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Abstract
Purpose A computer-assisted surgical system must provide up-to-date and accurate information of the patient’s anatomy
during the procedure to improve clinical outcome. It is therefore essential to consider the tissue deformations, and a patient-
specific biomechanical model (PBM) is usually adopted. The predictive capability of the PBM is highly influenced by proper
definition of attachments to the surrounding anatomy, which are difficult to estimate preoperatively.
Methods We propose to predict the location of attachments using a deep neural network fed with multiple partial views of the
intraoperative deformed organ surface directly encoded as point clouds. Compared to previous works, providing a sequence
of deformed views as input allows the network to consider the temporal evolution of deformations and to handle the intrinsic
ambiguity of estimating attachments from a single view.
Results The method is applied to computer-assisted hepatic surgery and tested on both a synthetic and in vivo human open-
surgery scenario. The network is trained on a patient-specific synthetic dataset in less than 5h and produces a more accurate
intraoperative estimation of attachments than applying the ones generally used in liver surgery (i.e., fixing vena cava or
falciform ligament). The obtained results show 26% more accurate predictions than other solution previously proposed.
Conclusions Trained with patient-specific simulated data, the proposed network estimates the attachments in a fast and accu-
rate manner also considering the temporal evolution of the deformations, improving patient-specific intraoperative guidance
in computer-assisted surgical systems.

Keywords Patient-specific simulation · Intraoperative model update · Augmented surgery · Boundary conditions

Introduction

During a complex computer-assisted surgery, the integra-
tion and effective visualization of preoperative data allow the
surgeon to access the information available on the specific
patient, which can improve the operative outcome [1, 2]. In
the context of hepatic surgery, the surgeon needs to continu-
ously keep track of several structures of interest (e.g., tumors
to be removed or blood vessels to be preserved), which move
with respect to their preoperative location due to liver defor-
mations induced by surgical manipulations and interactions
with the surrounding tissues.

The possibility to rely on deforming liver would provide
valuable intraoperative assistance to the surgeon, who can
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continuously monitor the up-to-date location of the critical
structures. In order to meet the accuracy requirements of
hepatic surgery, such augmented view must be built from a
patient-specific biomechanicalmodel (PBM)which accounts
for patient-specific characteristics (e.g., anatomy, mechan-
ical properties and boundary conditions) and image data
(e.g., liver’s deformed visible surface) [3]. This PBM model
can support not only advanced visualization techniques, but
also registration methods between pre-operative and intra-
operative data, able to handle the presence of anatomical
deformations even when landmark or fiducial correspon-
dences are not available.

The finite-element (FE) method is generally used to solve
suchPBMrelyingon continuummechanics laws, for its accu-
racy and ability to simulate a wide range of materials. The
FE formulation requires the definition of material proper-
ties (e.g., Poisson’s ratio and Young’s modulus for elastic
materials) and boundary conditions [4]. While the Poisson’s
ratio is generally set to 0.5 to model tissues incompressibil-
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ity, other material parameters like the Young’s modulus vary
with age and pathology, andmay require patient-specific esti-
mation, for instance based on elastographic techniques [5]
or by exploiting Kalman filtering [2]. However, estimation
of material properties is not necessary in a scenario as the
one considered in this work, where surface constraints are
imposed, so the effect of Young’s modulus can be neglected
[6].

When the input is represented by surface constraints, the
so-called Dirichlet boundary conditions (BCs) play a major
role in the deformation of the considered object [4, 6, 7]
and need to be carefully estimated. They correspond to the
attachment points of the organ to the surrounding anatomy,
and they are usually not visible or hard to estimate from the
preoperative images. Hence, in order to provide the surgeon
with an up-to-date augmented view reflecting the intraopera-
tive conditions of the patient, such attachment points should
be characterized intraoperatively [2, 4, 7]. A few works have
addressed the intraoperative estimation of BCs in the con-
text of hepatic surgery. Authors in [1, 4] propose to estimate
the location of the falciform ligament (i.e., one of the main
anatomical liver attachment) by initializing their model with
a statistical atlas,which is sensitive to inter-patient variations.
As an alternative, authors in [8] propose to use additional
intraoperative sensors, which can be complex to introduce
into clinical practice. Moreover, data acquired intraopera-
tively introduces uncertainty to the system which can be
addressedwithBayesian filtering as proposed in [7, 9], where
authors use Kalman filters to estimate the attachments of the
liver as stochastic parameters. However, such filters are very
sensitive to the initialization parameters which can make the
algorithm fail in specific conditions.

A recent approach [10] has introduced a deep neural
network called BA-Net (binary-attachment network) that
estimates adipose tissue’s BCs intraoperatively, starting from
a single intraoperative point cloud of the deformed adipose
tissue, without relying on any a priori assumption about
their location. Authors have proposed a complete pipeline
which has shown capable of very fast intraoperative estima-
tion of organ attachment points [11], guaranteeing the PBM
to be continuously up-to-date, thus reflecting changes due
to surgical manipulation. Inspired by this work, we propose
an extended version of BA-Net, called BA-Net 2.0, applied
for BCs estimation in a different context than adipose tis-
sue manipulation (i.e., liver surgery), which introduces the
following three main contributions:

• First of all, original BA-Net is trained on various random
anatomical shapes, which makes it usable for any patient
geometry but at the cost of a loss in accuracy and very
long training times. Instead, we choose here to rely on a
patient-specific network trained only with synthetic data
built from the patient’s geometry. This allows for short

training times (only a few hours), compatible with the
standard surgical workflow.

• Secondly, one partial surface deformation is in gen-
eral not sufficient to fully characterize the BCs of a
model, in particular when the attachment area is hid-
den. Indeed, several BCs can satisfy the given input
surface deformation without being mechanically mean-
ingful (non-uniqueness of the solution to the inverse
problem). In order to reduce the amount of possible
BCs, we propose here to feed BA-Net with multiple
non-consecutive views describing significantly different
deformations allowing the network to better understand
the attachments and to account for time evolution.

• Thirdly, the original BA-Net is fed with the displace-
ment of the visible points, which needs an extra step for
estimating the correspondence between the points of the
intraoperative point cloud and those of the model. This
step may introduce approximation errors and can be very
sensitive to the quality of the initial rigid registration of
the model and the surgical data. In this work, we over-
come this limit by feeding directly the network with the
raw intraoperative point cloud, letting it implicitly learn
points-to-surface correspondences, thus reducing possi-
ble sources of error.

Methods

BA-Net 2.0 is a 3Dconvolutional neural network that predicts
a binary mask of attachment points, given multiple pieces
of deformed surfaces as input. As previously described, the
difficulty of knowing the attachment points results in the
lack of real annotated datasets. This lack is not only due
to the extensive manual annotation work required, but also
because not even expert surgeons know with precision how
and where the liver is attached to the surrounding organs for
each specific patient. Hence, we train the network with syn-
thetic samples produced with a patient-specific FE model.
The synthetic dataset used, composed of samples with ran-
dom deformation and attachments, allows to simulate all
possible intraoperative conditions, thus allowing the network
to learn the association between deformations and BCs. In
Sect. 2.1, the patient-specific training data generation process
is described in detail. In Sect. 2.2, we present the BA-Net
2.0 approach to incorporate multiple frames, describing the
differences with previous BA-Net. In Sect. 2.3, the overall
pipeline for the intraoperative update of BCs is depicted.

Patient-specific training data generation

We generate a synthetic data set using the FE method, sim-
ilarly to [10] and [11]. Instead of generating the synthetic
dataset based on random meshes, we propose to rely on a
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patient-specific geometry obtained from the preoperative CT
scan to generate the training dataset. Furthermore, the organ
surface geometry is embedded in a regular grid, and only the
cells inside the organ or those overlapping its boundary are
kept in order to generate a hexahedral mesh for the FE simu-
lation [3]. This choice is not only motivated for the stability
and good accuracy of hexahedral meshes, but also because
it matches the required grid structure as input for BA-Net
2.0. Moreover, it allows us to directly use the surface models
obtained from the preoperative CT scans without the need of
tetrahedral meshing. We model the liver as a Neo-Hookean
material [12] with Poisson’s ratio of 0.48 and Young’s mod-
ulus of 5000 Pa.

The variability of the dataset relies on the imposed con-
straints, on the attachments and on the visible surface. For
each sample, random attachment points are generated by
extracting an irregular subset of surface points that can cover
between 5 and 50 % of the surface. The attachment region
includes points around a randomly sampled node depending
on a metric that combines distance to the sampled point and
noise, as described in details in [10]. Once the attachment
points are defined, we simulate the tissue manipulation by
applying a force of random magnitude and direction over
a small random area of the surface of the organ. Newton–
Raphson algorithm is used to solve for the displacements
of the model given such randomly chosen constraints. We
repeat the simulated tissue manipulation F times to generate
F different deformations associated to the same set of attach-
ments (F stands for the number of non-consecutive frames).
Then, for each deformation, a partial piece of liver surface
is extracted to mimic the partial field of view of the surgical
context, following an approach similar to the generation of
the attachment points. The extracted visible surface ranges
between 10 and 100% of the entire liver surface, considering
a fixed virtual camera point of view.

Once the synthetic dataset is generated, the physical quan-
tities of interest are encoded in annx×ny×nz grid structure as
follows. The deformed visible surfaces are represented using
F distance fields (DFi )i=1...F , and are given as input to the
network [13]. The attachments are encoded as a binary mask
M , where 1 means “fully constrained point” and 0 means
“unconstrained point.” Such mask M represents the output
of the network. Thus, our training dataset is composed of
N samples of pairs ([DF1, DF2, ..., DFF ],M) where each
(DFi )i=1...F is an array of size 1× nx × ny × nz and M is a
binary mask of size 1 × nx × ny × nz . The same process is
followed to generate a testing data set.

To ensure the quality of the dataset, only numerically
stable samples are kept, i.e., simulations for which the
Newton–Raphson algorithm converges to a solution. More-
over, samples exceeding 0.3 m of L2 displacement are
removed.

BA-Net 2.0

BA-Net 2.0 is a 3D U-shaped convolutional neural network,
the result of a sequence of max-pooling and up-sampling
operations (Fig. 1). Since it applies standard convolutions,
it requires a grid-like structure as input. Differently from
previous works [10, 11], where a regular 643 grid was used,
BA-Net 2.0 relies on a 31×32×26 grid (nx = 31, ny = 32,
nz = 26), where each dimension fits at best the 3D size of the
considered object. This was possible because BA-Net 2.0 is a
patient-specific network, and the liver dimensions are known
beforehand. Note that the grid cell size matches the FE mesh
cell size (used for data generation), allowing for a one-to-one
correspondence between the two topologies.

The input of the original BA-Net is composed by the
displacement of the nodes of a piece of visible surface
interpolated to the 3D grid using a Gaussian kernel (three-
dimensional array), togetherwith theobject geometry encoded
as a signed distance field in the grid, thus leading to an input
of size 4×643.On the contrary, BA-Net 2.0 is patient-specific
so it does not need the surface geometry in the input. Instead,
it is directly fed with the sequence of F frames represent-
ing F deformed surface point clouds. Each frame contains
the nodal positions of the partial deformed visible surface
encoded as a distance field in the 31 × 32 × 26 grid, thus
leading to an input of size F × 31 × 32 × 26.

The output of the network is the binarymask of attachment
points M . This choice is consistent with the representation
proposed in the original BA-Net; the only difference relies on
the one-to-one correspondence between the fixed points in
the mesh and the ones in the grid. This makes it immediate to
apply the BCs predicted by the network in the PBM update.

BA-Net 2.0 architecture is well-established in the biome-
chanical simulation field [2, 14, 15] obtaining speed and
accuracy suitable for surgical application, thus demonstrat-
ing its capacity to learn the necessary information.

As training loss, we chose a combination of the dice simi-
larity coefficient (DSC) and the binary cross-entropy (BCE)
as done in [10] with a batch size equal to 5. The network is
trained using the AdamW optimizer [16] on a workstation
with AMD Ryzen 7 3700X CPU and NVIDIA 2080Ti GPU.

Intraoperative update of BCs

The pipeline of our approach is shown in Fig. 2 for an hepatic
open surgery scenario. The tri-dimensional surface informa-
tion is acquired with an RGB-D sensor placed anywhere
above the patient, as shown in Fig. 2a. The acquired point
clouds are processed with both spatial and color segmenta-
tion to extract the current view of the deformed liver from
the full anatomical view (visible in Fig. 2b). In particular,
we used the Grabcut segmentation algorithm as done in [17],
in order to visually segment the liver from the RGB image.
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Fig. 1 BA-Net 2.0 architecture.
F stands for the number of input
frames

Then, the obtained segmentation is used as a binary mask
to extract the point cloud of the region of interest from the
depth map recorded by the depth sensor. A manual registra-
tion is performed once at the beginning of the surgery to align
the acquired data with the PBM, based on geometric fea-
tures visible in both models and known spatial relationships
(e.g., the fixed position of the RGB-D sensor with respect
to the patient). A sequence of surface point clouds of the
deformed liver are then encoded as distance fields (Fig. 2c)
and used directly as input to BA-Net 2.0. In the original BA-
Net approach, the input included the displacement of the
visible points of the object. Obtaining such displacement
from a depth map describing the deformed surface of the
organ requires an extra step for finding the correspondences
between points. Regardless of the method used to compute
correspondences, this is the main bottleneck of the previous
BA-Net, both in terms of accuracy and computation time, as
demonstrated in [11]. This step is removed in the proposed
pipeline, thus simplifying it and skipping the most time con-
suming part. Instead, we rely on BA-Net 2.0 for implicitly
learning correspondences between points, which makes the
methodmore suitable for on-line intraoperative use. The pre-
diction obtained from BA-Net 2.0 visible in Fig. 2d is then
applied to update the PBM (Fig. 2e). This step is straight-
forward thanks to adopted input and output encoding that
guarantee a one-to-one correspondence.

Experiments and results

In order to validate BA-Net 2.0, we propose two main sets of
experiments on a liver geometry. On the one hand, we eval-
uate its performance on a synthetic dataset and explore the
main differences between the original BA-Net [10] and the
current one. On the other hand, we will apply BA-Net 2.0
to human data acquired during an open liver surgery at Paul
Brousse Hospital in Paris. For both scenarios, we will con-
sider one single liver geometry obtained from the patient’s

preoperative CT scan, collected at Paul Brousse Hospital.
When groundtruth attachments are available (i.e., for the
synthetic scenario), wewill compute the dice similarity coef-
ficient (DSC) to the network’s prediction. For the human data
set, we will instead compute target registration errors on visi-
ble surfaces. The method and collected datasets are available
at https://gitlab.com/altairLab/banet/-/tree/banet2.0.

Synthetic liver manipulation

Wegenerated a trainingdata set of 5263valid samples follow-
ing the strategy described in “Patient-specific training data
generation” Section with F = 1, F = 2 and F = 3 non-
consecutive frames, in less than 12h (around 8 s per sample).
The network was trained in less than 5h which makes the
approach compatible with clinical constraints, as the data can
be generated and the network trained over-night. Each pre-
diction takes 23.07 ± 2.21 ms, which allows for a real-time
update of the BCs.

We compared the accuracy of the network for different
number of non-consecutive frames and different types of
input (visible surface positions or displacements), by com-
puting DSC. Obtained results are shown in Table 1. It is not
surprising that the accuracy of BA-Net 2.0 (i.e., using only
visible surface positions as input) when using a single-input
deformed state (F = 1) is lower than the one obtained with
the original BA-Net (i.e., using the displacement of the visi-
ble surface points as input), when using the same amount of
training parameters and data. Indeed, learning the BCs from
the positions of the visible surface is more complex than
learning them from the displacement of the visible points,
as the network needs to learn the correspondences between
the points as well. However, reliance on positions instead
of displacements facilitates on-line intraoperative use (see
“BA-Net 2.0” Section).

When considering multiple frames (F = 3), there is an
improvement of 26% when compared to F = 1. Note that
if the multiple frames are generated from the same grasping
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Table 1 Comparison of the average dice score (DSC) obtained over
a testing data set of 100 synthetic samples, for different number of
non-consecutive frames as input (F), and different types of input dis-
placements for BA-Net, while positions for BA-Net 2.0

Method F DSC (mean ± std)

BA-Net 1 0.54 ± 0.21

BA-Net 2.0 1 0.39 ± 0.25

BA-Net 2.0 3 0.49 ± 0.23

Fig. 3 BA-Net 2.0 predicted attachments with one frame as input (F =
1). Prediction appears in red for frame F1, in blue for frame F2 and
in green for frame F3. The overlap (given as a DSC with respect to
prediction made with F1) is equal to 0.42 ± 0.41

Fig. 4 BA-Net 2.0 predicted attachments with three frames as input
(F = 3) ordered in the six possible configurations ((F1, F2, F3),
(F1, F3, F2), (F2, F1, F3), (F2, F3, F1), (F3, F1, F2) and (F3, F2, F1).
The overlap (given as a DSCwith respect to the first prediction) is equal
to 0.88 ± 0.06

point, there is no significant improvement when compared
to one single frame. Hence, for each sample, we generated
various deformations with different force amplitudes and
application points. Moreover, if the input deformations are
significantly different, increasing thenumber of frames above
3 gives a relatively small improvement compared to the extra
time needed to generate these extra frames.

In vivo liver manipulation

In this section, we will apply BA-Net 2.0 to real data from a
human liver surgery as shown in Fig. 2. The liver is manipu-
lated from different grasping points, inducing various levels
of deformation. The collected point clouds are filtered such
that samples with large occlusions and with deformations
exceeding that of training range are removed (at maximum
0.3m of L2 displacement is allowed).

At the beginning of the surgery, we collected three frames
with considerably different deformations and gave them to
BA-Net 2.0 trained with the synthetic dataset (“Patient-
specific training data generation” Section). Figures 3 and 4
show the predictions when using 1 and 3 frames, respec-
tively. Predictions obtained relying on one input frame only
(F = 1) are completely different from one another (there is
almost no overlap between the three predicted attachments),
which reflects the difficulty of the problem to be solved and
the non-uniqueness of the solution. On the other hand, the
prediction made with three frames is insensitive to the order
of the frames as shown by the big overlap between the predic-
tions. In the following,we consider the attachments predicted
by BA-Net 2.0 with frames (F1, F2, F3) given in temporal
order.

Since the groundtruth attachments are not exactly known,
we validate our approach by comparing the result of the intra-
operative elastic registration task aiming at deforming the
preoperative liver model to align it with the current surgical
view. The elastic registration is constrained by different set
of attachments.

Due to the lack of volumetric information during this
surgery, the outcome of the registration is assessed by
comparing the real point cloud with the outcome of the reg-
istration. In particular, the acquired point cloud is split into
two subsets. The subset of points corresponding to the most
deformed area (around 15% of the point cloud) is used to
drive the FEM registration (i.e., it represents the target posi-
tion of the corresponding points in the FEM). The remaining
points are used to assess the accuracy of the registration,
thus they are considered as ground truth positions to compute
nodal L2 errors with the predicted deformed states (output of
the registration). In our evaluation, we rely on the same FE
model described for the training data generation (“Patient-
specific training data generation” Section). However, it is not
required that themodel is the same (e.g., themeshmight have
higher resolution).

When providing deformable models for hepatic surgery,
it is a common practice to constrain the liver around vena
cava which is the stiffer part of the organ [4]. For this rea-
son, we considered the registration results obtained with
vena cava attachments as a baseline reference. In Table 2,
the distributions of the obtained nodal L2 errors are given
for the reference vena cava fixations and for the BA-Net
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Table 2 Distribution of in vivo nodal target registration errors in mm
for different type of attachments. Statistically significant differences
(according to a two-sided Wilcoxon rank sum test) are indicated by a
single asterisk if p < 0.05 or by two asterisks if p < 0.01

Type of attachments L2 error (Median–IQR)

∅** 1.19–0.60

vena cava* 0.95–0.33

BA-Net 2.0 F1* 0.99–0.17

BA-Net 2.0 F2* 0.99–0.38

BA-Net 2.0 F3* 0.98–0.18

BA-Net 2.0 F = 3 0.87± 0.12

The bold font indicates the best results obtained

2.0 predicted attachments with 1 or 3 frames as input. For
completeness, we also added the results obtained with no
attachments which correspond to the worse performance.
The lowest error is provided by the model with attach-
ments predicted with multiple frames (F = 3) and is under
1 mm as median value, which satisfies clinical require-
ments [2]. The results obtained by the method with multiple
frames (F = 3) are also statistically significantly different
(p−value < 0.05) with respect to the other conditions con-
sidered in Table 2. Statistical analysis was conducted using
an two-sided Wilcoxon rank sum test, since the samples are
not normally distributed according to Lilliefors test. More
exhaustively, the obtained nodal L2 errors for all the samples
are displayed in the graph of Fig. 5. The error with BA-Net
2.0 predicted attachments is smaller than that produced with
baseline fixations for all the samples but three. For these three
samples, the difference in performance with respect to vena
cava fixation is very small.

Discussion and conclusion

All in all, we proposed a method for the patient-specific
update of boundary conditions that can be trained in only a
few hours and that produces a more accurate PBM than using
baseline attachments. To do this, we encoded the intraopera-
tive surfaces as distance fields (the displacement at each point
does not need to be computed as in previous BA-Net, which
reduces approximation errors), and we accounted for some
temporal evolution by including non-consecutive frames in
the input (which reduced the amount of possible solutions).
Moreover, considering that BA-Net was originally proposed
for estimating theBCs of adipose tissues and now it is applied
for hepatic surgery, we can conclude that relying on deep
neural networks is a promising approach for intraoperative
parameters estimation in general.

One of themain limitations of the presentedwork relies on
the data generation process that needs to take place for every
newpatient. Themain bottleneck is explained by the random-
ness of the constraints (applied forces and attachments) that
lead to a high number of non-valid samples (non-convergence
of the Newton–Raphson solver). Future work will consider
using modal analysis as proposed in [18] in order to produce
meaningful sets of forces, leading to significantly different
deformations. This would considerably reduce data genera-
tion times. Moreover, even if the modelization results appear
to be improved with the proposed approach, the shape of
the predicted attachments is quite surprising. Indeed, they
are not anatomically meaningful as we know that the hep-
atic organ has free lobes with very few constraints. Yet, the
augmented model is improved when fixing this area, which
showcases the difficulty of the problem that we are trying to
solve.Hence, as an improvement of themethod,wewill force
BA-Net 2.0 to predict anatomically meaningful attachments
by adapting our training data sets. Indeed, we stayed very

Fig. 5 Comparison of in vivo
FEM registration using vena
cava fixations, BA-Net 2.0
predicted attachments with
multiple frames, or no
attachments at all. Nodal L2
errors are given in mm for 20
samples and are ordered in
increasing deformation amounts
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generic in the data generation process, without exploiting all
the a priori knowledge available on hepatic surgery. Instead
of generating random fixations, we will start from a statisti-
cal atlas of the liver attachments to which we will add some
randomness to still allow for unforeseen events. Also, instead
of generating random visible surfaces, we will adapt them to
the surgical scenario where we know that only between 10
and 50 % of the surface of the organ will be visible.

Supplementary information

Additional data are given in Online Resource 1.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11548-023-02964-
5.
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