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MAPPING PRECEDENCE INTO
CONTAINMENT: LINEAR ORDERING

IN A BIDIMENSIONAL SPACE

MARIA VENDER ARIANNA COMPOSTELLA

DENIS DELFITTO

ABSTRACT: There is an almost unanimous theoretical consensus according
to which human languages are externalized as linear sequences of atomic
units which are encoded according to specific hierarchical conditions. The
nature of the interplay between the cognitive development of these hierar-
chical representations and their linearization on the string is however still
not clear. In this paper, we aim to address this issue, exploring the relation-
ship between precedence and containment by capitalizing on the results of
a new experimental paradigm that has already provided interesting insights
(Vender et al. 2019, 2020). More specifically, we report the results of two
modified Simon Tasks in which the sequence of stimuli is determined by the
rules of the Fibonacci grammar (Fib) or of its modifications Skip and Bif.
All three grammars share the same transitional regularities, but they cru-
cially differ in their structure: only Fib is characterized by the presence of
so-called k-points, which provide, from a purely computational perspective,
a potential bridge to full hierarchical reconstruction. We tested 64 adults’
implicit learning skills, assessing learning of the statistical regularities in
Fib, Skip and Bif, while also exploring the presence of hierarchical learn-
ing, in terms of the ability to predict k-points. Results provide evidence not
only for the presence of statistically-based sequential learning, but also for
hierarchical learning in Fib. We argue that the relations of precedence and
containment are not antagonistic ways of processing a temporally ordered
sequence of symbols; rather, they are strictly interdependent implementa-
tions of an abstract mathematical relation of linear ordering within a bidi-
mensional computational space. We propose that the construction of this
bidimensional space is primarily determined by labeling requirements, with
the labeling algorithm emerging as the solution to the problem of mapping
precedence into containment.

KEYWORDS: implicit learning, statistical learning, hierarchical learning,

precedence vs. containment, Lindenmayer systems, chunking and labeling

processes.
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1. INTRODUCTION

In the current understanding in both theoretical linguistics and experimental
psychology, precedence and containment (as well as the associated hierarchi-
cal concepts, such as c-command) are two essentially antagonistic ways of
processing arrays of symbols (Christiansen & Chater 2016; Christiansen et al.

2012; Culbertson & Adger 2014; Jackendoff 2002; Martins 2012). More par-
ticularly, a conflict is deemed to exist between statistically-based processing
of sequences of symbols and hierarchy-based processing of phrase-structures
(Frank & Bod 2011; Frank et al. 2012; Frank & Christiansen 2018; Friederici
2017; Lobina 2011; Moro 2014). Cognitively, structural and linear mecha-
nisms impose different computational requirements on the processing of ex-
ternal stimuli: intuitively, what can be representationally encoded by means of
a node branching into two or more nodes cannot be encoded in linear terms,
where an element in a sequence (for instance a spoken word) cannot be adja-
cent with more than two elements.

In formal approaches, linguistic conditions and dependencies are usually
represented by reference to hierarchical relations expressed by recourse to
trees, with a very limited space for conditions represented in terms of linear
order (Chomsky 1995; Culicover 2013; Pinker 2000; Yang 2004). However, in
the past three decades, statistical implicit learning models fostered the idea that
either connectionist/associative views of cognition or Bayesian statistics, as
implemented in the mind, could give rise to a set of powerful domain-general
learning algorithms (Cornish et al. 2017; Griffiths & Kalish 2007; Tenenbaum
& Griffiths 2001; Vapnik 1995). This stream of research strives towards mod-
elling language acquisition and processing in terms of connectionist and dy-
namical systems or in terms of abstract probabilistic approaches relying on a
Bayesian style of computation (Xu & Tenenbaum 2007). The issue arises to
which extent these methods of analysis can account for the fact that proper-
ties of language are effectively processed and learned, including those prop-
erties that are standardly represented as structure dependent. The enigma of
structure, as we view it, has two main components: (i) For which aspects is
language processing based on sequential learning, and for which aspects is it
based on hierarchical learning? (ii) Can we identify independent cognitive bi-
ases for sequential and hierarchical learning, and further investigate how these
biases interact with each other?
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1.1 Investigating linear and structural learning

For most linguists, syntactic operations are structure dependent. A large body
of evidence in the acquisition literature converges to suggest that children abide
by structure dependence as soon as they can be tested (Crain & Nakayama
1987; Guasti 2017). Moreover, compositional interpretation, in a large variety
of domains, is based on hierarchical and not linear relations: this certainly
holds for the interpretation of anaphoric relations, negative polarity items,
scope and relative scope phenomena (Crain et al. 2017; Maclaran 1985). From
an experimental perspective, the largest body of evidence in favor of the pres-
ence of hierarchical computing in language processing concerns the syntax of
noun phrases, and more particularly the interaction between nouns and adjec-
tives (Coopmans et al. 2022; Lidz et al. 2003; Culbertson & Adger 2014; Mar-
tin et al. 2020). These results suggest that the hierarchical bias must represent
an inherent feature of the linguistic systems, as further confirmed by the ob-
servation that the gestural system developed by deaf children born to speaking
parents (homesign) arguably involves hierarchy and structure-dependent oper-
ations (Coopmans et al. 2022; Goldin-Meadow 2005). Dehaene et al. (2015)
suggest that this property might not be limited to language but also extend to
other domains of cognition.

In this respect, the experimental paradigm used in the present contribution,
crucially involving artificial languages generated by non-canonical grammars,
whose output is significantly different from the output of finite-state or phrase-
structure grammars, is intended to verify whether the human capacity to build
structure also applies to sequences of symbols whose superficial properties are
quite different from what we find in language, but which arguably permit to
tease apart the predictions based on the statistical computation on the string
from the predictions based on hierarchy-dependent calculations.

In the present contribution, we want to investigate the human capacity to
build structure by testing the prediction skills of adult subjects when applied
to sequences of symbols generated by a non-canonical grammar. We expect
to find prediction skills that are arguably the result of at least some local hi-
erarchy building procedure, under the hypothesis that humans are endowed
with a strong cognitive bias to bootstrap sequences of symbols into hierarchi-
cal representations, the latter conceived in fact as a parallel linear ordering of
the relevant symbols, based on the relation of dominance. Here are thus the
research questions we would like to address in the present contribution:

(i) What are the cognitive foundations of the human sensitivity to hierarchy-
based modes of language learning?
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(ii) Are sequential learning and hierarchical learning two independent lev-
els of language analysis or are these two modes of learning somehow
interwoven?

(iii) Is there any way to define the algorithm by means of which humans boot-
strap structure from linear order?

Problems already start with the proposed division of labor between sequen-
tial and hierarchical processing. The psycholinguistic and neurolinguistic ev-
idence that has typically been offered in support for the claim that language
processing is the computation of hierarchical relations and dependencies has
constantly faced the objection that the same sets of data can be (re-)produced
by essentially non-hierarchical statistical models of learning (Culbertson &
Adger 2014; Ding et al. 2017; Frank & Christiansen 2018; Greenberg 1963).

On these conceptual and empirical grounds, weighing the relative success
of statistically based and structure-based models of syntactic processing rep-
resents an increasingly unsatisfactory and problematic method. Besides deliv-
ering partial and controversial results, this method is based on the possibly
wrong insight that sequential and hierarchical learning are radically antago-
nistic strategies of learning and processing. As we have already hinted at, the
alternative possibility arises that these two strategies are in fact strictly inter-
connected, triggering the research question of establishing how this connec-
tion exactly works. Moreover, this strategy of investigation leaves the ques-
tion concerning the cognitive foundations of the human capacity of hierarchy-
based language processing and learning completely unanswered. However, the
cognitive roots of the structure-building skills that humans manifest in their
knowledge and use of language are certainly worth exploring, if only for the
consequences that settling this issue might have for assessing the position of
language within general cognition.

Our purpose is not simply that of arguing for the existence of hierarchy-
driven computations in the processing of sequences of abstract symbols, to
be understood as a cognitive bias that reflects in language. We have the more
ambitious goal of finding the link between sequential and hierarchical compu-
tations, to be understood as a cognitive bias towards the creation of a multidi-
mensional computational space, which arguably mirrors the interplay between
linear and hierarchical organization as found in language, and explains why hi-
erarchical computations constitute a sort of automatic effect of linearly based
statistical computations.

In this paper, we present the results of two experimental studies that are
based on a radical re-thinking of the relationship between linearly and hier-
archically ordered arrays of symbols, and that further extend and improve on
two previous studies exploiting the same framework of reference (Vender et al.
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2019, 2020), to be introduced in some more detail below. The basic insight un-
derlying these studies is very simple: we decided to modulate a formal set
of symbols that constitute the object of our psycholinguistic inquiry in such
a way that statistically-based accounts building on the calculation of transi-
tional probabilities on the string and structure-based accounts building on a
(possibly constrained) capacity for hierarchy-reconstruction make conflicting
predictions about what should be learned and how it should be learned. In a
nutshell, the new method we propose to address the enigma of structure capital-
izes on using and re-adapting the Artificial Grammar Learning (AGL) research
paradigm to define a set of artificial grammars that easily lend themselves to
check the contrasting predictions made by statistically based learning strate-
gies and hierarchy-based learning and parsing strategies. We use the output
of methodologically sophisticated AGL research to inquire into the cognitive
foundations of language that correspond to the capacity of chunking symbols
together, categorizing chunks of symbols and constructing a linear order re-
lation on a set X of symbols in a bi-dimensional space which exploits both
the relation of precedence and the relation of containment. Crucially, from this
perspective, we conceive of precedence and containment as potentially com-
plementary ways of implementing an abstract mathematical notion of linear
ordering and explore the formal and cognitive underpinnings of a position in
which precedence and hierarchy may be interdependent, instead of represent-
ing alternative parsing strategies. This approach crucially enables us to address
the bootstrapping problem (how we build containment from precedence) in a
new original and revealing way, which paves the way for a more adequate un-
derstanding of the cognitive foundations of the human capacity for hierarchy-
building (dendrophilia, in the sense of Fitch, 2014). The intriguing bunch of
issues revolving around the relationship between the sequential ordering of
sounds or gestures in language and the hierarchical arrangement of these very
same symbols is of course per se not new in linguistics. It has been addressed in
a series of contributions in theoretical linguistics across the years (Brody 2000;
Kayne 1994; Moro 2000), in which the linearization problem was explicitly
formulated: if knowledge of language involves a system of hierarchical repre-
sentations but language has to be externalized as a temporal sequence of ele-
ments, how does hierarchy map into sequentially ordered arrays of terminals?
In Kayne (1994)’s approach, for instance, precedence (the relation of linear
ordering) is allowed only when it is paralleled by c-command (a hierarchical
relation): x precedes y if and only if x c-commands y in the relevant hierarchi-
cal representation. On the other hand, the hierarchical relation of c-command is
defined through the hierarchical relation of containment; for Kayne, the issue
is thus how we map hierarchy into linear arrays of symbols, and not how we
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map linear order into hierarchy. In other words, hierarchy is simply assumed as
given, and the issue is how we define its relationship with linear order; whereas
from the perspective developed in this paper, the issue is how we create struc-
ture by starting with linear arrays of symbols. A large stream of research ad-
dresses the link between statistical computations and probabilistic expectations
on one side and structure-building and hierarchy-based parsing on the other
side. For instance, Chesi (2015;2021) propose a grammatical format in which
structure-building, as driven by categorial top-down expectations, permits a
reduction of the hiatus between parsing and generation, aligning hierarchy and
linear order. In this model, adapted from Stabler’s work on the formalization of
Minimalist Grammars (cf. Stabler 2013), the order of structure-building par-
allels the order in which words are parsed left-to-right (cf. also Momma &
Phillips 2018). A similar model of hierarchy-building is developed by Phillips
(2003), where syntactic structure is built incrementally from left to right, by
means of a top-down incremental process. Phillips (2003) shows that making
hierarchical constructions depend on left-to-right linear processing involves an
incremental process whereby constituents are progressively created and de-
stroyed. In this way, it becomes possible to explain the different results of dif-
ferent syntactic diagnostics for constituency (coordination, movement, ellipsis,
etc.), basically by relying on the differences in structure among the different
derivational stages of structure-building on which each of these diagnostics is
necessarily based. Another interesting class of theories of processing is the so-
called ’surprisal theories’ (cf. Levy 2008, Futrell & Levy 2017). Here, process-
ing difficulty is related to the metrics of surprisal, which is defined, in turn, as
a relationship between incremental probabilistic disambiguation of competing
(structural) analyses and processing complexity. In other words, the surprisal
effect is measured by the ‘size’ or degree of the update necessary to select the
structural analysis that (most) correctly predicts the new word. In this way, the
focus is on probabilistic grammatical models (in Levy’s paper, the grammati-
cal format of reference is a Probabilistic Context-Free Grammar). The interest
of surprisal theory lies in the fact that whereas predictability is generally re-
garded as a function of the semantic context analysis, this theory links surprisal
to a variety of language-internal sources, crucially including morphosyntax
and phonology. On these premises, predictability gives rise to experimentally
detectable effects in eye-tracking reading studies (in terms of reduced read-
ing times and increased skipping probability for the predictable word) and in
ERP-studies, in terms of a differential N400 effect. A competing theory of
processing is Gibson’s Dependency Locality Theory (Gibson 1998), in which
the integration cost of a given word monotonically increases with the distance
from the elements on which the words depend and on the number of interven-
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ing dependencies. These two theories often make conflicting predictions, as for
head-final languages and the contrast between subject and object relatives. In
a nutshell, the reason is that Surprisal Theory does not necessarily interpret the
lexical material intervening between the point at which an expectation is origi-
nated and the point at which the expectation is satisfied as a trigger for process-
ing difficulty, because in many cases this intervening material maximizes the
expectation for a certain phrase (for instance, the head-final verb) with respect
to competing words/phrases. Interestingly from the present perspective, sur-
prisal theories can be distinguished from prediction-based connectionist mod-
els, since the latter are generally trained on raw corpora, i.e. strings where
only linear order is relevant, whereas Levy’s models (Levy 2008), for example,
are trained on syntactically annotated corpora and the measure of expectation
is calculated based on probabilistic grammars and hierarchical dependencies
among words. Proponents of connectionist models, starting with Christiansen
& Chater (1999), have often emphasized that it is exactly the relations that are
difficult for a model (trained on raw corpora) to learn which are mostly diffi-
cult to process for the native-speakers of a language, like for instance nested
dependencies in center-embedding. This might suggest that even exposition to
non-annotated corpora, that is, models trained on essentially non-hierarchical
parameters, are somehow able to bootstrap hierarchy from order in elaborating
the expectation-based metrics that optimally increase the prediction power of
the model. These considerations are especially plausible when considering the
remarkable recent achievements, in terms of handling of (complex) syntactic
dependencies, of Generative Pre-trained Transformers (GPT) in Natural Lan-
guage Processing research, as these models are notoriously trained with raw
(non-annotated) large amounts of text (Linzen & Baroni 2021). All in all, in
surprisal theories hierarchy building and the relevant structural representations
affect processing difficulty only through the mediation of probabilistic com-
putations on word-expectancy, confirming, from the present perspective, that
word-prediction remains the computational engine and the driving power for
the development of increasingly efficient parsing strategies. However, the aim
of the present paper does not consist only in establishing a firm link between
the linear and hierarchical representations of words in natural language; rather,
it consists in searching for a (possibly) domain-general cognitive bias, in hu-
mans, towards projecting sequentially-ordered arrays of symbols into graph-
like structures. In our experimental studies, this bias already emerges at the
binary level that is generally considered relevant, in formal syntax, for the ap-
plication of the elementary structure-building operation ‘Merge’, in terms of
the tendency to re-interpret precedence in deterministic bigrams of Fibonacci-
sequences as a containment relation between the two relevant symbols.
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This leads to the following research questions: assuming that language
is processed from left to right as an ordered sequence of symbols (sounds or
gestures), how can we account for the capacity of the parser to build hierarchy-
based representations of these symbols? In other words, how do we shift from
precedence to containment from a dynamic processing perspective? To ad-
dress this questions, we propose a radical shift of perspective: what should be
investigated is the human cognitive capacity of mapping sequences of objects
into objects modelled as trees or graphs, instead of the capacity of lineariz-
ing trees/graphs, regarded as computational primitives. More particularly, the
present study concentrates on the formal and cognitive underpinnings of map-
ping precedence into containment, leaving neurolinguistic extensions to future
work. Our objective here is to propose an entirely new probe into the cogni-
tive development of hierarchical representations and the way this development
connects to statistical computations on the string.

1.2 Addressing the debate with a new experimental paradigm: Our first

studies

In this section, we briefly summarize the experimental results that we pre-
viously obtained in the two published studies (Vender et al. 2019, 2020) in
which we launched the original research paradigm sketched above, based on
a new probe for disentangling learning effects at the sequential and hierar-
chical level. Our research program is based on the application of an AGL
paradigm, in the form of a Serial Reaction Times (SRT) task, to a specific class
of non-canonical grammars (Lindenmayer-systems, from now on L-systems),
whose formal properties lend themselves to the inquiry into the relation be-
tween precedence and containment. In typical AGL paradigms, after a training
phase in which participants are exposed to a sequence of visual or auditory
stimuli generated by an artificial grammar and asked to memorize them, they
are shown a new set of stimuli and asked for grammaticality judgments on the
basis of what they had implicitly learned about the (regularities induced by
the) grammar. Typically, people display an above chance performance, sug-
gesting that implicit learning somehow took place, although this knowledge
might concern either surface statistical properties of the input or abstract prop-
erties of the underlying generative system (Ettlinger et al. 2016; Pothos 2007;
Reber 1967). Although it must be credited for a challenging and intriguing
research output, the majority of AGL studies assessing implicit learning face
two potential problems: (i) in terms of cognitive underpinnings, asking for
grammaticality judgments undermines the implicitness of the task; (ii) in ad-
dressing language-related concerns, canonical grammars do not really exploit
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the potentials of AGL, since they are in fact not best suited to easily disentangle
sequential and hierarchical learning (Saddy 2009, 2018).

The new research paradigm we have developed is crucially based on SRT
tasks, which guarantee, with respect to (i) above, a considerably higher de-
gree of implicitness of learning (Cleeremans & McClelland 1991; Nissen &
Bullemer 1987). More particularly, we employ a modified Simon task (Simon
1969), in which the sequence of the stimuli is arranged following the rules of a
noncanonical grammar, the Fibonacci grammar (Fib), which, as we will show,
constitutes an optimal tool to assess both sequential and hierarchical learning
(Krivochen et al. 2018; Lindenmayer 1968), thus addressing the challenge in
(ii).

Fib is an asymmetric L-system (Krivochen et al. 2018; Krivochen & Saddy
2018), defined by the alphabet S = 0, 1 and the rewriting rules in (1):
(1) 0 → 1

1 → 01
Applying these two rules produces sequences of symbols which can be

represented as in Figure 1.

FIGURE 1: REPRESENTATION OF THE FIBONACCI GRAMMAR.

Fib is a simple deterministic recursive rewrite system, with some peculiar
properties representing fundamental differences from the canonical grammars
in the Chomsky Hierarchy. First, in classical L-systems there is no distinc-
tion between non-terminals and terminals, which means that every symbol can
(and thus must) be rewritten. Second, all rules that may apply do so simulta-
neously: L-grammars feature no Traffic Convention (Greibach 1965; Hopcroft
& Ullman 1969). Third, a major feature of L-systems is self-similarity: any
structure-sensitive pattern found in the derivation can be mapped to an earlier
stage of the derivation, at every scale. These features of L-systems are made
visible in the Fib-representation in Figure 2.
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FIGURE 2: REPRESENTATION OF SELF-SIMILARITY IN THE FIBONACCI GRAMMAR.

Crucially for our present purposes, the properties of Fib that may be tied
to statistical learning effects can be described as follows. Within each Fib-
generation,1 we find the following transitional regularities, which we will refer
to as the Three Laws:

(a) First Law: A [0] is always followed by a [1], i.e. 00 is not produced by the
grammar (henceforth, it is ‘ungrammatical’).

(b) Second Law: Two [1] are always followed by a [0], i.e. 111 is ungrammat-
ical.

(c) Third Law: A single [1] can be followed by either a [0] or a [1], i.e.,
[1] does not provide enough information for a parser to determine what
symbol will come next, since 010 and 011 are both possible continuations.

Taken together, the Three Laws entail that, by applying conditional statis-
tics, the parser will be able to distinguish, within an arbitrary sequence of
symbols corresponding to a Fib-generation, deterministic transitions from non-
deterministic transitions (for instance, a 0 will always be followed by a 1,
whereas a 1 may be followed by a 0 or by a 1). The reason why Fib lends
itself to fruitfully investigate the distinction between sequential and hierarchi-
cal learning can be further clarified as follows. Consider the representation
above of the first Fib generations: the sequence [01] is not only a natural con-
stituent of the grammar, resulting from the rewriting rule 1 → 01, but it is
also a sequence corresponding to a deterministic transition. This suggests that
chunking the symbols 01 together as the ‘constituent’ [01] does not necessarily
require that the parser figures out that [01] is the product of a specific rewriting

1 Given the recursive format of the two generative rules (0→1, 1→01) we define as a generation
each of the sequences produced at a given recursive stage.
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rule: it is sufficient that the succession between the two symbols is determin-
istic in terms of conditional statistics. The remaining 1s in the representation
are dubbed k-points, and are highly relevant for our purposes as they permit to
address the interplay between linear and hierarchical learning. As can be seen
in Figure 3, k-points (circled with dotted line) are the 1s dominated by a 0 and
dominating a 01.

FIGURE 3: GRAPHICAL REPRESENTATION OF K-POINTS (011, CIRCLED WITH DOTTED

LINE).

Notice that, in linear terms, the second 1 within the sequence 011 is always
a k-point. This is always, in strictly linear terms, an ambiguous point, since af-
ter a single 1 we may have either a 0 or a 1 (Third Law). Now, k-points are
extremely interesting as a tool for inquiring into structure, for the following
formal reason. If the parser were able to organize the linear array of symbols
in progressively larger chunks (constituents), k-points might become progres-
sively predictable (whereas they are not predictable, as just emphasized, as the
result of linear statistical computations). Schmid et al. (2023) argue, for in-
stance, that there is a gradual learning effects for k-points (i.e., the 1s that are
not part of the deterministic bigram 01). They propose that the parser builds
multiple levels of representation based on the possibility of treating 01, as a
deterministic sub-sequence, as a unit which enters in turn some deterministic
transitions at higher levels. So, at the first level of hierarchical computation,
01 deterministically follows 1, exactly as 1 deterministically follows 0 at the
base-level; at the second level, the newly-constituted deterministic unit 101 de-
terministically follows 01, and so on at the successive levels with progressively
larger chunks. Given this kind of hierarchical computations, 1s that were orig-
inally not predictable at the base-level become predictable as parts of higher-
level deterministic transitions. However, this ‘structural’ strategy predicts an
increasing predictability not only for the 1s, but also for the 0s that follow 01
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(there would be no difference between the trigram 011 and the trigram 010).
In our studies (Vender et al., 2020, and the present one, as will be illustrated
below), we found that RTs decrease faster in Fib for 1s, than for 0s, follow-
ing 01. Here, we thus propose a different hypothesis about the role played by
structural reconstruction, based on the possibility that the human parser ap-
plies a wired-in mapping principle ensuring bootstrapping from linear order
into hierarchical representations. The basic insight is that if x precedes y, then
x must be contained in y. The formal application of this principle ensures that
the deterministic chunk 01 be categorized as 1 at the higher level, whereas the
1s following 01 (k-points) are categorized as 0s. As we will see below, in this
way we are able to derive the progressive decreasing of RTs in 011 as opposed
to 010, in line with our experimental findings for Fib.

Be it as it may, these considerations should elucidate why it is so interest-
ing to inquire whether and under which conditions the parser is successful in
predicting the occurrence of k-points (i.e., of 1s following a 01 chunk): essen-
tially, these are points that cannot be predicted by only applying linear statisti-
cal calculations. Two other grammars, obtained by a modification of Fib, were
used in our studies, Skip and Bif. Skip, which is obtained by manipulations
of Fib, consists in replacing a generation n with a successive generation (0→
01, gen. 2; 1→01101, gen. 4). Crucially for our purposes, Skip features the
same transitional regularities as Fib, the First and Second Law (*00; *111),
while not preserving Fib’s hierarchical structure, and most notably the struc-
tural properties of k-points. In other words, the 1s following 01 are still present
in Skip, but their hierarchical properties are crucially different (that is, they are
not immediately dominated by a 0 and dominating a 01, as in Fib). Interest-
ingly, moreover, the frequency of 011 and 010 is different Fib and Skip: 011
is more frequent than 010 in Fib (ratio: 1.54), whereas the opposite holds in
Skip, where 010 is more frequent than 011 (ratio: 1.67). In other words, the
probability to have a 1 after 01 in Fib is 53.8%, whereas in Skip it decreases to
33%. The possibility thus arises that k-points learning in Fib be a pure effect
of frequency statistics applied to the string, based on the higher frequency of
011.

Bif, instead, is a modification of Fib with a difference in the second gener-
ation rule: we have thus 0 → 1 (as in Fib) and 1 → 10 (Fib: 1 → 01). In Bif the
Three Laws apply exactly as in Fib. The sequence 011 is present in the output
of the grammar more frequently than its counterpart 010, as in Fib, although it
cannot be considered a k-point, since the second 1 has a different hierarchical
structure. The main features of the three grammars are summarized in Table 1,
whereas their structure (the first five generations) is represented in Figure 4.
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Fib Bif Skip

Generation rules
0→1 0→1 0→01

1→01 1→10 1→01101

First law (*00) valid valid valid

Second law (*111) valid valid valid

011

Sequence present in
the grammar’s out-
put, with specific hi-
erarchical properties
(the second 1 is a k-
point, dominated by
a 0 and dominating a
01)

Sequence present in
the grammar’s out-
put, but devoid of
hierarchical signifi-
cance (the second 1
is not a k-point)

Sequence present in
the grammar’s out-
put, but devoid of
hierarchical signifi-
cance (the second 1
is not a k-point)

Frequency of 011
and 010

011 is more frequent
than 010 (ratio 1.54)

011 is more frequent
than 010 (ratio 1.54)

010 is more frequent
than 011 (ratio 1.67)

TABLE 1: MAIN FEATURES OF THE THREE GRAMMARS.

FIGURE 4: REPRESENTATION OF THE FIRST GENERATIONS OF FIB, BIF AND SKIP.

In Vender et al. (2019), we administered the Modified Simon Task to four
groups of 10-year-old monolingual and bilingual children, with and without
a diagnosis of developmental dyslexia, with the aim of verifying whether the
task was suitable for assessing implicit learning of typical and atypical pop-
ulations, essentially focusing on statistical learning. The Simon Task (Simon,
1969) is a well-established experimental paradigm normally used in psycholin-
guistic studies to measure inhibition and conflict resolution; in a typical task,
participants are presented with sequences of stimuli (e.g. a red square and a
blue square) appearing on the left or on the right of the computer screen and
are asked to respond to these visual stimuli based on their colour by making a
leftward response to one stimulus (e.g. pressing a key on the left of the key-
board when they see a red square) and a rightward response to the other (e.g.
pressing a key on the right of the keyboard when they see a blue square). The
location of the stimuli on the display is irrelevant for the task, but it can influ-
ence the participants’ reaction times (RTs) and accuracy in incongruent trials
(when there is a mismatch between the location of the stimulus and the loca-
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tion of the key to be pressed) as compared to congruent trials (when the two
locations match). The Simon effect represents the increase in RTs and accu-
racy observed in the incongruent conditions and is interpreted as a measure of
inhibition and conflict resolution costs. While in traditional Simon tasks the
sequence of the stimuli is random, in our modified Simon Task it was entirely
determined by an artificial grammar, as those reported in Table 1 (Fib, Bif or
Skip). In Vender et al. (2019) the version of the grammar that we employed
was Bif. The attention was confined to learning the deterministic transitions
corresponding to the two Laws, which was observed in four groups of school-
aged children (monolingual and bilingual, with and without dyslexia), whereas
the implicit learning of non-deterministic transitions (those corresponding to
k-points) was not considered.

In Vender et al. (2020) we administered the same task to 22 9-year-old
monolingual typically developing children with the aim of disentangling statis-
tical and hierarchical learning effects. We found that the First Law was learned,
whereas the Second Law was not; this is likely to depend on the fact that the
task was shorter with respect to Vender et al. (2019) (330 vs. 432 trials), and
thus confirms that the First Law (*00) is acquired earlier than the second Law
(*111), as already observed in Vender et al. (2019). Interestingly, our results
showed preliminary evidence for hierarchical learning, since subjects showed
a sensitivity to k-points in Fib (RTs for the trigram 011 were faster in Fib than
in Skip).

Although these results were far from conclusive and deserved a more thor-
ough investigation, they were suggestive of the possibility that sensitivity to
k-points in a sequence generated by a Fibonacci grammar depends on the bidi-
mensional computation of some hierarchical properties associated with the se-
quence besides the computation of transitional regularities on the string. On
these grounds, the two studies presented here were developed as a follow-up
allowing the investigation of the role possibly played by a hierarchical mode
of computation in the explanation of the learning effects found with k-points.

1.3 Research questions and predictions

Here is a brief synopsis of the import of the current study for the inquiry into
the relationship between precedence-based and containment-based styles of
computation, extending the results of Vender et al. (2019; 2020).

In Study 1, we employed 3 Skip blocks followed by 3 Fib blocks: if k-
points learning is simply a matter of distributional statistics and thus deter-
mined by the higher frequency of 011 in Fib, we should expect similar learn-
ing effects for the sequence 010 in Skip, due to its higher frequency in this
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grammar. Conversely, any asymmetry between the learning effect for k-points
(i.e. 011) in Fib and the learning effect for 0 in the sequence 010 in Skip,
would strongly suggest that the parsing algorithm responsible for ‘predicting’
a k-point cannot be reduced to statistical sampling procedures applied to the
string.

In Study 2, we aimed at comparing learning effects for k-points in the
grammar Fib (where 1 is rewritten as 01) and in the grammar Bif (where 1 is
rewritten as 10). Despite the superficial resemblance between these two gram-
mars, k-points have a different status in these two grammars, and this enabled
us to gain a better insight into the nature (global hierarchical computation vs.
local hierarchical computation) and some further properties (hypothetical hi-
erarchical reasoning as opposed to actual hierarchical reconstruction) of the
parsing strategies that prompt the enhanced capacity to predict k-points as the
SRT task progresses.

2. STUDY 1

2.1 Method

Participants

The experimental protocol was administered to 27 students of the University
of Verona with no history of language or learning disorders (mean age: 23.7,
SD = 3.8). None of the participants had any reports of brain damage, sensory
impairments, or serious emotional, behavioural, or learning problems. Their
vision was normal or corrected to normal.

Materials and procedures

Participants were administered a modified Simon Task, similar to those de-
ployed in Vender et al. (2019, 2020). The task was run on an Asus 15.6’ laptop
using DMDX Automode version 6.0.0.4 software. Subjects were unaware of
the real purposes of the study; they were simply asked to perform a traditional
Simon Task, i.e. they were explained that they would see some blue or red
squares appearing on the left or on the right side of the screen and that they
had to press the number key 1 (on the left side of the keyboard) as they saw
a red square, and the number key 0 (on the right side) as they saw a blue
one, ignoring the position of the square on the screen. There were thus four
conditions: two congruent conditions, when the red square appeared on the
left side of the screen and the blue square on the right side, and two incon-
gruent conditions, when the red square appeared on the right and the blue on
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the left. In these conditions, the task was complicated by the need to inhibit
the tendency to press the key on the same side of the square. The presence
of incongruent trials, occurring every sixth items, while being irrelevant for
our research questions, was adopted as in our previous studies (Vender et al.,
2019, 2020) to keep the task engaging for the participants, reducing boredom,
and was maintained also in the current research to ensure comparability with
previous results. As in the previous studies, the stimuli were four blue or red
squares (dimensions 1012x536 pixels, BMP files). Each trial started with a fix-
ation cross which appeared in the middle of the screen and remained visible
for 500 ms and which was followed by one of the four stimuli. Participants
had 1000 milliseconds to press a key: if they did not provide an answer within
this time window, the square disappeared, and the following item was shown
(see Figure 5 for a representation of the experimental procedure). The timing
started with the onset of the item and ended with the response of the subject.
Both accuracy and RTs data were collected.

FIGURE 5: REPRESENTATION OF THE EXPERIMENTAL PROCEDURE (STUDY 1 AND STUDY

2). FIGURE A: REPRESENTATION OF CONGRUENT AND INCONGRUENT TRIALS OF THE

MODIFIED SIMON TASK, WHERE PARTICIPANTS ARE ASKED TO PRESS 1 WHEN THEY SEE

A RED SQUARE (IN LIGHT GREY HERE) AND 0 WHEN THEY SEE A BLUE SQUARE (IN DARK

GREY HERE), INDEPENDENTLY ON THE POSITION OF THE STIMULUS ON THE SCREEN.
FIGURE B: REPRESENTATION OF THE EXPERIMENTAL TASK.

The sequence of the stimuli was completely determined by the rule of an
underlying grammar, Fib or Skip. As argued above Fib and Skip have the same
statistical regularities, which translated into colours, where 0 corresponds to
red and 1 corresponds to blue, are: (i) First Law: A red is always followed by a
blue (i.e. the sequence red-red is ungrammatical) (ii) Second Law: A sequence
of two blues is always followed by a red (i.e. the sequence blue-blue-blue is
ungrammatical) (iii) Third Law: The sequence red-blue is ambiguous, as it
can be followed either by a red, or by a blue (i.e. both red-blue-blue and red-
blue-red are possible). The task was in this case considerably longer than in
Vender et al. (2019, 2020): it was composed of 1092 trials, with three Skip
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blocks (97 trials each, in total 291) followed by three Fib blocks (267 trials
each, in total 801).2 There were 8 random practice trials in which subjects
received feedback; after this short training, participants had the chance to ask
questions before the experiment began. They were tested individually, in the
presence of the experimenter, in a quiet room sitting in front of the computer
screen. It took approximately 30 minutes to perform the task. The study was
approved by the local Ethics Committee and conducted in accordance with
the standards specified in the 2013 Declaration of Helsinki; moreover, written
informed consent was obtained for all participants.

2.2 Results

Data were fitted to a series of linear mixed effects regression models using the
statistical environment R (R Core Team 2020) and in particular the packages
lme4 and lmerTest (Bates et al. 2015; Kuznetsova et al. 2017). For each model,
we adopted a stepwise removal method starting from a fully specified model.
We specified RTs as dependent variable, Point (Target points, vs. Ambigu-
ous points) Congruency (Congruent trials vs. Incongruent trials) and Grammar
(Skip vs. Fib) as independent variables with full interaction, with Subject as
random intercept. To assess the presence of learning effects we selected the
following target points (highlighted for clarity): 01 for the First Law (Analysis
1), 110 for the Second Law (Analysis 2) and 011 for k-points (Analysis 3). In
each analysis we compared the relevant points to the ambiguous points 010.

Analysis 1: Learning of the First Law (01)

To assess learning of the First Law (a red is always followed by a blue, i.e. 01,
*00), we considered all 1s following a 0 across the Skip and Fib blocks and
we compared them to the ambiguous points 010, i.e. to all the 0s following the
sequence 01. As shown in Table 2, RTs decrease significantly across blocks
and are indeed considerably faster in Fib than in Skip for 01 with respect to

2 The difference in the number of trials between Skip and Fib in this Study is due to the fact that
our principal aim was that of investigating structural learning in Fib, where there are k-points,
which required a high number of trials to be learnt, as found in previous research (Vender
et al., 2020). Skip only acted as a control “foil” grammar to verify whether the learning of
k-points was due to linear as opposed to hierarchical learning. Since there are no comparable
structural points in Skip which we were interested in studying and Skip was only needed to
verify whether the learning of k-points was due to linear effects, we decided not to further
increase the total length of the experimental protocol by presenting a lower number of Skip
stimuli. Notice further that in this case the Fib blocks follow the Skip blocks, whereas in
Vender et al. (2020) Fib preceded Skip.
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010; accuracy is at ceiling in 01, but it is lower in 010, especially in incongruent
trials.

Skip
Grammar

Fib
Grammar

Block 1
(Skip)

Block 2
(Skip)

Block 3
(Skip)

Block 4
(Fib)

Block 5
(Fib)

Block 6
(Fib)

RTs
Congruent

359.45
(84.16)

298.05
(62.03)

389.65
(87.04)

353.11
(84.36)

335.60
(81.07)

311.92
(59.84)

296.52
(52.40)

285.70
(73.84)

RTs
Incongruent

491.85
(104.15)

429.80
(112.36)

496.48
(98.63)

495.21
(104.64)

483.85
(109.17)

458.94
(98.79)

427.93
(110.89)

402.53
(127.40)

Accuracy
Congruent

0.99
(0.02)

0.99
(0.02)

0.99
(0.01)

0.99
(0.02)

0.99
(0.02)

0.99
(0.01)

0.99
(0.02)

0.98
(0.04)

Accuracy
Incongruent

0.89
(0.16)

0.94
(0.08)

0.85
(0.15)

0.89
(0.13)

0.92
(0.20)

0.92
(0.10)

0.96
(0.06)

0.95
(0.07)

TABLE 2: MEAN (SDS) RTS AND ACCURACY RATES OF POINT 01 IN SKIP AND FIB

GRAMMARS, FOLLOWED BY MEAN (SDS) RTS AND ACCURACY RATES OF EACH BLOCK

FOR BOTH CONGRUENT AND INCONGRUENT TRIALS (ANALYSIS 1).

Skip
Grammar

Fib
Grammar

Block 1
(Skip)

Block 2
(Skip)

Block 3
(Skip)

Block 4
(Fib)

Block 5
(Fib)

Block 6
(Fib)

010
RTs
Congruent

394.61
(77.58)

382.25
(66.32)

400.98
(79,25)

398.23
(72.07)

384.63
(81.42)

379.16
55.13

385.99
(60.54)

381.59
(59.41)

010
RTs
Incongruent

533.76
(127.54)

494.05
(131.95)

553.44
(111.63)

497.78
(121.19)

550.05
(149.79)

504.02
(125.57)

502.75
(139.72)

475.37
(130.55)

010
Accuracy
Congruent

0.98
(0.03)

0.95
(0.09)

0.99
(0.02)

0.98
(0.05)

0.99
(0.02)

0.97
(0.05)

0.95
(0.08)

0.93
(0.13)

010
Accuracy
Incongruent

0.80
(0.4)

0.73
(0.44)

0.77
(0.43)

0.87
(0.33)

0.75
(0.43)

0.77
(0.42)

0.75
(0.44)

0.69
(0.47)

TABLE 3: MEAN (SDS) RTS AND ACCURACY RATES OF THE AMBIGUOUS POINT 010 IN

SKIP AND FIB GRAMMARS, FOLLOWED BY MEAN (SDS) RTS AND ACCURACY RATES OF

EACH BLOCK FOR BOTH CONGRUENT AND INCONGRUENT TRIALS.

The best fitting model showed significant main effects of Point (β = 83.84,
SE = 2.52, t = 33.30, p <.001), indicating that 01 were reacted to faster than
010, Grammar (β = 61.67, SE = 2.43, t = 25.40, p <.001), with RTs being
faster in Fib than in Skip, and Congruency (β = 130.27, SE = 3.31, t = 39.33,
p <.001), with RTs being faster in congruent trials. The Grammar*Point in-
teraction was significant as well (β = 49.22, SE = 4.14, t = 11.90, p <.001),
showing that the decrease in RTs was significantly steeper for 01 than for 010,
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and a significant Point*Congruency interaction (β = 24.07, SE = 6.97, t = 3.45,
p <.001), indicating that the gap between 01 and 010 was sharper with congru-
ent trials than with incongruent trials. The remaining Grammar*Congruency
and Point*Grammar*Congruency were not significant. All in all, results indi-
cate that the First Law was learnt, as shown by the fact that participants became
faster in reacting to the deterministic 1s following a 0 (First Law) with respect
to the ambiguous points 010.

Analysis 2: Learning of the Second Law (110)

To verify whether the second regularity (two blues are always followed by
a red, i.e. 110, *111) was learnt, we considered each red trial following a
sequence of two blues, i.e. 110, as compared to 010. As shown in Table 4, in
both congruent and incongruent trials RTs decrease significantly across blocks
with 110, being faster in Fib than in Skip, while accuracy remains high and
stable.

Skip
Grammar

Fib
Grammar

Block 1
(Skip)

Block 2
(Skip)

Block 3
(Skip)

Block 4
(Fib)

Block 5
(Fib)

Block 6
(Fib)

RTs
Congruent

390.09
(68.90)

355.22
(58.06)

417.20
(69.99)

350.04
(67.73)

403.03
(68.97)

366.05
(53.88)

354.16
(56.73)

345.44
(63.56)

RTs
Incongruent

499.00
(119.57)

445.16
(105.31)

528.59
(119.83)

468.25
(104.75)

500.16
(134.14)

452.35
(75.95)

453.85
(115.25)

429.29
(124.73)

Accuracy
Congruent

0.98
(0.04)

0.96
(0.07)

0.98
(0.04)

1.00
(0.02)

0.96
(0.07)

0.97
(0.03)

0.95
(0.08)

0.95
(0.11)

Accuracy
Incongruent

0.91
(0.22)

0.85
(0.21)

0.92
(0.18)

0.89
(0.23)

0.91
(0.24)

0.87
(0.19)

0.82
(0.22)

0.85
(0.21)

TABLE 4: MEAN (SDS) RTS AND ACCURACY RATES OF POINT 110 IN SKIP AND FIB

GRAMMARS, FOLLOWED BY MEAN (SDS) RTS AND ACCURACY RATES OF EACH BLOCK

FOR BOTH CONGRUENT AND INCONGRUENT TRIALS (ANALYSIS 2).

We found a significant main effect of Point (β = 30.01, SE = 2.80, t =
10.71, p <.001), Grammar (β = 12.16, SE = 3.43, t = 3.54, p <.001) and Con-
gruency (β = 106.63, SE = 6.29, t = 16.94, p <.001), respectively showing that
110 points were reacted to faster than 010, that RTs were significantly lower
in Fib than in Skip and in congruent than in incongruent trials. We also found
a significant Grammar*Point interaction (β = 21.53, SE = 5.20, t = 4.14, p
<.001), indicating that RTs decreased significantly faster in 110 than in 010,
and a significant Grammar*Congruency interaction (β = 20.39, SE = 9.89, t =
2.06, p <.05), indicating that the gap between Fib and Skip was sharper with
congruent trials than with incongruent trials. The remaining Point*Congruency
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and Point*Grammar*Congruency interactions were not significant. All in all,
results indicate that the Second Law was learnt.

Analysis 3: Learning of k-points (011) vs. not-k points (010)

We analyzed RTs across the two grammars comparing k-points (each blue trial
following a red-blue sequence, 011) with ambiguous not-k points (010). Mean
accuracy and RTs across Blocks and grammars are reported in Table 5.

Skip
Grammar

Fib
Grammar

Block 1
(Skip)

Block 2
(Skip)

Block 3
(Skip)

Block 4
(Fib)

Block 5
(Fib)

Block 6
(Fib)

k-points
RTs
Congruent

431.39
(79.89)

385.94
(67.05)

452.90
(86.42)

418.36
(82.27)

422.93
(70.99)

393.88
(64.25)

387.19
(65.96)

376.76
(70.94)

k-points
RTs
Incongruent

524.95
(146.86)

486.53
(139.30)

531.29
(140.29)

-
-

518.62
(153.43)

489.25
(129.08)

491.23
(145.25)

479.13
(143.58)

k-points
Accuracy
Congruent

0.97
(0.06)

0.96
(0.07)

0.99
(0.04)

0.99
(0.04)

0.92
(0.12)

0.97
(0.06)

0.96
(0.08)

0.95
(0.07)

k-points
Accuracy
Incongruent

0.73
(0.43)

0.55
(0.50)

0.83
(0.38)

-
-

0.64
(0.48)

0.57
(0.50)

0.54
(0.50)

0.54
(0.50)

TABLE 5: MEAN (SDS) RTS AND ACCURACY RATES OF K-POINTS (011) IN SKIP AND FIB

GRAMMARS, FOLLOWED BY MEAN (SDS) RTS AND ACCURACY RATES OF EACH BLOCK

FOR BOTH CONGRUENT AND INCONGRUENT TRIALS (ANALYSIS 3).

The fixed effects of the best fitting model are reported in Table 6. We found
a significant main effect of Grammar (p <.001), with RTs being faster in Fib
than in Skip, of Congruency (p <.001), with incongruent trials being faster
than congruent ones, and of Point (p <.001), with not-k points (010) being
faster than k-points (011). However, the significant Grammar*Point interaction
indicated that k-points showed a steeper decrease in RTs passing from Skip to
Fib, whereas this decrease was less sharp for not-k points, as visually displayed
in Figure 6. Moreover, the significant Congruency*Point interaction showed
that the difference between congruent and incongruent trials was more marked
in not-k points that in k-points, both in Skip and in Fib. Finally, the significant
Congruency*Grammar interaction showed that there was a wider difference
between congruent and incongruent trials in Skip than in Fib. Taken together,
these results indicate that, although not-k points are generally faster than k-
points, only the latter showed a marked decrease in Fib. The fact that RTs
decreased in both types of points can arguably be interpreted as a side-effect
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of the Simon Task, with adults simply becoming faster in performing the task:
however, the fact that the slope was steeper for k-points, besides confirming
that the two classes of points are different, suggests that the presence of a
learning effect is significantly stronger for k-points.

Predictor Estimate Std.Error t-value p-value

Intercept 394.32 11.37 28.27 <.001

Grammar (Fib) -12.45 3.29 -3.79 <.001

Point (k) 35.43 4.33 8.19 <.001

Congruency
(incongruent)

126.84 7.31 17.36 <.001

Grammar (Fib)*
Point (k)

-31.05 5.10 -6.09 <.001

Grammar (Fib) *
Congruency (Incongruent)

-21.06 9.47 -2.22 <.05

Point (k) *
Congruency
(Incongruent)

-38.96 11.09 -3.51 <.001

Grammar (Fib) * Point (k)
* Congruency (Incongruent)

23.38 13.66 1.71 ns (p = .09)

TABLE 6: SUMMARY OF THE FIXED EFFECTS OF THE MIXED EFFECTS MODELS OF

ANALYSIS 3 (STUDY 2) – (N = 10579, LOG-LIKELIHOOD = -64446). RANDOM EFFECTS

FOR SUBJECTS HAD SD OF 57.62.

FIGURE 6: VISUAL REPRESENTATION OF THE GRAMMAR*POINT INTERACTION (STUDY

1, ANALYSIS 3). F = FIB, S = SKIP, K = K-POINTS (011), NOT-K = NOT-K, AMBIGUOUS

POINTS (010).
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Furthermore, we ran an additional follow-up analysis comparing two dis-
tinct types of k-points in Fib: considering the longer sequence in which k-
points are embedded, we can indeed distinguish between 01011 k-points and
11011 k-points. Since the former are in principle predictable in linear terms
(there is always a 1 following two sequences of 01, i.e. *01010 is not attested
in Fib), we called them predictable k-points, as opposed to 11011 which are
unpredictable in linear terms (since 11010 are present in the grammar). This
is particularly relevant for our purposes, as if participants predict k-points on
linear grounds, we should find a difference between the two types of points.
The best fitting model had Point (01011 vs 11011) and Congruency as fixed
factors, while the interaction was excluded. We found only a main effect of
Congruency (β = 91.60, SE = 4.72, t = 19.40, p <.001), but no effect of Point
(β = .32, SE = 2.94, t = .11, p = .91), suggesting that there are no differences
between these two types of points, and that the learning effects with k-points
cannot be reduced to the result of statistical calculations on the sequence.

FIGURE 7: LEARNING CURVES OF MEAN RTS ACROSS BLOCKS IN 01, 110, 011 AND 010
(STUDY 1). C = CONGRUENT TRIALS; I = INCONGRUENT TRIALS; F = FIB; S = SKIP. 01

(FIRST LAW); 110 (SECOND LAW); 011 (K-POINTS); 010 (AMBIGUOUS POINTS).

All in all, results indicate that the First Law and the Second Law were
learnt, as well as k-points. This is shown by the decrease in RTs from Skip to
Fib, both for the deterministic points 01 and 110 and for k-points. In all cases,
this decrease was sharper than that observed with the ambiguous points 010 (as
also observable in Figure 7), indicating that the learning effects that we found
in Analysis 1, 2 and 3 cannot be considered as the consequence of an increased
practice with the task.
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3. STUDY 2

3.1 Method

Participants

The experimental protocol was administered to 37 students of the University
of Verona with no history of language or learning disorders (mean age: 24.9,
SD = 3.1; age range: 21-37). None of the participants had any reports of brain
damage, sensory impairments, or serious emotional, behavioural or learning
problems. Their vision was normal or corrected to normal.

Materials and procedures

Participants were administered a modified Simon Task, which differed from
the previous ones only in the structure, as it was composed of 4 Fib Blocks (89
items each, in total 356) and 4 Bif Blocks (89 items each, in total 356), for a
total of 712 trials. Participants were tested individually in a quiet room. The
whole task lasted approximately 20 minutes. Written informed consent was
obtained for all participants.

3.2 Results

As in Study 1, data were fitted to a series of linear mixed effects regression
models with RT as dependent variable, specifying Point (target, i.e. 01, 110
and 011 vs. ambiguous, i.e. 010) Congruency (Congruent trials vs. Incongru-
ent trials) and Grammar (Fib vs. Bif) as independent variables and Subject as
crossed-effects random intercept.

Analysis 1: Learning of the First Law (01)

Mean RTs and accuracy across blocks considering each blue trial following
a red one (01) are reported in Table 7, whereas the data of the ambiguous
sequence 010 is reported in Table 8.

We found a main effect of Point (β = 96.30, SE = 3.16, t = 30.50, p <.001),
with 01 being faster than 010, of Grammar (β = 45.89, SE = 2.28, t = 20.15,
p <.001), with Bif being faster than Fib, and of Congruency (β = 144.53, SE
= 3.87, t = 37.35, p <.001), with congruent trials being faster than incongru-
ent trials. We also found a significant Point*Grammar interaction (β = 36.23,
SE = 4.37, t = 8.29, p <.001), showing that the RTs decrease from Fib to
Bif was significantly sharper for 01 than for 010. There was also a significant
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Fib

Grammar

Bif

Grammar

Block 1

(Fib)

Block 2

(Fib)

Block 3

(Fib)

Block 4

(Fib)

Block 5

(Bif)

Block 6

(Bif)

Block 7

(Bif)

Block 8

(Bif)

RTs

Congruent

334.06

(71.27)

290.43

(57.42)

359.70

(88.19)

330.43

(70.99)

328.81

(67.91)

317.32

(58.00)

300.75

(58.66)

291.80

(53.48)

289.69

(55.38)

279.47

(62.17)

RTs

Incongruent

488.72

(92.7)

436.375

(89.82)

502.06

(99.33)

480.05

(91.27)

487.93

(77.14)

484.86

(103.05)

454.79

(86.79)

443.80

(79.96)

441.80

(93.88)

405.11

(98.64)

Accuracy

Congruent

0.99

(0.025)

0.99

(0.03)

0.99

(0.03)

0.99

(0.02)

0.99

(0.02)

0.99

(0.03)

1.00

(0.01)

0.98

(0.08)

0.99

(0.02)

0.99

(0.02)

Accuracy

Incongruent

0.91

(0.14)

0.94

(0.11)

0.90

(0.15)

0.93

(0.12)

0.92

(0.13)

0.91

(0.16)

0.95

(0.10)

0.93

(0.14)

0.93

(0.11)

0.95

(0.09)

TABLE 7: MEAN (SDS) RTS AND ACCURACY RATES OF POINT 01 IN FIB AND BIF

GRAMMARS, FOLLOWED BY MEAN (SDS) RTS AND ACCURACY RATES OF EACH BLOCK

FOR BOTH CONGRUENT AND INCONGRUENT TRIALS (ANALYSIS 1).

Fib

Grammar

Bif

Grammar

Block 1

(Fib)

Block 2

(Fib)

Block 3

(Fib)

Block 4

(Fib)

Block 5

(Bif)

Block 6

(Bif)

Block 7

(Bif)

Block 8

(Bif)

010

RTs

Congruent

396.10

(78.95)

386.26

(72.58)

401.14

(84.06)

396.13

(80.35)

389.33

(77.52)

397.81

(73.87)

395.03

(71.89)

386.79

(78.15)

386.70

(71.25)

376.51

(69.04)

010

RTs

Incongruent

491.62

(114.17)

472.33

(124.19)

490.73

(111.47)

491.22

(119.45)

502.19

(116.06)

482.33

(109.70)

500.69

(133.98)

463.56

(112.93)

465.40

(116.40)

459.67

(133.43)

010

Accuracy

Congruent

0.98

(0.06)

0.96

(0.07)

0.98

(0.06)

0.97

(0.05)

0.97

(0.05)

0.98

(0.07)

0.96

(0.05)

0.97

(0.06)

0.97

(0.06)

0.95

(0.09)

010

Accuracy

Incongruent

0.80

(0.40)

0.72

(0.45)

0.85

(0.36)

0.82

(0.38)

0.76

(0.43)

0.76

(0.43)

0.73

(0.45)

0.80

(0.40)

0.70

(0.46)

0.67

(0.47)

TABLE 8: MEAN (SDS) RTS AND ACCURACY RATES OF THE AMBIGUOUS POINT 010 IN

FIB AND BIF GRAMMARS, FOLLOWED BY MEAN (SDS) RTS AND ACCURACY RATES OF

EACH BLOCK FOR BOTH CONGRUENT AND INCONGRUENT TRIALS.

Point*Congruency interaction (β = 63.91, SE = 7.92, t = 8.07, p <.001), show-
ing that the difference between 01 and 010 was more marked with congruent
trials. All in all, these results provide evidence for the learning of the First Law,
as testified by shorter RTs in Bif than in Fib, in both congruent and incongruent
trials (the former being faster).

Analysis 2: Learning of the Second Law (110)

We analyzed each red trial following a sequence of two blues; see Table 9 for
RTs and accuracy data.

We found a significant main effect of Point (β = 30.01, SE = 2.80, t =
10.71, p <.001), Grammar (β = 12.16, SE = 3.43, t = 3.54, p <.001) and
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Fib

Grammar

Bif

Grammar

Block 1

(Fib)

Block 2

(Fib)

Block 3

(Fib)

Block 4

(Fib)

Block 5

(Bif)

Block 6

(Bif)

Block 7

(Bif)

Block 8

(Bif)

RTs

Congruent

365.61

(69.54)

343.04

(64.39)

383.06

(82.46)

385.74

(70.45)

376.55

(61.96)

317.10

(63.31)

353.94

(66.40)

350.87

(64.09)

334.89

(62.70)

332.45

(64.39)

RTs

Incongruent

455.22

(76.05)

420.36

(81.81)

459.23

(83.48)

450.02

(70.52)

454.15

(74.61)

457.48

(75.58)

432.44

(68.99)

432.28

(88.03)

418.34

(85.49)

398.38

(84.72)

Accuracy

Congruent

0.98

(0.04)

0.98

(0.03)

0.98

(0.05)

0.97

(0.05)

0.99

(0.03)

0.99

(0.02)

0.99

(0.02)

0.97

(0.05)

0.98

(0.03)

0.98

(0.03)

Accuracy

Incongruent

0.87

(0.22)

0.84

(0.26)

0.90

(0.23)

0.92

(0.14)

0.86

(0.23)

0.82

(0.27)

0.85

(0.27)

0.85

(0.26)

0.84

(0.24)

0.84

(0.26)

TABLE 9: MEAN (SDS) RTS AND ACCURACY RATES OF POINT 110 IN FIB AND BIF

GRAMMARS, FOLLOWED BY MEAN (SDS) RTS AND ACCURACY RATES OF EACH BLOCK

FOR BOTH CONGRUENT AND INCONGRUENT TRIALS.

of Congruency (β = 106.63, SE = 6.29, t = 16.94, p <.001), indicating that
RTs decreased in Bif, in both congruent and incongruent trials (the former
being faster) and that 110 was faster than 010. We also found a significant
Point*Grammar interaction (β = 21.53, SE = 5.20, t = 4.14, p <.001), indicat-
ing that RTs decrease from Fib to Bif was significantly steeper for 110 points
than for 010, thus confirming that the Second Law was learnt.

Analysis 3: Learning of k-points (011) vs. not-k points (010)

We analyzed RTs across the two grammars comparing k-points (each blue trial
following a red-blue sequence, 011) with not-k points (010). Mean accuracy
and RTs across Blocks and grammars are reported in Table 10.

The results of the best fitting model are reported in Table 11. We found a
significant main effect of Grammar (p <.01), with RTs being faster in Bif than
in Fib, of Congruency (p <.001), with incongruent trials being faster than con-
gruent ones, and of Point (p <.001), with k-points (011) being faster than not-k
points (010). Crucially, the significant Grammar*Point interaction showed that
k-points displayed a steeper decrease in RTs passing from Fib to Bif, whereas
this decrease was less marked for not-k points, as visually displayed in Fig-
ure 8. Moreover, the significant Congruency*Point interaction revealed that
k-points had faster RTs in congruent trials than not-k points. All in all, results
show that k-points (011) are significantly faster than not-k points (010) and
that the former decrease faster than the latter across the task, suggesting that
subjects learnt to predict them more efficiently than with not-k points.

As a follow-up analysis we additionally compared the two types of k-
points, the linearly predictable ones (01011) and the linearly unpredictable
ones (11011), as in Study 1: the best fitting model had Point (01011 vs 11011),
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Fib

Grammar

Bif

Grammar

Block 1

(Fib)

Block 2

(Fib)

Block 3

(Fib)

Block 4

(Fib)

Block 5

(Bif)

Block 6

(Bif)

Block 7

(Bif)

Block 8

(Bif)

k-points

RTs

Congruent

375.53

(70.80)

351.76

(59.02)

384.48

(78.09)

378.42

(70.85)

372.54

(64.81)

366.67

(69.46)

361.64

(56.11)

345.97

(62.48)

357.68

(64.05)

341.74

(53.45)

k-points

RTs

Incongruent

483.29

(129.65)

459.32

(113.44)

484.

(120.97)

493.80

(146.09)

476.78

(116.04)

477.68

(135.51)

463.84

(105.42)

472.75

(129.51)

468.64

(105.37)

432.04

(113.46)

k-points

Accuracy

Congruent

0.98

(0.03)

0.97

(0.05)

0.98

(0.04)

0.98

(0.04)

0.98

(0.03)

0.98

(0.03)

0.98

(0.03)

0.96

(0.09)

0.97

(0.05)

0.98

(0.04)

k-points

Accuracy

Incongruent

0.75

(0.43)

0.68

(0.47)

0.81

(0.39)

0.7

(0.43)

0.70

(0.46)

0.72

(0.45)

0.71

(0.46)

0.64

(0.48)

0.74

(0.44)

0.64

(0.48)

TABLE 10: MEAN (SDS) RTS AND ACCURACY RATES OF K-POINTS (011) IN FIB AND BIF

GRAMMARS, FOLLOWED BY MEAN (SDS) RTS AND ACCURACY RATES OF EACH BLOCK

FOR BOTH CONGRUENT AND INCONGRUENT TRIALS (ANALYSIS 3).

Predictor Estimate Std.Error t-value p-value

Intercept 396.73 9.75 40.71 <.001

Grammar (Bif) -10.18 3.62 -2.81 <.01

Point (k) -24.13 3.22 7.50 <.001

Congruency
(incongruent)

91.43 7.36 12.43 <.001

Grammar (Bif) *Point (k) -10.63 4.58 -2.32 <.05

Grammar (Bif) *
Congruency (Incongruent)

-11.88 9.93 -1.20 ns (.23)

Point (k) * Congruency
(Incongruent)

18.53 8.99 2.06 <.05

Grammar (Fib) * Point (k) *
Congruency (Incongruent)

3.72 12.74 .29 ns (.77)

TABLE 11: SUMMARY OF THE FIXED EFFECTS OF THE MIXED EFFECTS MODELS OF

ANALYSIS 3 (STUDY 2) – (N = 9317, LOG-LIKELIHOOD = -56180). RANDOM EFFECTS

FOR SUBJECTS HAD SD OF 57.29.

Grammar and Congruency as fixed factors with full interaction. We found only
a main effect of Grammar (β = 19.65, SE = 4.27, t = 4.60, p <.001), of Con-
gruency (β = 107.01, SE = 8.66, t = 12.36, p <.001), but no effect of Point (β
= 1.59, SE = 3.71, t = .43, p = .67). Summarizing, as in Study 1 results provide
evidence of learning of First Law, Second Law and k-points. This is shown
by the decrease in RTs from Skip to Fib, both for the deterministic points 01
and 110 and for k-points. Again, this decrease was always sharper than that
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FIGURE 8: VISUAL REPRESENTATION OF THE GRAMMAR*POINT INTERACTION (STUDY

2, ANALYSIS 3). F = FIB, B = BIF. K-POINTS = 011, NOT-K POINTS = 010.

observed with the ambiguous points 010, indicating that the learning effects
that we found in Analysis 1, 2 and 3 cannot be seen as the consequence of an
increased practice with the task, as represented in Figure 9.

FIGURE 9: LEARNING CURVES OF MEAN RTS ACROSS BLOCKS IN 01, 110, 011 AND 010
(STUDY 2). F = FIB, B = BIF; C = CONGRUENT TRIALS, I = INCONGRUENT TRIALS.
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4. GENERAL DISCUSSION

In this paper we aimed at disentangling the linguistically and cognitively rele-
vant relationship between precedence and containment by reporting the results
of two studies that address statistical and hierarchical learning using a SRT task
(a modified Simon Task) with the Fibonacci grammar and its variants Skip and
Bif. Besides confirming learning of the two Laws (i.e., learning of determinis-
tic points 01 and 110), both studies provided evidence for learning effects with
non-deterministic points as well (the second 1 in the trigrams 011). In fact, we
found that k-points (011) learning is sensitive to the choice of the grammar
(Fib vs. Skip); moreover, we found that both deterministic points and k-points
are processed differently from the ambiguous trigram 010 in all the grammars
considered, as shown by the significant Point*Grammar interactions effects
that we found in both Study 1 and 2. Clearly, the relevant question to ask at this
point is the following: What sort of computation leads the parser to develop the
relatively early expectation that 01 is followed by 1, producing a decrease in
RTs relatively to the trigram 011 that is not paralleled by the decrease relative
to the trigram 010? The original hypothesis we want to put forward is that the
parser is endowed with a possibly domain-general disposition to add a vertical
axis of computation while processing sequences of symbols on a horizontal
axis. It does so by re-interpreting the linear ordering based on precedence that
is relevant for the horizontal axis in terms of a distinct instantiation of the very
same abstract mathematical relation of linear ordering (reflexive, antisymmet-
ric and transitive), that is, in terms of containment rather than of precedence,
implementing this new relation on the newly added vertical axis. As we will
see in more detail below, this state of affairs has two main consequences: (i)
the mapping of precedence into containment represents the bootstrapping from
linear order into hierarchy, it is thus arguably one of the cognitive sources of
the bias towards hierarchy-based computations found in natural language; (ii)
this mapping is triggered by the need the parser has to categorize the chunks
it comes up with (as a result of the statistical computation on the string). For
instance, in Fib 01 rapidly emerges as a chunk, based on the learning effects
connected to the First Law, according to which 1 deterministically follows 0.
Now, given the knowledge that 01 is a chunk (i.e., a single unit in the applica-
tion of further computational processes), the question for the parser is whether
this chunk should be categorized as 0 or as 1. How does the parser solve this
problem? What could we infer based on our experimental results? Before ad-
dressing this issue, a preliminary point should be carefully elucidated. As we
have seen, the parser does not distinguish between Fib and Bif (Study 2). In
Bif, given that the generation rules have 1 rewritten as 10, it is the bigram 10
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that represents a constituent. However, there is no indication that the parser de-
velops any knowledge of this fact. On the contrary, the parser exhibits, while
processing Bif generations, a learning effect related to Fib’s k-points. Why
should the parser deal with Bif generations as they were Fib generations? The
answer is quite plausibly related to the fact that the deterministic transitions
in Bif are not different from those in Fib: 0 is deterministically followed by 1
but it is never the case that 1 is deterministically followed by 0 (even in Bif,
where 10 is the right constituent, grammatically speaking). For the parser, ev-
idently, it is the existence of a deterministic transition that establishes when
we have a chunk: it follows that for the parser the natural constituent, both in
Bif and Fib generations, is 01, whilst 10 never qualifies as such. If this is cor-
rect, and we think the evidence to this effect is uncontroversial, these results
clearly support the view, from the specific perspective introduced by our re-
search paradigm, that knowledge of language is a dynamical process in which
the formal properties of grammar play a very limited role (Öttl et al. 2015).
Indeed, under certain conditions the parser could reconstruct a correct rule of
grammar (1 → 01), as is the case in Fib, but under certain other conditions it
will be essentially inhibited from doing so, as is the case in Bif. The reason
is that the parser decides which n-grams are constituents based on the analy-
ses of the transitional probabilities on the string, and has, quite plausibly, no
access to the rules of grammar unless the latter can be inferred by means of
statistical generalizations on the sequence. On these grounds, let us go back to
the parser’s knowledge that 01 is a constituent. Given an arbitrary generation n
of Fib, the 0s are always part of 01; the 1s are either part of 01 or independent
constituents (k-points, which are highlighted below):

(n) 0110110101101

Since the parser knows that 01 is a unit, the possibility arises of reducing the
length of generation n across a series of progressively shorter layers, in each
of which the bigram 01 is rewritten as the monogram 0 or as the monogram
1. We take this to be the primary cognitive trigger for the parser to project a
vertical axis of computation, in which, proceeding bottom-up, each genera-
tion will be shorter than the preceding one, since the bigram 01 in generation
n will have been rewritten as a single digit in generation n-1. The success of
this style of computation clearly depends on one single factor: how does the
parser decide for 0 or 1 as the label of the chunk [01]? As anticipated above,
the core question is thus: What is the labelling algorithm? We propose that
the parser adopts a labeling algorithm that is based on the re-interpretation of
precedence (as a linear ordering relation) as containment (an alternative linear
ordering relation) and that a strictly local application of this algorithm leads to
the limited amount of hierarchical reconstruction that is compatible with our
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experimental results. There is in fact a formal property of Fib-generations that
may act as a trigger for the association of precedence with containment. As
seen in the Introduction, one of the most typical formal properties of the Fib-
grammar is self-similarity: each generation n results from the combination of
the two preceding generations (i.e. n-1 and n-2). For instance, given the gener-
ation n = 01101, the subsequence 01, which precedes the subsequence 101, is
associated with generation n-2, whereas the subsequence 101 just corresponds
to generation n-1 (see Figure 2). Interestingly, self-similarity also has a set-
theoretic dimension. In fact, the three generations just considered are naturally
analyzed as an ordinal set. In set-theory, a set x is an ordinal if it is transitive:
∀y ∈ x, ∀z ∈ y. z ∈ x. The three Fib-generations under scrutiny here clearly
exemplify this property, as can be seen in (i), where each generation has been
rendered in set-theoretic terms, based on the knowledge that the basic sets are
01 and 1 (which is how things are in Fib, as just seen):

(i) n-2 = ⟨01⟩;
n-1 = ⟨1, ⟨01⟩⟩;
n = ⟨⟨01⟩, ⟨1, ⟨01⟩⟩⟩

In this way, indeed, precedence is automatically rendered as set-membership.
For instance, the fact that the subsequence n-2 precedes the subsequence n-1
in generation n is reflected in the fact that n-2 belongs to n-1 (i.e. ⟨01⟩ is an
element of ⟨1, ⟨01⟩⟩). Derivation n is a transitive set because it is not only n-1
that belongs to n, but also n-2 (as seen in (i), ⟨01⟩ belongs to ⟨⟨01⟩, ⟨1, ⟨01⟩⟩⟩).
Going on in the same vein, we have that n+1= 0101101, as a consequence of
self-similarity (101 and 01101 are just the two preceding generations); in set-
theoretic terms, n+1 = ⟨⟨1, ⟨01⟩⟩, ⟨⟨01⟩, ⟨1, ⟨01⟩⟩⟩⟩. Here, the fact that 101
precedes 01101 at generation n+1 is mirrored by the fact that n-1 (101) is an
element of n (01101): ⟨1, ⟨01⟩⟩ belongs to ⟨⟨01⟩, ⟨1, ⟨01⟩⟩⟩. What these formal
remarks boil down to is that once the parser has reached the knowledge that
the natural chunks in a Fib-string are 01 and 1, there is a natural trigger for the
parser to re-analyze the relation of precedence between subsequences of that
string as a relation of containment between the sets corresponding to those
subsequences. More precisely, if we interpret ‘chunks’ as binary deterministic
subsequences, the Bootstrapping Principle in (ii) holds:

(ii) If x < y within a chunk, then x ⊆ y

This promptly provides a solution for the labelling algorithm: given (ii), it
immediately follows that 01, as a chunk, should be labelled as 1 whenever
considered as a unit for further computational operations. Indeed, if [01] is
a 1, this categorization satisfies the Bootstrapping Principle in (ii): given the
chunk [01], we have that 0 precedes 1 and that 0 is contained in 1 (based on
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the proposed labeling, 1 = 01, and since 0 is contained in 01, it follows that 0
is contained in 1). Conversely, (ii) is obviously not satisfied if the chunk 01 is
categorized as 0. Consider now generation n above, reproduced below:

(iii) 0110110101101

The parser can proceed to build up shorter generations on the vertical axis, by
rewriting 01 as 1. On the other hand, the parser is endowed with the knowledge
that the shorter generations to be produced must still be sequences of 0s and
1s (as is the case for all Fib-generations). So, if the chunk 01 is reduced to 1
in the preceding generations, and, as we have seen, an arbitrary Fib-generation
contains nothing else than 01s and 1s (1 a k-point), the obvious guess is that
the k-points (the 1s that are not part of a 01 chunk) should be re-labeled as 0s
at the previous generation: if this were not the case, the previous generation
would be an illegitimate sequence of 1s. Endowed with this knowledge, which
amounts to a solution for the labeling algorithm, the parser applies then the
hypothetical structural reasoning that [01]s are labelled 1 and [1]s are labelled
0. For instance, given the generation 01101, the parser might engage in the
limited amount of hypothetical hierarchical reconstruction shown in Figure 10
below, by activating a vertical axis within a multidimensional computational
space.

FIGURE 10: HYPOTHETICAL HIERARCHICAL REASONING BASED ON

CONTEXT-INDEPENDENT LOCAL RECONSTRUCTION.

This accounts for the full array of experimental results that we have dis-
cussed above, and more particularly for the sensitivity to k-points, which is
now simply a consequence of the process of hypothetical hierarchical recon-
struction shown in Figure 10. Notice further that in our proposal the knowledge
acquired on the horizontal axis (where linear ordering is implemented as prece-
dence) is strictly interwoven with the knowledge acquired on the vertical axis
(where linear ordering is implemented as containment, modulo the labeling al-
gorithm). For instance, after the parser has projected [01] as [1] and [1] as 0 as
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shown in Figure 10, it proceeds horizontally by applying the First Law at gen-
eration n-2. Moreover, [01] is a chunk in need of labelling on the vertical axis
only because it constitutes a deterministic transition on the horizontal axis. It
is this mixed processing strategy - we submit - that further explains why there
is no sensitivity to k-points in the foil-grammar Skip. Certainly, there are no k-
points in Skip, but this is nothing more than a formal property of Skip, hardly
accessible to the parser. In fact, since 01 is a natural constituent in Skip not
less than in Fib or in Bif (i.e., 01 is a deterministic transition in Skip as well),
the parser might engage in the very same kind of hypothetical structural rea-
soning that correctly derives our experimental results in Fib and Bif. If it does,
however, it produces an expectation that conflicts with the results of distribu-
tional statistics on the horizontal axis: as discussed above, indeed, in Skip 011
is less frequent than 010, contrary to what happens in Fib, where 011 is more
frequent than 010. The hierarchy-based expectation that 01 be followed by 1 is
thus not supported by the statistical analysis of the string, contrary to what hap-
pens for Fib and Bif generations. Whenever this is the case - we submit - the
parser abandons the vertical computations as a reliable source of information
to enhance predictability on the original sequence and only concentrates on the
generalizations derivable from linear computations. At this point, the question
to be addressed is the following: how does hypothetical structural reasoning
fare with respect to the competing hypotheses, that is, full hierarchical recon-
struction and statistically based computations on the string? In order to address
this question, notice first that the Fibonacci grammar is based on two simple
transformation rules. Any system that learns to apply the rules could predict the
structure for any position in the sequence. When confronted with a (long) gen-
eration of Fib, a human parser might have in principle recourse to two distinct
procedures for predicting the next symbol in the sequence after exposure to the
subsequence preceding that symbol. The first is full hierarchical reconstruction
through the application of the two rewriting rules. As observed in the Introduc-
tion, this is essentially the line of analysis developed by Schmid et al. (2023).
These authors propose that the parser builds multiple levels of representation
based on the possibility of treating 01, as a deterministic sub-sequence, in
terms of a unit which enters in turn some deterministic transitions at higher
levels. In other words, if 01 is a deterministic chunk, it enters as such in higher
level deterministic relations with other elements in the sequence. Intuitively,
this holds for progressively larger chunks: at the second level of representa-
tion, for instance, we have that the chunk 101 deterministically follows the
chunk 01, and so on for progressively larger chunks. Notice that this strategy
is tantamount to a process of hierarchical reconstruction without ‘explicit’ la-
belling: the larger chunks that enter higher-order deterministic relations do so,
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in our terms, because they are labelled as 0s and 1s at the relevant higher level.
We might say, in other words, that in Schmid et al.’s approach, labelling is
‘implicit’. However, full hierarchical reconstruction is an unlikely processing
procedure for predicting an arbitrary point within a given Fib-generation, due
to its huge cognitive costs. As a matter of fact, Schmid et al. (2023) found that
the predictability of non-deterministic points is enhanced only up to the first 2-
3 levels of hierarchical reconstruction. Evidently, full-hierarchical reconstruc-
tion is, as it was to be expected, a resource-consuming strategy for enhancing
predictability of the non-deterministic points on the string. More importantly,
we did not find any evidence for full hierarchical reconstruction in our ex-
perimental studies. It predicts across-the-board learning effects. For instance,
the two trigrams 011 and 010 are both unpredictable on linear grounds, since
the transition from 01 to either 1 or 0 is not deterministic in a Fib-generation
(as per the Third Law). If processing were based on full hierarchical recon-
struction, we should expect learning effects to equally arise for both 1 and 0
after the bigram 01. Crucially, this is not what we found. What we found, in
a nutshell, is a generalized learning effect for k-points, that is, the 1s follow-
ing 01, whilst the interaction between 011 and 010 shows that the decrease
in RTs is faster for k-points than for the 0s following 01. Full hierarchical
reconstruction is thus not an option, because it cannot derive the asymmetry
between the two indeterministic transitions 011 and 010 that constitutes one
of our experimental findings. On the other hand, linear order alone is also un-
likely to derive the strong learning effect that we found with k-points. Here is
why. In principle, linear predictability increases with the size of n-grams. For
instance, if we only consider bigrams, we can exclude 00 (i.e. *00). For tri-
grams, we can additionally exclude 111 (i.e. *111). For 5-grams, we also learn
that 01010 is ungrammatical (i.e. *01010). In fact, it can be shown that pre-
dictability increases with the size of n-grams, but only if n is a member of the
Fibonacci-sequence (1, 2, 3, 5, 8, 13, 21, 34, etc.); for instance, there is no pre-
dictability growth if we shift from trigrams to 4-grams (all we know is still that
*00 and *111). Moreover, the relationship between n-gram size and prediction
power is not linear, that is, the increase in prediction power becomes smaller at
each step in the growth of n-grams. So, what does this entail for k-point learn-
ability? Essentially, it entails that increasing the size of the n-gram preceding
the last symbol in 011 and 010 may increase our power to predict 1 or 0. For
instance, whereas a 01 may be followed by either 1 or 0, the larger n-gram
0101 is obligatorily followed by a 1, and the same holds for the even larger
101 01101 01101; similarly, the n-gram 01 011 01101 is obligatorily followed
by a 0, and the same holds for the even larger 101011010110110101101. In
other words, the parser might increase its prediction power by processing pro-
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gressively larger sequences than 01. In this case, k-point predictability would
be an exclusive function of statistically grounded linear computations on ar-
bitrary subsequences of a (long) Fib-generation. Is this in fact what the hu-
man parser does? No, since this large-scale linear style of computation meets
essentially the same objections that apply to full hierarchical reconstruction,
as discussed above. First, this linear strategy (as was the case for hierarchi-
cal reconstruction) requires a tremendous use of cognitive resources. But even
putting this aside, what the linear strategy should produce is a generalized in-
crease of prediction power (in terms of the learning effects manifested by RT-
decrease) not only for 011 but also for 010, since, as we have seen, considering
larger chunks leads to an across-the-board growth of prediction power. Again,
this would leave us without any explanation for the asymmetry between the tri-
grams 011 and 010 that consistently emerged from our experimental results. In
fact, another experimental result is worth considering. If the 5-gram 01011 is
predictable on linear grounds, we should find a difference between the learning
effects for linearly predictable k-points (01011) and for linearly unpredictable
ones (11011). However, we found no statistically significant difference in RTs
between these two classes of k-points, as shown by the relevant follow-up anal-
yses conducted in both studies. Given these considerations, the best strategy
to derive the asymmetric learning effect with k-points consists in proposing a
processing strategy based on a strict interplay between linear and hierarchical
processing. This mixed style of computation, whereby linear statistical com-
putation interacts with locally restricted structural hypothetical reasoning, has
two main advantages: (i) it effectively derives the asymmetrical learning effect
with indeterministic k-points (011), in relation to the indeterministic points
(010); (ii) it does not require an unreasonable amount of cognitive resources,
since both the linear and the hierarchical computation are strongly constrained,
given the gradual and successive learning of the two laws in the case of the lin-
ear computation, and the strictly local and hypothetical nature of hierarchical
reconstruction, which is in fact promptly abandoned (as arguably happens in
Skip) whenever in patent conflict with the results of the linear computation.

5. CONCLUSIONS

In this contribution, we have argued that the relations of precedence and dom-
inance/containment are not antagonistic ways of processing a temporally or-
dered sequence of symbols; rather, they should be seen as strictly intercon-
nected relations whose application leads to the construction of a bidimensional
computational space. From this perspective, hierarchy is simply an additional
interpretation of the very same abstract mathematical relation of linear or-
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dering (a reflexive, antisymmetric and transitive relation, as are both prece-
dence and containment), originally instantiated as precedence in the analysis
of some finite array of symbols. While processing the output of our set of
asymmetric L-systems (the grammars Fib, Bif and Skip), the participants in
our studies arguably interpreted “x precedes y” in terms of an additional lin-
ear ordering based on containment (x is contained in y). As we have shown,
this re-interpretation of precedence as containment is inherently linked to the
operation of labelling chunks emerging from deterministic transitions on the
sequence, under the constraint that no new symbols be added. According to
the emerging picture, the linear ordering instantiated by precedence is hardly
amenable to mere externalization requirements; rather, hierarchy is almost lit-
erally projected from linear order. We believe these findings have important
consequences for properly addressing some core properties of natural language
syntax, while leaving these matters to future work. At the same time, we have
indicated that theoretical interpretation is dependent on the emerging exper-
imental results (as, for instance, the asymmetry between the indeterministic
points 011 and 010). In this vein, it is important to refine and broaden our
experimental design, in search of fine-grained results able to disentangle all
the variables at stake (such as habituation, independent cognitive biases like
repetition or alternation of the same symbol, etc.). One possibility that we
are currently pursuing (Compostella et al. under review) consists in simplify-
ing the Simon Task as administered so far, by (i) eliminating the incongruent
trials in order to avoid potentially disrupting processing costs related to inhi-
bition and conflict resolution, and (ii) adopting the eye-tracking methodology
to investigate the participants’ anticipation skills (hence their ability to pre-
dict upcoming stimuli) while disentangling perceptual from motor aspects of
learning.
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