrusive presence to promote positive
interactions between SARs and cognitively impaired elderly
individuals. It is worth noting that when the task at hand is not
interactive, it is important to model non-intrusive behavior.

Consequently, the robot must monitor the user while mini-
mizing the impact of its presence as the user goes about their
daily activities [24]. In other words, it must maximize the
disengagement level.

2.1 Socially Aware Approaching Behavior

A fundamental aspect of a robot performingmonitoring tasks
is the capability of deploying approachbehaviors and socially
aware navigation taking into account human–robot prox-
emics. When a robot is introduced in a social environment
with humans, its behavior has to be carefully crafted to pre-
serve human comfort in terms of distances, speed, direction,
and social rules (see [14, 22]). Path planning approaches can
be divided into two categories: those where people are walk-
ing freely in the room, and those where the robot navigates
in a space that is statically populated by people. Some state-
of-the-art works, such as [7, 10, 11, 26], belong to the former
class. Theymodel an approaching behaviorwhere a robot ini-
tiates conversations with people who are walking, predicting
their walking behavior, planning the approaching path, and
showing its intention to start a conversation using non-verbal
cues. They predict the target’s position using an anticipation
model, based on clusters of walking trajectories, to approach
him/her in an appropriate, polite way. Different from our
approach, which is mainly reactive, they propose a system
based on the anticipation of the targets’ future behavior.

The idea of influencing the robotic approaching behavior
with the user’s positioning preferences and comfort has been
considered also in works focused on the use of path and
motion planners.

Sisbot et al. [27] propose a motion planner that explicitly
considers a human partner’s accessibility, visual field, and
preferences in terms of relative human–robot placement and
motions, to obtain socially acceptable paths. In this case, the
robot path planning is conducted by considering sophisti-
cated cost functions or potential fields that take into account
the person’s comfort (see [3]). In our work, we also model
user activity (such as watching TV, sitting on the couch, etc.).
However, the identification of the activity is not determined
a priori as it depends on the recognition capabilities of clas-
sifiers working on different types of data.

Particularly interesting for the scope of our approach are
also some works that explored the role of indirect social
cues to provide meaningful information about the appropri-
ateness of the path and approaching behavior of a robot.
For example, [17] implements a “roboceptionist” (i.e., a
robot-receptionist) that detects the engagement of people
around it using a camera and a laser tracker. Engagement is
modeled using four categories that correspond to different
macro-behaviors of the users towards the robot. Accord-
ing to the specific class of engagement, the roboceptionist
decides whether to rotate its head toward the user(s) or not.
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In that work, differently from our approach, four behaviors
are designed to be applied to each engagement class. Hütten-
rauch et al. [9] use a WoZ strategy to investigate the impact
of spatial distances and orientation of a robotic agent with
respect to a human target during HRI. This is particularly
relevant for our work, although we intend to provide an
autonomous behavior capable of approaching within com-
fortable distances without the external intervention of an
operator.

Psychological and social cues may impact the human
user’s perception of the robot [4, 18]. These aspects can be
essential to understand how to design robot behaviors that
are appropriate in different contexts.

2.2 Reinforcement Learning with User Feedback

In an interactive setting, human reactions to the robot’s
actions must be taken into account when shaping the behav-
ior of an agent. In RL approaches, these provide immediate
online feedback that can be naturally incorporated within
the reward function. Tsitsimis et al. [29] describe a hybrid
RL algorithm that uses human engagement perturbations for
online adaptation in HRI. Contrary to our work, they employ
the user’s current engagement in the task and variations of
this engagement to obtain a positive reward when it is low
but increasing.

Akalin et al. [1] present a Deep RL algorithm to shape the
behavior of a social robot interacting with an elderly human.
They use negative valence, diminishing engagement, and dif-
ficulties in carrying out an exercise or activity to modulate
the difficulty level of the interaction and stop the ongoing
task.

The effectiveness of RL in designing adaptive systems is
also shown in [12],where aNAOrobot interactswith children
suffering from autistic spectrum disorders. A parameterized
RL model adapts the behavior of the robot to the current
level of human engagement, estimated through measures of
human gaze and body posture. Qureshi et al. [20] employ
a Multimodal Deep Q-Learning model to characterize the
social intelligence of the robot to greet a human interlocutor,
rewarding a successful handshake, and penalizing an unsuc-
cessful one. Contrary to our approach, these worksmaximize
engagement exhibited by the target towards the task s/he is
currently performing. In a sense, the aim of our work is the
opposite: we want to minimize the user’s awareness of the
robot, thus maximizing his/her disengagement.

Also, in our setting, the navigation task is carried out using
only data retrieved from the camera of the robot and does not
require other sensors located across the environment to track
the targets [6].Once a user is identified, rangefinders evaluate
the relative distance and the approach begins.

2.3 Underlying Ideas

The design of the present system builds upon the findings of
previous work that we describe in this section.

The impact of the presence of a robot operating in the
surroundings of a human is the object of [24], where, using a
WoZ robot control strategy, we assessed and evaluated user
disengagement and distraction, and produced the dataset that
we also use in the present work (described more in detail in
Sect. 3.1). We focused particularly on cases where the robot
is performing monitoring tasks, potentially distracting the
users from what they are doing. Our analysis was based on
the identification of non-verbal disengagement cues, such as
gaze and pose variation of the user as s/he is approached by
the robot.

In [6],we discussed and tested a reactive algorithm for per-
forming human-like approaching based on the coordinates
of the user’s shoulders. However, that work lacked a char-
acterization of the activity performed. Raggioli et al. [21]
describes a robotic agent navigating towards a human com-
panion, based on RL. With respect to that work, we use an
additional policy and a new data source (skeleton data). We
build upon considerations made in [24, 25] for what regards
the relationship between the activity performed by the user
and the appropriate stopping distance. In these works, we
recorded real-world experiments with elderly participants
and a Pepper robot. Recordings gathered during these exper-
imental sessions were not sufficient to build a dataset of
approaching trajectories. In the present work, we overcome
this issue by simulating user coordinates.

3 Proposed Approach

Our proposedmethod for approaching a human user as s/he is
performing an activity is essentially a Reinforcement Learn-
ing (RL) approach. RL is a Machine Learning technique
that learns a mapping from states to actions, usually called
a policy, that is then employed by an agent to maximize
the long-term reward resulting from an interaction with the
surrounding environment. The training phase consists of run-
ning several episodes inwhich the agent is free to try different
sequences of movements and use the collected reward to
update its behavior.

In this work, a robotic agent learns to navigate towards
the user using a RL technique known as Policy Gradient. We
employ this method as formalized through the REINFORCE
(short for REward Increment = Nonnegative Factor ×Offset
Reinforcement × Characteristic Eligibility) algorithm [30]
to approximate the policy function with a Deep Neural Net-
work (DNN). The core idea behind Policy Gradients is to
parametrize the policy function π using parameters θ , with
respect to which, stochastic gradient ascent is performed
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on the cumulative reward. The method can be formalized
through a DNN, with weights θ , that directly models the
action probabilities. As the interactions between agent and
environment go by, the parameters, or weights, θ of the DNN
are adjusted, so that actions that produced better outcomes,
will be more likely sampled in the future.

The objective of Policy Gradients is to maximize the per-
formance measure J (θ), which is the total future expected
rewards:

J (θ) = E[R(τ )] (1)

where τ is the model approximating the policy function. To
better perform, parameters θ are updated approximating gra-
dient ascent in J :

θt+1 = θt + ∇ J (θt ) (2)

where∇ J (θt ) is a stochastic estimate approximating the gra-
dient of the performance measure to the parameters θ . This
method allows one to learn stochastic policies.

The REINFORCE algorithm approximates the gradient
∇ J (θt ) according to the following equation:

∇ J (θt ) = ∇θE[Rt ] = E[∇θ logπ(at |st , θt )Rt ] (3)

where the reward Rt is used as a scaling factor for the policy
functionπ (whose output is the probability of the action given
the state). If the action chosen brings profit, π(at |st , θt ) will
be updated by a largemagnitude, whereas if the action results
to be poorly convenient or inconvenient, π(at |st , θt ) will be
discouraged. Rt can be obtained as the immediate reward or
the discounted reward produced at the end of the episode.

In the case in which the policy function approximation is
derived through a DNN, the problem of training an unsuper-
vised model must be tackled. The objective is to maximize
the performance of themodel and output the correct probabil-
ity distribution over the set of possible actions to be taken. A
possible solution is to use the classification log-probabilities,
labeled by gradients. The reward is used as a scaling factor:
if the selected actions provided good results, and therefore
the reward is positive, the probabilities are increased, while
they are decreased otherwise. To affect actions that were not
as bad as the outcome of the episode (or that were not good
enough), the reward can be smoothed accordingly.

The resulting loss function is as follows:

[ ∑
log p(yt |xt ; θ)

]
Rt (4)

where yt is the action probabilities returned in output by the
model and xt is the input.

REINFORCE uses the complete return, consisting of the
sum of all the rewards until the end of the episode. For this

reason, REINFORCE is considered to be a Monte Carlo
algorithm and is therefore employed for cases where all the
updates are made in retrospect after the episode is completed
(see [28]).

3.1 PRISCA Dataset

The dataset employed in this work, dubbed PRISCADataset,
consists of data obtained at the PRISCA Laboratory dur-
ing experimental sessions with 20 elderly people (11 males,
9 females). Participants were aged between 53 and 82 years
old (average 61, standard deviation 7.6) and involved in activ-
ities of daily living. They were recorded as they were being
monitored by a robot (Softbank Pepper, see [24]). Specif-
ically, data were gathered using a smart band worn on the
dominant wrist of the participant (Empatica E42), and a real-
time video shot from the 2D camera mounted on the robot’s
head. The six activities of daily living (and corresponding
postures) are the following: (i) “PC” (working on PC), (ii)
“Phone” (talking on the phone), (iii) “Coffee” (making a
coffee), (iv) “TV” (watching TV), (v) “Iron” (ironing), (vi)
“Couch” (talking on the couch with another person).

During the experimentation, users were asked to perform
all the activities and, for each activity, the robot performed
two monitoring actions, one from afar (approximately 2.5m
from the user), and one from a closer distance (approximately
1.5m from the user).

We processed this dataset using the Affectiva SDK, see
[15]. For each video, the Affectiva SDK produces a disen-
gagement value, i.e. an integer from 0 to 100 measuring the
human’s awareness of the robot. We normalized these values
in the real interval [0, 1] and took the maximum and min-
imum for each activity and distance (near and far) to get
the ranges in Table 1. We use these ranges to simulate user
disengagement in our 2D world. For instance, if the activity
is “Coffee”, and the robot is standing at 1.5 m from the user
(corresponding to the “Near Range”), we will generate the
user disengagement as a random number from the uniform
distribution in the real interval [0.22, 0.79].

3.2 RL Agent

In our setting, the Agent is a mobile robot that has to navigate
towards a human target, ultimately stopping at a distance that
does not produce discomfort in the user. As shown in Fig. 1,
the agent consists of two three-layer DNNs that approximate
the two policy functions. Both DNNs receive input from the
Environment in the form of a state. A state encodes the posi-
tion of the user and the activity s/he is carrying out. Policy
function 1 (P1) is solely responsible for the navigation task
and can decide to perform one of the actions FWD, L, or

2 https://www.empatica.com/research/e4/.
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Table 1 Disengagement intervals and threshold for each considered
human activity

Activity Threshold (m) Near range Far range

PC 0.9 0.3–0.92 0.22–0.99

Phone 1.8 0.14–0.29 0.51–0.65

TV 1.2 0.31–0.91 0.05–0.9

Coffee 2.1 0.22–0.79 0.51–1

Iron 1.5 0.13–0.36 0.06–0.44

Couch 2.4 0.31–0.88 0.28–0.9

R, corresponding to taking one step forward, left and right
respectively. Policy function 2 (P2) is in charge of deciding
the size of the last step forward, which can be one of 0.0 m,
0.3 m, 0.6 m, or 0.9 m. The XOR symbol

⊕
in Fig. 1 stands

to mean that the output from the User Position and Activ-
ity Recognition modules is received either by P1 or P2 but
not both. The environment consists of information about the
user’s position, activity, and disengagement level. The user
disengagement level and activity are generated according to
Sect. 3.3.1. These parameters are all used in the reward func-
tion during the training phase of the DNNs.

The two DNNs share the same state space. Their input is
the state of the environment, i.e. a tuple (d, α, Rs, Ls, activi t y)
where (Rs, Ls) are the coordinates of the human’s shoulders
joints, d is the human–robot distance, α is the angle the robot
should rotate to face the user, and activity = (p1, . . . , p6) is a
6-tuple of probabilities provided by the Activity Recognition
module for each one of the six activities. More details about
Activity Recognition are provided in Sect. 3.3. The system

outputs the probability of performing each one of the actions
FWD, L, and R described below.

P1 was first introduced and studied in [21], and it makes
the robot navigate towards the user, although other naviga-
tion algorithms could be employed to approach the user. At
each step, P1 chooses one of three actions: FWD, L, and R,
corresponding to the robot moving forward by 0.4m, rotat-
ing 30 degrees to the left, and rotating 30 degrees to the right
respectively. Once P1 has brought the agent within a rea-
sonable stopping range from the user, which depends on the
performed activity (see Table 2),P2 takes control. This has to
choose whether or not to take another step towards the target,
and how close the robot should get. As mentioned above, P2
has four actions at its disposal: 0m, 0.3m, 0.6m, and 0.9m,
each corresponding to the size of the last step forward.

P1 and P2 use the Policy Gradient method (described
above), and therefore it is not necessary to implement the
value function as well. Their DNN architecture is as follows:

• Structure: Three fully-connected layers; The hidden lay-
ers of the model consist, respectively, of 64 and 32
neurons. In the last layer, we have 3 neurons (which is
the number of actions available).

• Activation function: Hyperbolic tangent for the first layer,
sigmoid functions for the second layer, soft-max function
for the third layer;

• Loss function: Categorical cross-entropy;
• Optimizer: Adam [13].

The number of neurons in each layer was chosen with a grid
search in [16, 32, 64, 128] subject to the constraint that the

Fig. 1 A diagram of our proposed RL system
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Table 2 Stopping ranges associated with each activity

Cognitive Stopping
Activity Load Posture Range (m)

PC High Sitting 0.3–1.5

Phone High Standing 1.2–2.4

TV Medium Sitting 0.6–1.8

Coffee Medium Standing 1.5–2.7

Couch Low Sitting 0.9–2.1

Iron Low Standing 1.8–3.0

For each activity, we specify below the cognitive load and the posture
of the human

first layer should have at least as many neurons as the second
layer. Similarly, the activation function was chosen with a
grid search among Relu, Hyperbolic Tangent, and Sigmoid.

Recall that the DNNs output the probability of choos-
ing each one of the actions. Given these probabilities, the
agent will choose which action to take according to the
ε-decreasing strategy (see e.g. [28, Chapter 2]). The ε-
decreasing strategy chooses a “greedy” action (the one with
the highest value) with probability equal to or greater than ε,
otherwise, it picks another action at random.

3.3 RL Environment

The Environment models the characteristics of the robot and
its human interlocutor such as their position, disengagement,
and current activity. In thiswork,we simulate these character-
istics and then pass them on to the RL algorithm that decides
which action to take. The four modules that are responsible
for the simulation are:

• Two Activity Recognition modules that share the same
internal structure (in terms of neural networks hyper-
parameters), one that handles wearable readings (which
from now onwewill refer to as thewearable ARmodule),
and the other skeleton joints data acquired from the cam-
era (which from now on we will refer to as the camera
AR module).

• A User Position that simulates the position of the user.
• A User Disengagement that simulates user disengage-
ment.

These modules should not be confused with the policies that
we discuss later on, which are trained and used to model
the robotic agent’s behavior. Below we provide a detailed
description of these modules:

3.3.1 Activity Recognition Modules

Activity Recognition (AR) relies on data acquired from a
wearable device (that is worn on the dominant wrist of the
user providing inertial movement readings), and on video
footage recorded with a camera.

The wearable ARmodule provides a less precise estimate,
as it relies only on tri-axial inertial readings of a single point
moving in space. The camera AR module allows for the
retrieval of skeleton readings that provide the position and
movements of a wider set of points in space. In this case, the
camera AR module offers a more informative and precise
estimation. This latter solution, however, requires a closer
interaction with the user if compared to the wearable AR
module that does not need the robot to be in relative proxim-
ity to him/her to acquire data. In this work, we employ both
these strategies: we use the wearable AR module when the
user is too distant from the robot to use the camera reliably,
otherwise, we use the camera ARmodule. Both ARmodules
are implemented with a DNN, share the same structure, and
differ only by the form of input and output.

The wearable dataset consists of ∼ 80k instances. The
camera dataset consists of ∼ 60k instances. For both AR
modules, we used the early stopping strategy with respect to
the error rate. Convergence was reached for the wearable AR
module at ∼ 50 epochs, while for the camera AR module, it
was reached at∼ 120 epochs. The input size of the networks
is 3072 floats for the wearable AR module DNN and 3600
floats for the camera AR module DNN.

We use Long Short-Term Memory (LSTM) Networks
(refer to [8]). More specifically, each Neural network con-
sists of three layers. Two recurrent layers with LSTM units
detect the temporal dependencies between the readings form-
ing the input of the net. A dense, fully connected layer with
a softmax activation function serves as the classifier and out-
puts the probability for each activity. The loss function of the
net is set to categorical cross-entropy. The number of units
and the optimizer were chosen by performing a grid search
in the range 40–100 (step 6) and then evaluating the result-
ing model with fivefold cross-validation: 52 and 46 units are
employed for the first and second levels respectively. For this
pair, the accuracy was 97.40% (standard deviation 0.36) for
the wearable module and 93.22% (standard deviation 0.75)
for the camera module when using the RMSprop optimizer,3

which gave the best results.
The wearable AR module has been trained with data con-

sisting of accelerometer readings provided by the Empatica
E4 smart band (Sect. 3.1) worn by the participants on their
dominant wrist. For the camera AR module, we used the
2D-camera footage presented in Sect. 3.1. The joints of the

3 https://www.coursera.org/learn/neural-networks/home/welcome.

123

https://www.coursera.org/learn/neural-networks/home/welcome


International Journal of Social Robotics

user are retrieved using OpenPose4 on the videos captured
by the robot. We used OpenPose’s own representation for
the skeleton joints and face key points, i.e. coordinates of the
form (x, y) for non-negative floats x and y. Once the skele-
ton joints and the face key points are retrieved, they are fed
to the Neural Network.

One of the two AR modules is selected depending on the
distance between the target and the robot. In [24], we found
the wearable AR module to be more reliable when the user
is at least 2.5 m from the robot. Up to 2.5 m, the camera
ARmodule is more precise. Therefore, we employ the wear-
able AR module for distances greater than 2.5m and use the
camera AR module otherwise. A more in-depth description
of how the data are processed and used as input for the AR
modules is provided n Sect. 4.1.

3.3.2 User Position Module

TheUser Position module extends [21] and builds upon con-
siderations made in [6, 24, 25]. Similar to these works, the
module simulates the user position with respect to the robot
and updates these estimates at each step. We assume that
the robot is always located at the origin of the axes in a
two-dimensional Cartesian system. The position of the user
is given by the coordinates of his/her shoulders seen from
above.

3.3.3 User Disengagement Module

The user reaction to the approaching behavior constitutes
a defining element of this work, as we employ below (see
Sect. 3.4.2) to evaluate the effect of the actions chosen by the
Agent when usingP2. Similar to the approaching distances, a
range is defined for each activity (see Table 1). These ranges
were obtained from the camera footage gathered with the
Pepper robot, during the experimentation sessions of [24].
For training and simulation purposes,we draw randomvalues
from these intervals.

Rossi et al. [24] employ two fixed stopping distances
(1.5 m and 2.5 m), while in this work the stopping distances
are customized for each activity. For this reason, we defined
two disengagement ranges for each activity. One is based on
the videos shot from 1.5 m, the near range. The other one is
based on videos taken from 2.5 m, the far range.

In Table 1 we show disengagement ranges and thresholds
for each activity and distance. These values were calculated
from videos in the PRISCA Dataset (see Sect. 3.1), which
were shot from fixed distances of 1.5 m and 2.5 m. We
grouped videos by activity and distance, and for each group
calculated minimum and maximum disengagement by pro-
cessing all videos in the group with the Affectiva SDK. In

4 https://github.com/CMU-Perceptual-Computing-Lab/openpose.

the table, we refer to the group of videos shot from 1.5 m
as “Near”, and those shot from 2.5 m as “Far”. Whenever
an estimate of disengagement must be generated, if the cur-
rent distance of the robot from the target is smaller than a
threshold, which may change according to the activity, then
a random value is drawn from the “near” range, otherwise,
the disengagement is extracted from the “far” range. For
instance, if the current activity is Coffee and the distance
from the robot is greater than 2.1 m, disengagement is simu-
lated as a value uniformly drawn from the interval [0.51, 1].

3.4 Reward Functions

The reward function is a crucial element of RL, that evaluates
the effect of the Agent’s actions. Recall that this work uses
two policy functions P1 and P2 and, therefore, it has two
reward functions. P1 (with corresponding reward function
r1) is used to make the robot approach the user. P2 (with cor-
responding reward function r2) is a single-step policy whose
purpose is to decide whether the robot should take another
final step towards the target. Note that these two functions
are never used at the same time, since the second reward
function is only employed when the first one has concluded
the navigation task successfully. Both policies can make the
robot navigation task result in a successful episode or a fail-
ure. This depends on satisfying a series of commonsensical
constraints for assistive scenarios. More formally, if (i) the
robot goes too far away from the user, (ii) it gets too close
to the user, (iii) the user disappears from the robot’s view,
or (iv) the robot positions itself behind the user, then the
episode fails. If none of these conditions is true at the end of
the navigation, the robot successfully terminates the episode.

3.4.1 Reward Function for P1

Weemployed a shaped reward: in the intermediate steps, zero
is returned if the action chosen by the agent decreases the dis-
tance (d) from the target, otherwise, a penalty is returned. In
the last step of the episode, 10 or−10 is returned according to
whether the distance from the target is acceptable or not. The
episode terminates successfully if it is within an acceptable
stopping range from the user, otherwise it fails (see Equation
(5)).

Let A(t) be the probability of the activity predicted by
the AR module with the highest value. Formally, the reward
r1(t) (at step t) has the following form:

r1(t) =

⎧⎪⎪⎨
⎪⎪⎩

10 t = T and success
−10 t = T and f ailure
0 t �= T and d(t) ≤ d(t − 1)
−A(t) − D(t) t �= T and d(t) > d(t − 1)

(5)
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where T is the last step of the episode, D(t) = (d(t − 1) −
d(t)) is a difference in distance between the previous timestep
and the current timestep. It is worth noting here that both A(t)
and D(t) take value in the range [0, 1] and therefore have a
comparable impact on the reward function.

3.4.2 Reward Function for P2

Another important feature of our work is the evaluation of
the user reaction to the ongoing approaching behavior of the
robot that is used to influence the final stopping distance. The
underlying idea is that once the robot is close to the user, it can
decide whether to move further toward the user to improve
the monitoring performance (always remaining within the
stopping distance range) but without causing too much dis-
tress and distraction from what the user is doing. Therefore,
we want to maximize the disengagement of the user towards
the robot (obtained as described in Sect. 3.3.3). The problem
is formalized as the maximization of the product between
disengagement and prediction probability, which preserves
the scale of the two terms.

To this aim,we define the reward ofP2, which is ameasure
of goodness of the action that has to rely solely on the terms
wewant to maximize. The negative reward aims at punishing
the agent in an inversely proportionalwaywith respect to how
good the effect of the action was, as shown in Eq. 6.

r2(t) = −(1 − A(t) · disengagement(t)) (6)

where disengagement(t) is defined following the procedure
outlined in Sect. 3.3.3.

4 Simulation

In this section, we demonstrate the ability of the proposed RL
system to approach the user and decide the proper stopping
distance taking into account the activity as it is recognized
from wearable and camera data.

To do so, we trained our system by running a fixed number
of episodes in a simulated 2D environment, whereas the user
activity data is extracted from the real data collected (see
[24]).We then tentatively evaluate our system via the number
of episodes concluded successfully.

We hypothesize that an agent employing both P1 and
P2 manages to get closer to the user, if compared to P1
alone, without causing the number of successful episodes
to decrease significantly. Indeed, P2 is defined to potentially
improvemonitoring performancewhile respecting user com-
fort. In other words, we aim to prove that our implementation
can account for disengagement levels without degrading the
performance of the system. An episode terminates success-

fully if the agent manages to stop in the appropriate stopping
range for the activity.

In the following sections, we provide a more detailed
description of this workflow and discuss the results.

4.1 Experimental Procedure

At the beginning of each episode, the coordinates of the tar-
get’s shoulders are randomly generated. The environment
produces the current state of the user, consisting of the coor-
dinates of the shoulders, the human–robot distance, the angle
the robot should rotate to face the user, and the probability
predictions of the six considered activities. Specifically, the
activity estimation is obtained as follows: for each episode, a
target activity is selected and, at each step of that episode, an
instance corresponding to the selected target activity is ran-
domly drawn from the dataset (from the wearable data or the
skeleton data respectively, depending on the distance from
the user). The instance is used as input for the AR Neural
Network which then outputs the probability distribution.

The predictions obtained with the two Activity Recogni-
tion modules are handled as follows:

• The prediction obtained using the camera-based mod-
ule is weighted according to the user-robot distance in
the current step, as also suggested in [16]. The probabil-
ity of the predicted activity (pi(t), where i is an index
representing the activity) is attenuated in an inversely
proportional way to the current human–robot distance.
Specifically, the prediction that will be employed in the
reward function (A(t)) is obtained with the equation:

A(t) = max
i

[pi (t)] ∗ (1 − (d(t)/10)) (7)

The camera module is employed for distances equal to
or less than 2.5m, therefore, in the case of maximum
prediction probability (1, in a range from 0 to 1), the
minimum scaled probability would be obtained at a dis-
tance of 2.5m, with a corresponding value of 0.75.

• The predictions returned from the Empatica-based mod-
ule are instead scaled differently. The wearable data are
not sensitive to distance but are generally less reliable. For
this reason, they are mapped from the range [0, 1] to the
range [0, 0.75]: the upper bound is changed to simulate
the lower precision of a wearable Activity Recognition
module, compared to a cameraActivity Recognition. The
upper bound is set to 0.75 for the considerations made
above for the camera module.

The agent decides which action to take based on the state
of the environment. If the current distance from the subject
is outside the stopping range, it chooses to move forward or
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Fig. 2 Example of stopping range: the robot has to stop in the orange
area to win the episode

rotate left or right. If the navigation task has already con-
cluded successfully (i.e., the robot is within the stopping
range), P2 will decide whether to move another step toward
the target.

The environment propagates the effects of the action of the
agent on the user position and produces an evaluation (the
reward) that is returned to the agent together with the new
state describing the user. If the new current distance from
the target is within the stopping range, the environment will
consider the user’s reaction.

We use the human–robot relative position and distance to
evaluate the final step of the episode: if the robot is too distant
or too close to the target, if the robot cannot see the user in
its visual field, or if the robot is approaching the user from
behind, then the episode concludes with a negative outcome.
Otherwise, the episode concludes successfully.

The stopping distances result from an analysis conducted
in previous work (see [25]), and define what distances are
acceptable for the robot to stop in order to have a good
monitoring performance while not distracting the user. For
standing poses (i.e., “Coffee”, “Phone”, “Iron”) the distances
are higher than those employed for the static poses (i.e.,
“Couch”, “TV”, “PC”). The ranges also vary within the two
types of poses, with respect to the level of attention required,
as defined in [24]: for poses requiring higher cognitive load,
closer stopping distance resulted to cause less distraction, as
compared to activities requiring lower cognitive load. The
ranges are defined in Table 2. In Fig. 2, we show an exam-
ple of stopping range (in orange), where the agent would
terminate the episode successfully.

Theprocedure laid out above is instrumental in the training
of the models that approximate the policy functions, describ-
ingwhat happens in each episode. The training of themodel is
obtained by executing a certain number of episodes, updating

Fig. 3 An illustration of P1 in action

the model approximating the policy function (as described
in the Proposed Approach) with respect to the (st−1, at , rt )
triplets produced during the episode: for each step of the
episode a new triplet is stored, and after the final step, these
are used to update the weights of the models. The number
of episodes executed is not fixed, and depends on the trend
of the success rate: when it does not change significantly
anymore, the learning phase is considered concluded.

4.2 Performance of P1

Regarding P1, 180,000 episodes were executed. The final
success rate (the number of episodes concluded success-
fully over the total amount executed) was 82.11%. From the
extended results in Table 3, we can notice that performances
progressively decrease as the considered stopping range gets
closer to the target. In particular, the highest success rates
were observed for the “coffee” and the “ironing” activities,
with a success rate of 84.06% and 84.05%, while the lowest
success rate was obtained for the “PC” activity, with a suc-
cess rate of 76.55%. Moreover, the columnsMean Dist. and
Succ.Dist., show the average final distance, for every activity,
respectively if we consider all the episodes executed or only
the ones that concluded with a success. In Fig. 3, we show
an example of a trajectory followed by the robot to navigate
toward the target. At the beginning of each episode, Pepper is
conventionally located at (0, 0), whereas the coordinates of
the user’s shoulders are generated at random. In the example
shown in the figure, the user is initially located to the left of
Pepper. P1 makes Pepper execute the actions FWD and L .
As a result, Pepper moves along the dashed trajectory. Even-
tually, it stops and finds itself located at a distance d from the
user.

123



International Journal of Social Robotics

Table 3 Comparison of performance between the system using P1 only, and the system using P1 in conjunction with P2 (P1+P2 for short)

Act. Range (m) P1 P1 P1 + P2 P1 + P2
Succ. P1 Succ. Succ. P1 + P2 Succ.
Rate (%) Mean (m) Dist. (m) Rate (%) Mean (m) Dist. (m) Imp (%)

All 82.11 2.63 2.05 82.46 2.39 1.80 64.59

PC 0.3–1.5 76.55 2.15 1.49 78.67 1.92 1.22 69.37

Phone 1.2–2.4 83.35 2.81 2.26 84.67 2.54 1.97 66.30

TV 0.6–1.8 81.65 2.45 1.78 83.69 2.16 1.55 67.43

Coffee 1.5–2.7 84.06 2.84 2.33 83.13 2.63 2.09 60.86

Iron 1.8–3.0 84.05 2.97 2.46 80.13 2.74 2.27 56.51

Couch 0.9–2.1 83.00 2.57 2.00 84.49 2.31 1.70 66.96

4.3 Performance of P2

In the second presented setting, we integrate the user dis-
engagement, obtained as described in Sect. 3.3.3, in the
approaching process.

The performances of this approach are shown in Table 3.
In particular, the contribution of P2 to the final result can be
observed in columns P1 succ. dist. and P1 + P2 succ. dist.,
by looking at the distance from the user of the last state
processed byP1+P2, alongwith the percentage of successful
episodes where P2 chose to move closer to the target, in
column Impact.

The results show that P2 succeeds in influencing consis-
tently the outcome of the algorithm. As shown in Table 3,
for each activity, P2 ends up choosing an action that moves
the robot closer to the user in, at least, 50% of the episodes.
Note that the PC has the closest ranges to the target. For
this reason, slight movements lead to a failure condition.
Regarding Iron, this activity corresponds instead to the far-
away range. Particularly, this means that in a greater number
of cases, wearable Activity Recognition will be used instead
of a Camera-based one. As explained in the Experimental
Procedure, this estimation is scaled down in the interval [0,
0.75] to simulate less precision of the wearable AR. Because
of this, the reward gathered in this stopping range are smaller
in absolute value than those in theother ranges, andultimately
this may affect the training process by updating the weights
in a less pronounced way.

4.4 Comparison with Other Methods

To further demonstrate the effectiveness of our proof-of-
concept, it is useful to compare it to other methods. Since
the novelty of our proposal lies especially in a second policy
function that adapts to user disengagement and activity, it
is useful to replace our second policy function with another
module that either (i) picks the final action at random, or (ii)
always picks one of the actions. The resulting algorithms,
therefore, plan to navigate towards the user using the first

Table 4 Comparison of policy 2 (P2)with baselinemethods to perform
the last step

Last step Mean dist. (m) Mean diseng Succ. rate (%)

Random 1.58 0.44 72.76

0 1.79 0.52 84.19

1 1.60 0.47 79.71

2 1.48 0.40 71.02

3 1.45 0.34 58.04

P2 1.54 0.45 77.41

The randommethod uniformly draws one of the actions {0, 1, 2, 3} and
performs it. Method 0 (resp. 1, 2, 3) always performs action 0 (resp.
action 1, 2, 3) as the last step. Best performances are in bold, and worst
performances are in italic

policy function and then perform a step that completely dis-
cards information about user disengagement and activity.
We use these algorithms as our baselines for a comparison
with the fully-fledged framework. The results are given in
Table 4 and refer to 9000 test episodes. Note that the best
mean disengagement and success rate are achieved by always
performing action 0 as the last step, at the cost of a bad perfor-
mance in terms of mean distance. On the other hand, always
performing action 2 as the last step results in the best mean
distance and worst mean disengagement and success rate.
Letting our method P2 choose the last step results in a favor-
able compromise, whose performance sits somewhere in the
middle of methods 1 and 2. P2 has the advantage of being
able to learn this behavior automatically on the basis of our
user model. Unlike other hard-coded methods, it can be sim-
ply re-trained if the user model changes.

4.5 Discussion

Table 3 observes that, in our simulated environment, P1 and
P2 together manage to get closer to the user when compared
to P1 alone. This could improve monitoring accuracy. Fur-
thermore, note that in Table 3, the success rates for P1 and
P1 + P2 are very similar, meaning that the improvement
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Fig. 4 RL performance for each activity and action. In particular, the
histogramon the left shows the frequencyof choosing eachof the actions
(Freq), and the central histogram shows the average distance from the

user (Dist) with error bars corresponding to ±standard deviation, and
the histogram on the right shows the average prediction probability
(Pred Prob)

brought by P2 does not come at the expense of degrading the
performance of the system. In Fig. 4, we show more details
about the performances of P2 (considering only successful
episodes), reporting for each action respectively the fre-
quency of selection (Freq), the average final distance (Dist),
and the prediction probability (Pred Prob).

Note that prediction probabilities do not differ within each
activity, as it is evident fromFig. 4 by looking at thePredProb
subfigure. Therefore, the average distance improvement of
0.26 m (see Table 3) brought by P2 is to be attributed almost
entirely to disengagement levels. Getting closer to the user
by 0.26m improves themonitoring performance of the robot.

The prediction probabilities for the activity “Iron” are
significantly lower than that of the other activities. The stop-
ping range starts from 3.0 m, and therefore the prediction
probabilities used could be obtained more likely with the
wearable-based activity recognition module. As described in

Sect. 4.1, the activity predictions of the wearable classifier
are scaled to the interval [0, 0.75].

Table 4 shows that when compared to baseline methods,
our second policy function P2 finds a good compromise
between distance from the user, disengagement, and success
rate, without being explicitly programmed.

Finally, let us reflect on the success rate of P1 + P2
of around 82%. We can consider this as a positive result,
especially since what we are dealing with is a non-critical,
harmless task: in a worst-case scenario, the user notices the
robot and gets distracted. We definitely expect such a suc-
cess rate to be lower in the real scenario. Nonetheless, since
trainingwas (partially) performed using data from real exper-
iments, we do not expect this value to be dramatically lower.
Ways of improving it include the use of more sensors and
acquiring more data to improve the disengagement model.
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5 Conclusion

The main goal of this work is to program a system that, in
addition to navigating towards a human target, can optimize
its stopping distance to other parameters depending on con-
textual information (e.g., the current activity) and subjective
and personal preferences (e.g., disengagement). To this aim,
we provide an algorithm that exploits RL to perform such
optimization.

In our proof-of-concept, which constitutes the key con-
tribution of this work, we chose to optimize the trade-off
between the recognition probability (that depends on dis-
tance) and disengagement level, as encoded in the reward
function of P2. To this aim, we use the RL paradigm, which
is known to be highly effective as a device to perform this
optimization. The effectiveness of our approach was tested
and proved by showing that an agent that performs this opti-
mization can get closer to the user with respect to a system
that does not account for these parameters (i.e., the system
consisting of P1 only).

The behavior of the algorithm is further characterized
by taking into account the activity performed by the target,
which could affect the perception and impact of the presence
of the robot on the user. TwoActivityRecognition deep learn-
ing models (employing Long Short-TermMemory units) are
employed to process wearable data and/or camera record-
ings, retrieved during experimental HRI sessions conducted
with a Pepper robot [24]. The two modules are activated
alternatively depending on the distance from the target.

The novel aspect of this work is the simulation of the
user’s reaction to the ongoing interaction. Specifically, we
employ the simulated disengagement of the target to train
P2 to decide if (and eventually with which step-size) the
agent has to move any closer to the user. This feature is of
great interest, especially in the study of interaction with users
with low levels of technological literacy or affectedwithmild
impairments. To the best of our knowledge, the application
of solutions similar to the one presented in this work has not
been widely investigated in the literature yet.

Thiswork leaves room for further improvement and exten-
sions that may be addressed in the future. Extensions to the
present approach should consider moving targets by e.g.,
integrating an obstacle avoidance strategy. Since the robot
velocity has an impact on both proxemics as well as dis-
engagement, the investigation of how velocity affects the
disengagement of the user is planned for future work. Exper-
iments within a real environment are planned to evaluate how
the second policy has an impact on the user’s disengagement.
One of the most important limitations of the present works
is that we did not carry out a comparison of disengagement
metrics before and after the execution of P2, aswe only tested
our algorithms in a simulated environment. To validate the
effectiveness of our approach, we plan to perform this com-

parison when we will perform these tests in an experimental
setting with real users. Moreover, another extension could
explore an ad-hoc model for user reaction estimation, able to
consider other parameters and contextual information.
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