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Abstract
Accurate crude oil price forecasting is crucial for economic stability, investment planning, and strategic decision-making
across various industries. Despite numerous research efforts in applying deep learning to time-series forecasting, achieving
high accuracy in multi-step predictions for volatile time-series like crude oil prices remains a significant challenge. Moreover,
most existing approaches primarily focus on one-step forecasting, and the performance often varies depending on the dataset
and specific case study. This paper introduces ensemble-based deep-learning models to capture Brent oil price volatility and
enhance the multi-step price prediction. Our methodology employs a two-pronged approach. First, we present an empirical
comparison of deep-learning models and architectures, including RNNs, CNNs, and transformers, for forecasting Brent
oil prices. We also examine the impact of various external factors on forecasting accuracy. Then, we introduce a novel
approach that employs ensemble GRU-based models to enhance prediction accuracy across multiple forecasting scenarios.
Extensive experiments were conducted using a dataset of historical Brent prices encompassing the COVID-19 pandemic,
which significantly impacted energy markets. The results demonstrate that the proposed model outperforms benchmark and
established models, achieving a 9.3% reduction in MSE compared to the closest benchmark model for a 3-day forecasting
horizon.

Keywords Crude oil price forecasting · Brent oil analysis · Time-series forecasting · Ensemble learning

1 Introduction

Brent crude oil, one of the major global benchmarks for
oil prices, plays a critical role in the energy markets and
broader economic landscape. Forecasting its price is essential
for various stakeholders, including policymakers, investors,
and energy companies. However, crude oil price market pre-
diction is known for its inherent complexity and obscurity.
The high degree of volatility, unpredictable, irregular events,
and complex interconnections among market factors make
it extremely challenging to accurately forecast the fluctua-
tions in crude oil prices. The dynamic interplay of supply
and demand and changes in oil prices are influenced by
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external factors, such as economic growth, financial markets,
geopolitical conflicts, warfare, and political considerations
[1–3]. A variety of methodologies have been utilised to pre-
dict crude oil prices. The older approaches primarily rely on
employing economic and statistical methods, such as VAR
[4], ARIMA, GARCH [5], VMD [6], and Walvet decompo-
sition [7]. These traditional methods, which typically rely
on mathematical assumptions, struggle to accurately capture
oil prices’ complex, nonlinear dynamics, and the interplay
of various influencing factors [8]. To overcome these limita-
tions, recent studies increasingly leverage machine learning
approaches [2, 9, 10]. In contrast to the traditional statistical
and econometric models, AI provides a valuable alternative
approach to capture complex nonlinear characteristics of the
crude oil price movement. In recent years, there has been
an effort to exploit the emergent advances in deep-learning
machine models (such as Transformers and GANs) for time-
series analysis [11, 12]. Despite the great success achieved by
these models in processing natural languages and generating
images and videos, Long short-term memory (LSTM) and
gated recurrent unit (GRU) networks still maintain their pop-
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ularity for time-series forecasting [13–15]. Their popularity
could be attributed to their ability to effectively capture tem-
poral dependencies,which is crucial for accurately predicting
future values in a time-series. They are also significantly
less complex to train than more modern models such as
GANs and transformers. Also, a vast amount of data are
required to train transformers, which makes them inefficient
for tasks involving smaller datasets, such as daily-based oil
price forecasting. Nevertheless, achieving accurate oil price
forecasting remains a challenging task, particularly in terms
ofmulti-step forecasting. Additionally,most current research
focuses on one-day-ahead forecasting or utilises complex
combinations of layers and models with high computational
complexity.

This study proposes blind forecasts generated from three
different scenarios across Bi-GRU networks. To this end,
we start by assessing the forecast performance of vari-
ous architectures of deep-learning models (popular deep-
learning models used in the literature for price forecast-
ing) to optimise our model selection. Then, we propose a
novel effective model (abbreviated as ERS-Bi-GRU, denot-
ing its main elements-Ensemble, Residual, Sentimental, and
Bi-Directional Gated Recurrent Units) for Brent price fore-
casting. Our experiments additionally evaluate the influence
of incorporating three external factors—the USD index
(USDX), Saudi energy sector index (TENI), and sentiment
score (SENT)—on enhancing prediction accuracy. The con-
tributions of this paper are threefold:

• Introduction of an effective ensemble model for forecast-
ing multi-step Brent crude oil prices.

• Evaluation of various established deep-learning archi-
tectures and combinations for oil price forecasting,
discerning the optimal architecture within this domain.
To the best of our knowledge, this is the first study to
compare RNN-based models and more recent and com-
plex models like transformers for oil price prediction.

• Evaluate the influence of external factors on Brent price
movement.

The proposed model (ERS-Bi-GRU) has been compared
against well-known benchmarks and established models
in the literature to evaluate its forecasting accuracy. The
obtained results indicate that the proposed model outper-
forms the benchmark models. The rest of the paper is
organised as follows. Section 2 provides an overview of
recent literature related to oil price forecasting. Section 4
describes the dataset used in this study. Section 5 outlines
the methodology, Section 6 describes the experimental setup
and results, and finally the conclusion.

2 Literature Review

Recent years have witnessed strong growth in adopting
machine learning for time-series forecasting, driven by its
remarkable ability to uncover intricate and nonlinear pat-
terns within the data. Researchers have employed various
Ml networks, such as long-short-term memory (LSTM) [3,
12, 16], gated recurrent unite (GRU) [17–19], convolutional
neural network (CNN) [20], and transformer models [21] to
predict crude oil prices based on historical price data and
some relevant features. Machine learning approaches often
require extensive feature engineering and can be sensitive
to the quality and availability of data. Many researchers
incorporated additional data sources, such as macroeco-
nomic and technical indicators, social media sentiment, and
news articles to enhance prediction accuracy. Additionally,
advancements in natural language processing and sentiment
analysis techniques have allowed for a more comprehen-
sive understanding of the impact of geopolitical events and
news on oil prices [3, 19, 22, 23]. A popular approach com-
bines different neural networks with statistical and economic
methods to improve crude oil forecasting. For instance,
many researchers have merged RNN networks with CNN
and self-attention mechanisms to capture temporal, local,
and long-term dependencies in historical price data [24,
25]. Statistical and time-series analysis methods [such as
variational mode decomposition (VMD), empirical mode
decomposition (EMD), Granger causality, Gaussian process,
and complete ensemble empirical mode decomposition with
adaptive noise (CEEMDAN)] are also prevalent alongside
neural networks in recent approaches (i.e., [3, 19]).

More recently, Transformer-based approaches have been
explored in the literature [11, 26], raising questions about
their performance compared to sequential processing mech-
anisms like RNNs. This is the first paper to provide an
empirical assessment and comparison between Transformer-
based and RNN-based models for oil price forecasting.
Furthermore, while many existing approaches focus primar-
ily on single-step forecasting, robust frameworks are still
needed to effectively handle multi-step forecasting scenar-
ios.

3 Preliminaries

This section briefly describes the deep-learning network
architectures examined in this work. These architectures also
serve as benchmarks for evaluating our proposed model.

As listed in Table 1, the targeted networks selected
for the experiments include LSTM, GRU, CNN-LSTM,
CNN-LSTM-att, Transformer, Autoformer, Informer, and
TimsNet. GRU and LSTM networks have been selected
due to their established effectiveness in time-series fore-
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Table 1 Experimental design

Models LSTM, GRU, Bi-LSTM, Bi-GRU, CNN-Bi-LSTM, CNN-Bi-LSTM-att, Transformer, Autoformer, Informer, TimesNet

External variables USDX, TENI, SENT

Window size Tuning range 5–22

Prediction horizon 1,3

casting tasks [12, 17]. Combining CNN and LSTM net-
works and attention is another popular approach widely
employed in the literature. CNNs excel at extracting local
features from time-series data by applying learnable fil-
ters that capture spatial relationships within specific time
windows. The CNN extracts relevant local features, while
the LSTM and GRU model long-term dependencies. Addi-
tionally, the self-attention mechanisms effectively direct
attention across the time-series data. On the other hand,
transformers have demonstrated remarkable achievements
across various domains beyond just NLP. Over the last three
years, transformer-based architectures (including Informer
[26], Autoformer [11]) have been adapted for time-series
tasks. TimesNet [27] is another cutting-edge CNN-based-
structure model introduced in April (2023).

3.1 Long Short-TermMemory (LSTM)

LSTM is a popular type of recurrent neural network (RNN)
architecture widely used in deep learning [28]. It was
introduced to address the vanishing and exploding gradi-
ent problems that hinder the training of traditional RNNs.
LSTM models are particularly effective in capturing long-
term dependencies in sequential data such as time-series.

3.2 Gated Recurrent Unit (GRU)

GRU is a Recurrent Neural Network (RNN) variant that
offers certain advantages compared to the popular Long
Short-Term Memory (LSTM) model. GRU is known for
its efficiency and faster computation, requiring less mem-
ory than LSTM. However, LSTM tends to perform better in
scenarios involving datasets with longer sequences, as it can
effectively capture and retain long-term dependencies [29].

3.3 CNN-LSTM

Convolutional Neural Networks (CNNs) are deep-learning
models designed explicitly for analysing visual data, such
as images or videos. They employ a hierarchical struc-
ture of interconnected layers, including convolutional layers
for feature extraction and pooling layers for dimensionality
reduction. CNNs excel at extracting local features from time-
series data by applying learnable filters that capture spatial
relationships within specific time windows. This capabil-

ity is precious for identifying the data’s cyclical patterns or
localised events. By combining these strengths, CNN-LSTM
architectures synergistically address the limitations of indi-
vidual models. The CNN extracts relevant local features,
while the LSTM leverages these features to model long-term
dependencies

3.4 CNN-LSTM-Attention

The emergence of self-attention mechanisms in transformer
architectures has revolutionised natural language process-
ing tasks. By allowing models to weigh the importance
of different input tokens, self-attention enables capturing
long-range dependencies efficiently. Building upon this con-
cept, the CNN-LSTM-Self Attention approach combines
convolutional neural networks (CNNs) for spatial feature
extraction, long short-term memory (LSTM) networks for
capturing temporal dependencies, and self-attention mecha-
nisms for effectively directing attention across the time-series
data. This fusion of techniques empowers the model to cap-
ture both local patterns and long-term dependencies. It is a
promising approach for time-series forecasting tasks where
understanding short-termfluctuations and overarching trends
is crucial.

3.5 Transformer

A transformer model is a neural network that learns con-
text and thus meaning by tracking relationships in sequential
data like the words in this sentence, first described in 2017
by Ashish Vaswani [30]. Transformers excel in capturing
complex relationships in data and have become a corner-
stone in modern deep-learning architectures, epitomised
by models, such as BERT, GPT, and others. Their suc-
cess extends beyond NLP, finding applications in various
domains, including computer vision and time-series analy-
sis. Transformer-based models have been proposed to adopt
various self-attention mechanisms to discover long-range
dependencies and enhance long-term forecasting.

3.6 Informer

The Informer is a transformer-based model designed to
handle long dependencies in Long-Sequence Time-Series
Forecasting. This model, as described in [26], addresses
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some drawbacks of long-sequence time-series forecasting
transformers. The encoder of the Informer processes long-
sequence inputs and replaces canonical self-attention with
ProbSparse attention. The decoder handles lengthy sequence
inputs by zero-padding the target elements, calculating the
weighted attention composition of the feature map, and
promptly generating output elements generatively.

3.7 Autoformer

In exploring the ongoing research efforts to adapt the trans-
former architecture for time-series prediction, this paper
introduces the Autoformer model [11]. The Autoformer
includes several enhancements, such as series decomposition
and an auto-correlation mechanism. The encoder uses series
decomposition blocks (blue) to remove the long-term trend-
cyclical aspect, focusing onmodelling seasonal patterns. The
decoder gradually accumulates the trend from hidden vari-
ables,with past seasonal data utilised by the encoder–decoder
auto-correlation mechanism.

3.8 TimesNet

TimesNet (Temporal 2D-Variation Modelling for General
Time-Series Analysis) is a (CNN)-based model proposed
for general time-series analysis tasks, including forecast-
ing, classification, imputation, and anomaly detection. This
model was introduced in 2023 in this paper[27] and has
demonstrated state-of-the-art performance on various bench-
mark datasets. TimesNet transforms the 1D time-series data
into 2D tensors to simultaneously represent intra-period and
inter-period variations. The fundamental structure of Times-
Net involves stacking of TimesBlocks in a residual manner.
These TimesBlocks are adept at capturing diverse temporal
2D-variations from k different reshaped tensors. The fusion
process is carried out based on normalised amplitude values.

4 Dataset

4.1 Dataset Description

The initial dataset used in this paper encompasses eight vari-
ables: closing prices of Brent oil, the USD index, the Saudi
Energy index, the Saudi Tadawul All Share index, the S&P
500 index, the Natural Gas index, the Gold index, and a sen-
timental score. These variables span 2,380 observations from
January 2012, to April 2021, capturing the period impacted
by the COVID-19 pandemic on energy and stock markets.
This time range was specifically chosen due to the availabil-
ity of sentiment scores for this period.

Figure 1 displays the time-series plot of Brent’s daily clos-
ing price. The figure shows that sharp fluctuations in crude

Fig. 1 Brent oil price trend from 2012 to 2021

oil logistics and production are often linked to world events.
Extensive research has explored the influence of industrial
commodities, indices (such as USD, S&P 500, Natural Gaz,
and Gold), and sentiment analysis extracted from news arti-
cles, financial reports, and even tweets on the energy market
[22, 23, 31–33]. External factors that affect the movement of
crude oil prices could be categorised into supply, demand,
financial, political, and major events factors [31]. These fac-
tors are inter-correlated; for instance, supply and demand
movement may be subject to political factors and world
events.

4.2 Correlation-Based Feature Selection

Correlation-based Feature Selection is a method to iden-
tify and select the most relevant features from a dataset by
analysing the relationship between each feature and the target
variable. This technique helps select features that can play
the most significant role in predicting the target variable. We
created afiltereddataset that includes only three external vari-
ables fromour initial dataset to be used as input features to our
models alongside the Brent oil prices, based on their strong
correlation with Brent prices. We used a Spearman correla-
tion coefficient threshold of 0.6 to identify these variables, as
shown in Fig. 2. Therefore, the three variables enumerated
below have been designated for subsequent experimentation
alongside the target variable (Brent crude oil prices). The
impact of these variables on the prediction performance has
been further evaluated experimentally during themodel train-
ing, as detailed in Sect. 6

1. Sentiment score (SENT): We used an accumulative sen-
timental score provided by CrudeBERT_Plus model and
presented in [22]. CrudeBERT is a variant of FinBERT
that has been fine-tuned towards assessing the impact of
market events on crude oil prices, focusing on frequently
occurringmarket events and their effects onmarket prices
according toAdamSmith’s theory of supply and demand.
Mainly, CrudeBERT dataset used headlines originating
from 1034 unique news sources, of which the major-
ity has been published on the Dow Jones newswires
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Fig. 2 Heatmap Spearman
Correlation

(approx. 21,200), followed by Reuters (approx. 3,000),
Bloomberg (approx. 1,100), and Platts (approx. 870).
More details about generating this sentiment score are
found in the paper [22]; the data are publicly available
and can be reached following this link.

2. USDX Index: The U.S. dollar index (USDX) measures
the value of the U.S. dollar relative to a basket of foreign
currencies. There is a negative correlation between crude
oil and the USDX index. USDX historical dataset has
been obtained for the same period from Investing.

3. Saudi energy sector index (TENI) contains two com-
panies working in the energy sector (Arabian Drilling
Co and Rabigh Refining & Petrochemical Co). The his-
torical dataset of this index has been obtained for the
same period from https://uk.investing.com/indices/tpisi-
historical-data.

4.3 Data Preparation

Our training data have been standardised by removing the
mean and scaling to unit variance. To incorporate observa-
tions of all features, we run a left-join merge between the
Brent crude oil price time-series and the other three input
time-series. On the other hand, the missing values in the
three external factors have been filled in by running a Lin-
ear Interpolation function: Let’s Xt is a null value, Xt =
(Xt−1+Xt+1)/2. The dataset has been split into train/valid

and tested as follows: Training set: from 2012-01-03 to 2019-
10-10; Validation set: from 2019-10-11 to 2020-06-23; and
Test set from 2020-06-24 to 2021-04-01.

5 Methodology

This work presents a hybrid approach, based on deep-
learning models and times-series volatility analysis, for
multi-step forecasting of Brent crude oil prices. Mathemati-
cally, given a set of time-series inputs Xt = {xt−2, xt−1, . . . ,

xt }, where each vector xt containsmultiple features (e.g., his-
torical oil prices, sentimental indicators, andmarket data), the
deep-learning model learns a complex function fθ param-
eterised by θ . The objective is to forecast the prices over
multiple horizons h: xt+h = fθ (Xt ) + εt where εt is the
error term. Additionally, we investigate how external factors
affect prediction accuracy and determine the most effec-
tive deep-learning architecture and configuration to enhance
forecasting performance. To this end, we followed the steps
outlined below, illustrated by Fig. 3.

First, we collected eight historical data (eight time-series),
performed a correlation-based test to select only themost cor-
related variables for the next phase, and prepared our filtered
dataset, as described in Sect. 4. The filtered dataset com-
prises daily historical observations of Brent crude oil prices,
along with USDX, SENT, and TENI. Second (in the first
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Fig. 3 Methodology flowchart and ERS-BI-GRU model

stage experiments), we conducted experiments using differ-
ent architectures of GRU, LSTM, CNN, and transformer-
based models adapted for time-series forecasting. A wide
range of experiments was carried out, considering various
model architectures, time steps, and forecasting horizons.We
trained each model with univariate and multivariate inputs,
incorporating the three external factors (USDX, NETI, and
SENT) individually and collectively. We compared the per-
formance of each model in one-step and multi-step horizon
forecasting, as discussed in Sect. 6. We evaluated the results
obtained by each model using MAE, MSE, and RMSE
metrics. This phase’s objective is to identify the most effec-
tive model experimentally. It features for our case study,
which will be used in the following (final) phase to pro-
duce the ensemble forecast. Finally, based on the results and
observations from the previous phase, we built the ERS-
Bi-GRU model, which merges forecasts of three Bi-GRU
networks performing three forecasting scenarios, as detailed
in Sect. 6. The ERS-GRU model demonstrated superior per-
formance compared to other targeted and created benchmark
models.

6 Experiments

This section highlights a representative sample of the exper-
iments carried out, the evaluation metrics used, and the
best results achieved by each model. However, the models’
training experiments were conducted on a machine running
Windows 11 with 16GB of RAM. The models were built and
trained using the PyTorch deep-learning framework.

6.1 Error EvaluationMetrics

To evaluate the performance of each model, the following
commonly used evaluation metrics were employed:

Mean Absolute Error (MAE) measures the average abso-
lute difference between the predicted and actual values. It is
calculated as:

MAE(y, ŷ) =
∑n

i |yi − ŷi |
n

Mean Squared Error (MSE) calculates the average squared
difference between the predicted and actual values. It is com-
puted as

MSE(y, ŷ) =
∑n

i (yi − ŷi )2

N

Root-Mean-Squared Error (RMSE) is the square root of the
MSE, providing a measure of the average magnitude of the
error. It is given by:

RMSE(y, ŷ) =
√∑n

i (yi − ŷi )2

n

Mean Squared Prediction Error (MSPE) is a statistical mea-
sure used to evaluate the accuracy of a predictive model. It
quantifies the average squared difference between the pre-
dicted values and the actual observed values.

MSPE(y, ŷ) = 1

n

n∑

i

(yi − ŷi )
2.
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Coefficient ofDetermination (R2 orR-squared) is a statistical
measure of how well the regression predictions approximate
the actual data points. The following equation expresses the
latter:

R2(y, ŷ) = 1 −
∑n

i=1(yi − ŷi )2
∑n

i=1(yi − ȳ)2
.

These evaluation metrics allow for quantifying the accuracy
and precision of the model’s predictions. LowerMSE,MAE,
MSPE, and RMSE values indicate better performance, indi-
cating smaller discrepancies between the predicted and actual
values, while a high R2 value implies better performance. For
a fair comparison, the models have been trained under the
same procedures but with a customised hyperparameter con-
figuration for each model. MAE, MSE, MSPE, and RMSE
are calculated using actual, not scaled, prices.

6.2 Experimental Design

Table 1 shows the experiment parameters. To evaluate theper-
formance of each one of the targeted models [GRU, LSTM,
Bi-GRU, Bi-LSTM, LSTM-CNN, LSTM-CNN-attention,
Autoformer, Informer, Transformer, TimesNet], a systematic
approach was employed, considering various window sizes
(tuning range from 5 to 22) with one-step (one-ahead) and
multi-step (three-ahead days) forecasts, with more focus on
the multi-step forecasting. For each model, two training sce-
narios were considered: (1) utilising only Brent crude price
lags (univariate) and (2) incorporating different combina-
tions of the three external factors, namely USDX, SENT,
and TENI (multivariate). This approach enabled a compre-
hensive assessment of themodels frommultiple perspectives.
To ensure a unified, systematic comparison, the models were
applied to the same dataset as described in Section (4). A
unified dataset splitting and evaluation methodology was
adopted tomaintain consistency throughout the experiments.
Hyperparameterswere tuned separately for eachmodel based
on the MSE during the training phase, considering various
factors, such as window size, prediction horizon, input types
(univariate/multivariate), and the inclusion of external fac-
tors.

7 Findings and Discussion

7.1 LSTM and GRUModels

Despite the emergence of newer advanced models in deep
learning, LSTM and GRU models have maintained their
significance and remain competitive options for time-series
prediction tasks. These models excel in preserving the tem-
poral order. The simplicity of model tuning and their lower
computation complexity compared to Transformers orGANs

Table 2 GRU-based models

Model Horizon MAE MSE RMSE

GRU 3 1.2119 2.4764 1.5736

Bi-GRU 3 1.1049 2.1991 1.4829

SENT-Bi-GRU 3 1.0411 2.0097 1.4176

USD-Bi-GRU 3 1.0874 2.1378 1.4621

TENI-Bi-GRU 3 1.0960 2.1537 1.4675

SENT-GRU-1 1 0.0647 0.0069 0.0833

TENI-GRU-1 1 0.3104 0.1530 0.3912

are further advantages. Results obtained from GRU and
LSTM models are shown in Tables 2 and 3. The best results
achieved were by the SENT-GRU-1 model (MAE 0.0647,
MSE 0.0069, andRMSE 0.0833) in terms of 1-day ahead and
(MAE 1.0411, MSE 2.0097, and RMSE 0.4176) in term of a
3-days ahead forecasting with the SENT-Bi-GRU model. It
is worth mentioning that the evaluationmetrics (MAE,MSE,
and RMSE) have been calculated using the original values
(re-normalised values).

7.2 Transformers and TimesNet Experiments

Weexamined a base Transformermodel alongwith twowell-
known transformer-based architectures specifically designed
for time-series tasks, namely Autoformer [11] and Informer
[26]. Additionally, we examined another advanced time-
series model named TimesNet, which is based on a CNN
architecture using a temporal 2D-variationmodelling approach
[27]. Similar to the experiments presented in the previous sec-
tion,we conduct experiments incorporating the three external
variables in various combinations. Among the models men-
tioned above, the best results were obtained regarding 3-day
ahead forecasting by incorporating the sentiment score with
Autoformer (MAE2.8073,MSE5.7048, andRMSE2.3884),
as shown in Table 4. These transformer-basedmodels exhibit
inferior performance compared to sequence models. This
disparity can be attributed to the self-attention mechanism
applied to transformer-based models, which is somewhat
"anti-order" and can lead to temporal information loss. This
loss is usually not a significant concern in semantic-rich
applications like natural language processing (NLP), where
the meaning of a sentence remains largely preserved even
if the word order is altered. However, when dealing with
time-series data, the primary focus is modelling the temporal
relation within a continuous sequence of points. Addition-
ally, it is essential to acknowledge the relatively higher
training time and complexities associated with Transformers
regarding the difficulty in fine-tuning the hyperparameters
compared to more traditional models like GRU or LSTM.
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Table 3 LSTM-based models Model Horizon MAE MSE RMSE

SENT-Bi-LSTM 3 1.0455 2.0231 1.4223

USD-Bi-LSTM 3 1.1690 2.3917 1.5465

TENI-Bi-LSTM 3 1.1570 2.3038 1.5178

SENT-Bi-CNN-LSTM 3 1.3955 3.3865 1.8402

SENT-Bi-CNN-LSTM-att 3 1.4524 3.2913 1.8141

Table 4 Transformer-based models

Model Horizon MAE MSE RMSE

SENT-Autoformer 1 1.3854 3.2847 1.8123

SENT-Autoformer 3 2.8073 5.7148 2.3884

SENT-Informer 1 3.7948 18.6935 4.3236

SENT-Informer 3 5.0463 31.8270 5.6415

SENT-TimesNet 1 1.4099 3.3947 1.8424

SENT-TimesNet 3 3.4176 7.9913 2.8269

SENT-Transformer 1 3.4512 15.251 3.9052

SENT-Transformer 3 6.5671 30.4323 5.5165

Autoformer 1 1.5357 3.8618 1.9651

Autoformer 3 5.383 36.9292 6.0769

7.3 External Variables

The impact of three external time-series variables on pre-
diction accuracy has been investigated: USDX, TENI, and
the cumulative sentimental score (SENT). The initial part
of the models’ names indicates the integrated variables; for
example, "SENT-Bi-GRU" signifies a Bi-GRU model where
the sentiment index serves as an input. The results shown in
Tables 2 and 3 suggest that the cumulative sentimental score
(SENT) is the most effective external time-series variable for
improving the prediction accuracy of Brent crude oil price.
SENT is more effective, because it captures the overall sen-
timent of the market, which can be a valuable predictor of
future prices. USDX and TENI, on the other hand, may not
be as effective predictors, because they only capture specific
aspects of the market, such as the strength of the US dollar
or the price of oil.

7.4 SENT-Bi-GRU

Among all the previous experiments conducted, the SENT-
BI-GRU network, which is a Bi-GRU network integrated
with sentiment index, demonstrated the highest accuracy
performance. SENT-Bi-GRU is a simple and effective bidi-
rectional GRU architecture incorporating a cumulative sen-
timent index. The architecture of this network consists of a
bidirectional GRU network followed by two fully connected
layers, all connected through ReLU activation functions. The

best performance has been achieved with a window size of
five time steps, a batch size of 16, and the AdamWoptimiser.

7.5 ERS-Bi-GRU

We incorporated a residual analysis into the previous model
(SENT-Bi-GRU) to refine the predictive capabilities fur-
ther. The main idea is to ensemble the forecasts of two
Bi-GRU networks. One network incorporates a sentimental
index as an input feature, while the other includes a resid-
ual component as an input feature (Fig. 4 depicts the residual
component). The forecasts from these two networks are then
fused using aweighted averagingmethod, resulting in amore
robust and accurate prediction. The objective is to enhance
capturing fluctuations and irregularities in the oil market. We
assume that we canmodel the price fluctuations with the help
of the sentiment index and the residual component.

The proposed models, denoted as Ensemble Sentiment-
Residual BiGRU (ESR-BiGRU), involve the following steps:

1. Train a Bi-GRU model to future crude oil prices. The
model takes the historical crude oil prices and sentiment
index as inputs. Let Pt represent the crude oil price at time
t and St denote the sentiment index simultaneously. The
forecast from Bi-GRU can be denoted as f orecast1 =
FBi-GRU(Pt , St ).

2. Train aBi-GRUmodel: Thismodel takes sentiment index
S and the residual component R (calculated by remov-
ing the trend from the oil prices) as inputs and learns to
predict the unpredictable variations in oil prices. Let Rt

represent the residual at time t and St denote the senti-
ment index simultaneously. The forecast from Bi-GRU
can be denoted as f orecast2 = FBi-GRU(Rt , St ).

3. Train a Bi-GRUmodel: This model takes historical crude
oil prices P and the residual component R as inputs
and learns to predict future crude oil prices. The fore-
cast from this Bi-GRU is denoted as f orecast3 =
FBi-GRU(Pt , Rt ).

4. Calculate the final forecast: The last forecast is obtained
bycombining the three forecasts as follows: Forcat f inal =
(( f orecast3 − f orecast2 ∗ W1) ∗ W2) + ( f orecast1 ∗
W3).
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Fig. 4 Crude Brent oil price components

Table 5 ERS-Bi-GRU model
results versus other created
benchmark models. The values
are calculated using the actual,
not scaled prices

Horizon MAE MSE RMSE MSPE R2

ERS-Bi-GRU 3 1.04475 1.9946 1.4123 0.00079 0.9750

Bi-GRU 3 1.1049 2.1991 1.4829 0.00087 0.97239

SENT-Bi-GRU 3 1.0411 2.0097 1.4176 0.00081 0.97476

SENT-Bi-LSTM 3 1.0455 2.0231 1.4223 0.00082 0.97460

SENT-Bi-CNN-LSTM 3 1.3955 3.3865 1.8402 0.00140 0.95748

SENT-Bi-CNN-LSTM-att 3 1.4524 3.2913 1.8141 0.06280 0.95867

SENT-Autoformer 3 2.8073 5.7048 2.3884 0.10241 0.92862

SENT-TimesNet 3 3.4176 7.9913 2.8269 0.27340 0.90014

Fig. 5 One-ahead day forecasts using SENT-GRU and SENT-LSTM models
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Fig. 6 3-ahead day forecasts, ERS-Bi-GRU model versus other benchmark models

This model outperforms all the other models examined in
this paper and benchmark models, achieving MAE 1.04475,
MSE 1.9946 and RMSE 1.4123.

7.6 Discussion and Benchmark Comparison

In general, the significance of the experiment results is as
follows: First, simple models (GRU and LSTM) outperform
transformer and TimesNet models for Brent crude oil price
forecasting; second, incorporating crude oil-relevant senti-
mental index is demonstrated to be effective and promising to
help in estimating the fluctuation level of the price. However,
among the various models considered, our findings reveal
that bidirectional (LSTM/GRU)models yield the best perfor-
mance. While Bi-GRU outperforms slightly the Bi-LSTM.
We obtained the best results of forecasting with the ESR-
Bi-GRU model (MAE 1.04475, MSE 1.9946, and RMSE
1.4123) for a 3-day ahead forecasting, as shown in Table 5.
It is worth mentioning that MAE, MSE, and RMSE have
been calculated using the re-scaled predicted values. Opti-
mal time-step values for different models are among (5, 10,
17, and 22), with 16 of batch size.

Figures 5, 6 depict samples of the forecasting results of
the proposed model and the other created benchmark mod-
els. The proposedmodel (ERS-Bi-GRU) exhibits a high level
of accuracy in forecasting the closing prices of Brent crude
oil, demonstrating a solid alignment between its predictions
and the observed values. This highlights the model’s abil-
ity to provide precise forecasts for crude oil prices. This
study focuses on forecasting Brent oil prices using a daily
observation-based dataset, which limits the overall dataset
size. Furthermore, our analysis is constrained to the period
from 2012 to 2021 due to the unavailability of the sentiment
index outside this timeframe.

8 Conclusion

This work follows a comprehensive methodology for accu-
rate multi-step forecasting for crude Brent prices. We started
by conducting a comparative analysis of the performance of
various architectures of six deep-learning networks (GRU,
LSTM, Autoformer, Informer, Transformer, and TimesNet)
for Brent crude price forecasting. In addition, it introduces
a sample and efficient model, ERS-Bi-GRU, for multi-
step forecasting of Brent crude price. Our experiments go
beyond the models by examining the significance of exter-
nal factors that commonly influence the crude oil market.
By incorporating these additional factors, the evaluation
aims to provide a holistic understanding of the models’
forecasting capabilities in real-world scenarios. The results
demonstrated that sequence-basedmodels (GRUandLSTM)
outperform transformer-based models for forecasting crude
oil prices. The results showed that the proposed ERS-Bi-
GRU model outperforms benchmark models in the field and
state-of-the-art models (Autoformer and TimesNet) regard-
ing one/multi-step forecasting. The results also demonstrated
the importance of extraneous factors to improve the forecast-
ing accuracy. Finally, it is worth mentioning that the nature
of the data significantly influences training models for fore-
casting tasks and is extremely sensitive to hyperparameter
configurations. Therefore, efficient algorithms for optimising
hyperparameter configuration are recommended. In future
work, we seek to enhance this model by integrating opti-
misation algorithms (such as Particle, Swarm Optimization,
Gravity Search, algorithm, and Gray Wolf Optimizer) for
hyperparameter tuning. Additionally, we plan to incorporate
the proposed model within a GAN architecture and add SDE
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solvers for modelling volatility and noise. Furthermore, we
intend to apply this approach to financial data.
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