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Abstract

In this paper, we propose a µ-mode integrator for computing the solution of stiff evolution
equations. The integrator is based on a d-dimensional splitting approach and uses exact
(usually precomputed) one-dimensional matrix exponentials. We show that the action of the
exponentials, i.e. the corresponding batched matrix-vector products, can be implemented ef-
ficiently on modern computer systems. We further explain how µ-mode products can be used
to compute spectral transforms efficiently even if no fast transform is available. We illus-
trate the performance of the new integrator by solving, among the others, three-dimensional
linear and nonlinear Schrödinger equations, and we show that the µ-mode integrator can sig-
nificantly outperform numerical methods well-established in the field. We also discuss how
to efficiently implement this integrator on both multi-core CPUs and GPUs. Finally, the
numerical experiments show that using GPUs results in performance improvements between
a factor of 10 and 20, depending on the problem.

Keywords: numerical solution of evolution equations; µ-mode product; dimension
splitting; spectral transform; Schrödinger equation; Graphic Processing Unit (GPU)

1. Introduction

Due to the importance of simulation in various fields of science and engineering, devising
efficient numerical methods for solving evolutionary partial differential equations has received
considerable interest in the literature. For linear problems with time-invariant coefficients,
after discretizing in space, the task of solving the partial differential equation is equivalent
to computing the action of a matrix exponential to a given initial value. Computing the
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action of matrix exponentials is also a crucial ingredient to devise efficient numerical meth-
ods for nonlinear partial differential equations; for example, in the context of exponential
integrators [28] or splitting methods [35].

Despite the significant advances made in constructing more efficient numerical algorithms,
efficiently computing the action of large matrix functions remains a significant challenge. In
this paper, we propose a µ-mode integrator that performs this computation for matrices in
Kronecker form by computing the action of one-dimensional matrix exponentials only. In d
dimensions and with n grid points per dimension the number of arithmetic operations re-
quired scales as O(nd+1). Nevertheless, such an approach would not have been viable in the
past. With the increasing gap between the amount of floating point operations compared to
the amount of memory transactions modern computer systems can perform, however, this is
no longer a consequential drawback. In fact, (batched) matrix-matrix multiplications, as are
required for this algorithm, can achieve performance close to the theoretical limit of the hard-
ware, and they do not suffer from the irregular memory accesses that plague implementations
based on sparse matrix formats. This is particularly true on accelerators, such as Graphic
Processing Units (GPUs). Thus, on modern computer hardware, the proposed method is
extremely effective. In this paper, we will show that for a range of problems the proposed µ-
mode integrator can outperform well-established integrators that are commonly used in the
field. We investigate the performances of the method for a two-dimensional pipe flow exam-
ple. Then, we consider three-dimensional linear Schrödinger equations with time-dependent
and time-independent potentials, in combination with Hermite spectral discretization, as
well as a cubic nonlinear Schrödinger equation (Gross–Pitaevskii equation) in three space
dimensions. In this context, we will also provide a discussion on the implementation of the
method for multi-core CPUs and GPUs.

The µ-mode integrator is exact for linear problems in Kronecker form (see section 2 for
more details). The discretization of many differential operators with constant coefficients fits
into this class (e.g., the Laplacian operator ∆ and the i∆ operator that is commonly needed
in quantum mechanics), as well as some more complicated problems (e.g. the Hamiltonian for
a particle in a harmonic potential). For nonlinear partial differential equations, the approach
can be used to solve the part of the problem that is in Kronecker form: for example, in the
framework of a splitting method.

The µ-mode integrator is related to dimension splitting schemes such as alternating direc-
tion implicit (ADI) schemes (see, e.g., [24, 27, 37, 41]). However, while the main motivation
for the dimension splitting in ADI is to obtain one-dimensional matrix equations, for which
efficient solvers such as the Thomas algorithm are known, for the µ-mode integrator the main
utility of the dimension splitting is the reduction to one-dimensional problems for which ma-
trix exponentials can be computed efficiently. Because of the exactness property described
above, for many problems the µ-mode integrator can be employed with a much larger step
size compared to implicit methods such as ADI. This is particularly true for highly oscilla-
tory problems, where both implicit and explicit integrators do suffer from small time steps
(see, e.g., [4]).

In the context of spectral decompositions, commonly employed for pseudospectral meth-
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ods, the structure of the problem also allows us to use µ-mode products to efficiently compute
spectral transforms from the space of values to the space of coefficients (and vice versa) even
if no d-dimensional fast transform is available.

The outline of the paper is as follows. In section 2 we describe the proposed µ-mode
integrator and explain in detail what it means for a differential equation to be in Kronecker
form. We also discuss for which class of problems the integrator is particularly efficient. We
then show, in section 3, how µ-mode products can be used to efficiently compute arbitrary
spectral transforms. Numerical results that highlight the efficiency of the approach will
be presented in section 4. The implementation on modern computer architectures, which
includes performance results for multi-core CPU and GPU based systems, will be discussed
in section 5. Finally, in section 6 we draw some conclusions.

2. The µ-mode integrator for differential equations in Kronecker form

As a simple example that introduces the main idea, we consider the two-dimensional heat
equation

∂tu(t,x) = ∆u(t,x) =
(
∂21 + ∂22

)
u(t,x), x ∈ Ω ⊂ R2, t > 0,

u(0,x) = u0(x)
(1)

on a rectangle, subject to appropriate boundary conditions (e.g. periodic, homogeneous
Dirichlet or homogeneous Neumann). Its analytic solution is given by

u(t, ·) = et∆u0 = et∂
2
1et∂

2
2u0 = et∂

2
2et∂

2
1u0, (2)

where the last two equalities result from the fact that the partial differential operators ∂21
and ∂22 commute.

Discretizing (1) by finite differences on a Cartesian grid with n1 × n2 grid points results
in the linear differential equation

u′(t) = (I2 ⊗ A1 + A2 ⊗ I1)u(t), u(0) = u0 (3)

for the unknown vector u(t). Here, A1 is a (one-dimensional) stencil matrix for ∂21 on the
grid points xi11 , 1 ≤ i1 ≤ n1, and A2 is a (one-dimensional) stencil matrix for ∂22 on the grid
points xi22 , 1 ≤ i2 ≤ n2. The symbol ⊗ denotes the standard Kronecker product between
two matrices. Since the matrices I2 ⊗A1 and A2 ⊗ I1 trivially commute, the solution of (3)
is given by

u(t) = et(I2⊗A1+A2⊗I1)u0 = etI2⊗A1etA2⊗I1u0 = etA2⊗I1etI2⊗A1u0,

which is the discrete analog of (2).
Using the tensor structure of the problem, the required actions of the large matrices

etI2⊗A1 and etA2⊗I1 on a vector can easily be reformulated. Let U(t) be the order two tensor
of size n1 × n2 (in fact, a matrix) whose stacked columns form the vector u(t). The indices
of this matrix reflect the structure of the grid. In particular

U(t)(i1, i2) = u(t, xi11 , x
i2
2 ), i1 = 1, . . . , n1, i2 = 1, . . . , n2.
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Using this tensor notation, problem (3) takes the form

U′(t) = A1U(t) +U(t)AT
2 , U(0) = U0,

and its solution can be expressed as

U(t) = etA1U0 e
tAT

2 , (4)

see [38]. From this representation, it is clear that U(t) can be computed as the action of
the small matrices etA1 and etA2 on the tensor U0. More precisely, the matrices etA1 and etA2

act on the first and second indices of U, respectively. The computation of (4) can thus be
performed by the simple algorithm

U(0) = U0,

U(1)(·, i2) = etA1U(0)(·, i2), i2 = 1, . . . , n2,

U(2)(i1, ·) = etA2U(1)(i1, ·), i1 = 1, . . . , n1,

U(t) = U(2).

It should be duly noted that the µ-mode integrator is not restricted to the simple example
considered until now. Indeed, let us consider the differential equation

u′(t) =Mu(t), u(0) = u0, (5)

where

M =
d∑

µ=1

A⊗µ

and
A⊗µ = Id ⊗ · · · ⊗ Iµ+1 ⊗ Aµ ⊗ Iµ−1 ⊗ · · · ⊗ I1. (6)

Here, Aµ denotes an arbitrary nµ × nµ matrix while Iµ is the identity matrix of size nµ,
1 ≤ µ ≤ d. The matrix M is also known in the literature as the Kronecker sum of the
matrices Aµ and is denoted by

M = Ad ⊕ Ad−1 ⊕ · · · ⊕ A2 ⊕ A1.

Condition (6) holds true for a range of equations with linear and constant coefficient dif-
ferential operators on tensor product domains. Examples in this class include, after space
discretization, the diffusion-advection-absorption equation

∂tu(t,x) = α∆u(t,x) + β · ∇u(t,x)− γu(t,x)

or the Schrödinger equation with potential in Kronecker form

i∂tψ(t,x) = −1

2
∆ψ(t,x) +

(
d∑

µ=1

V (t, xµ)

)
ψ(t,x).
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Condition (6) is fulfilled also for some problems with non-constant coefficient differential
operators, see section 4.2 for an example. We will consider these and other equations later
in the paper to perform numerical examples.

Equation (5) is what we call a linear problem in Kronecker form, and its solution is
obviously given by

u(t) = etA⊗1 · · · etA⊗du0,

where the single factors etA⊗µ mutually commute. Again, the computation of u(t) just
requires the actions of the small matrices etAµ . More precisely, consider the order d tensor
U(t) of size n1 × · · · × nd that collects the values of a function u on a Cartesian grid, i.e.

U(t)(i1, . . . , id) = u(t, xi11 , . . . , x
id
d ), 1 ≤ iµ ≤ nµ, 1 ≤ µ ≤ d.

Then, in the same way as in the two-dimensional heat equation case, the computation of
u(t) can be performed by

U(0) = U0,

U(1)(·, i2, . . . , id) = etA1U(0)(·, i2, . . . , id), 1 ≤ iµ ≤ nµ, 2 ≤ µ ≤ d,

· · ·
U(d)(i1, . . . , id−1, ·) = etAdU(d−1)(i1, . . . , id−1, ·), 1 ≤ iµ ≤ nµ, 1 ≤ µ ≤ d− 1,

U(t) = U(d).

(7)

We remark that scheme (7) can also be useful as a building block for solving nonlinear
partial differential equations. In this case, an exponential or splitting scheme would be used
to separate the linear part, which is treated exactly by the integrator (7), from the nonlinear
part which is treated in a different fashion. This is useful for a number of problems. For
example, when solving the drift-kinetic equations in plasma physics using an exponential
integrator [15, 16], Fourier spectral methods are commonly used. While such FFT based
schemes are efficient, it is also well known that they can lead to numerical oscillations [22].
Using integrator (7) would allow us to choose a more appropriate space discretization while
still retaining efficiency. Another example are diffusion-reaction equations with nonlinear
reaction terms that are treated using splitting methods (see, e.g., [20, 21, 29]). In this case
scheme (7) would be used to efficiently solve the subflow corresponding to the linear diffusion.
We further note that a related approach was pursued by [39] in order to produce schemes
that solve two- and three-dimensional biological models.

Implementing integrator (7) requires the computation of d small exponentials of sizes
n1 × n1, . . . , nd × nd, respectively. If a marching scheme with constant time step is applied
to (5), then these matrices can be precomputed once and for all, and their storage cost is
negligible compared to that required by the solution U(t). Otherwise, we need to compute
at every time step new matrix exponentials, whose computational cost still represents only
a small fraction of the entire algorithm (see section 4.1). Indeed, the main component of
the final cost is represented by the computation of matrix-matrix products of size nµ × nµ
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times nµ × (n1 · · ·nµ−1nµ+1 · · ·nd). Thus, the computational complexity of the algorithm is
O(N maxµ nµ), where N = n1 · · ·nd is the total number of degrees of freedom.

Clearly, we can solve equation (5) also by directly computing the vector etMu0. In fact
M is an N ×N sparse matrix and, when it is too large for the explicit computation of etM ,
the action of the matrix exponential can be approximated by polynomial methods such as
Krylov projection (see, for instance, [25, 40]), Taylor series [3], or polynomial interpolation
(see, for instance, [9, 10, 11]). All these iterative methods require one matrix-vector product
per iteration, which costs O(N) plus additional vector operations. The number of iterations,
however, highly depends on the norm and some properties of the matrix, such as the nor-
mality, the condition number, and the stiffness, and it is not easy to predict it. Moreover,
for Krylov methods, one has to take into account the storage of a full matrix with N rows
and as many columns as the dimension of the Krylov subspace.

Also, an implicit scheme based on a Krylov solver could be applied to integrate equa-
tion (5). In particular, if we restrict our attention to the heat equation case and the conjugate
gradient method, for example, O(maxµ nµ) iterations are needed for the solution (see the
convergence analysis in [44, Chap. 6.11]), and each iteration requires a sparse matrix-vector
product which is O(N). Hence, the resulting computational complexity is the same as for
the proposed algorithm. However, on modern hardware architectures memory transactions
are much more costly than performing floating point operations. A modern CPU or GPU
can easily perform many tens of arithmetic operations in the same time it takes to read/write
a single number from/to memory (see the discussion in section 5).

Summarizing, our scheme has the following advantages:

• For a heat equation the proposed integrator only requires O(N) memory operations,
compared to an implicit scheme which requires O(N maxµ nµ) memory operations.
This has huge performance implications on all modern computer architectures. For
other classes of PDEs the analysis is more complicated. However, in many situations
similar results can be obtained.

• Very efficient implementations of matrix-matrix products that operate close to the
limit of the hardware are available. This is not the case for iterative schemes which
are based on sparse matrix-vector products.

• The computation of pure matrix exponentials of small matrices is less prone to the
problems that affect the approximation of the action of the (large) matrix exponential.

• The proposed integrator is often able to take much larger time step sizes than, for
example, an ADI scheme, as it computes the exact result for equations in Kronecker
form.

• Conserved quantities of the underlying system, such as mass, are preserved by the
integrator.

We will in fact see that the proposed integrator can outperform algorithms with linear
computational complexity (see sections 4.3 and 4.4).
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Equation (7) gives perhaps the most intuitive picture of the proposed approach. However,
we can also formulate this problem in terms of µ-fibers. Indeed, letU ∈ Cn1×···×nd be an order
d tensor. A µ-fiber of U is a vector in Cnµ obtained by fixing every index of the tensor but
the µth. In these terms, U(µ−1)(i1, . . . , iµ−1, ·, iµ+1, . . . , id) is a µ-fiber of the tensor U(µ−1),
and every line in formula (7) corresponds to the action of the matrix etAµ on the µ-fibers of
U(µ−1). By means of µ-fibers, it is possible to define the following operation.

Definition 2.1. Let L ∈ Cm×nµ be a matrix. Then the µ-mode product1 of L with U,
denoted by S = U×µ L, is the tensor S ∈ Cn1×...×nµ−1×m×nµ+1×...×nd obtained by multiplying
the matrix L onto the µ-fibers of U, that is

S(i1, · · · , iµ−1, i, iµ+1, · · · , id) =
nµ∑
j=1

LijU(i1, · · · , iµ−1, j, iµ+1, · · · , id), 1 ≤ i ≤ m.

According to this definition, it is clear that in formula (7) we are performing d consecutive
µ-mode products with the matrices etAµ , 1 ≤ µ ≤ d. We can therefore write scheme (7) as
follows

U(t) = U0 ×1 e
tA1 ×2 . . .×d e

tAd .

This is the reason why we call the proposed method the µ-mode integrator. Notice that the
concatenation of µ-mode products of d matrices with a tensor is also known as the Tucker
operator (see [31]), and it can be performed using efficient level-3 BLAS operations. For
more information on tensor algebra and the µ-mode product we refer the reader to [32].

3. Application of the µ-mode product to spectral decomposition and reconstruc-
tion

Problems of quantum mechanics with vanishing boundary conditions are often set in an
unbounded spatial domain. In this case, the spectral decomposition in space by Hermite
functions is appealing (see [7, 48]), since it allows to treat boundary conditions in a natural
way (without imposing artificial periodic boundary conditions as required by Fourier spectral
methods, for example).

Consider the multi-index i = (i1, . . . , id) ∈ Nd
0 and the coordinate vector x = (x1, . . . , xd)

belonging to Rd. We define the d-variate functions Hi(x) as

Hi(x) =
d∏

µ=1

Hiµ(xµ)e
−x2

µ/2,

where {Hiµ(xµ)}iµ is the family of Hermite polynomials orthonormal with respect to the

weight function e−x2
µ on R, that is∫

Rd

Hi(x)Hj(x)dx = δij.

1Also known as mode-n product, n-mode product or mode-α multiplication, depending on the convention.
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We recall that Hermite functions satisfy(
−1

2

d∑
µ=1

(∂2µ − x2µ)

)
Hi(x) = λiHi(x),

where

λi =
d∑

µ=1

(
1

2
+ iµ

)
.

In general, we can consider a family of functions ϕi : R1 × · · · ×Rd → C in tensor form

ϕi(x) =
d∏

µ=1

ϕµ
iµ
(xµ)

which are orthonormal on the Cartesian product of intervals R1, . . . , Rd of R.
If a function f can be expanded into a series

f(x) =
∑
i

fiϕi(x), fi ∈ C,

then its ith coefficient is

fi =

∫
R1×···×Rd

f(x)ϕi(x)dx.

In order to approximate the integral on the right-hand side, we rely on a tensor-product
quadrature formula. To do so, we consider for each direction µ a set of mµ uni-variate
quadrature nodes Xµ

ℓµ
and weights W µ

ℓµ
, 0 ≤ ℓµ ≤ mµ, and fix to kµ the number of uni-

variate functions ϕµ
iµ
(xµ) to be considered. We have then

f̂i =
∑
ℓ<m

f(xℓ)ϕi(xℓ)wℓ, i < k, (8)

where xℓ = (X1
ℓ1
, · · · , Xd

ℓd
) ∈ Rd, wℓ =

∏d
µ=1W

µ
ℓµ

and k is the multi-index which collects

the values {kµ}µ. We show now how µ-mode products can be employed to compute the
coefficients of the spectral decomposition

f̂(x) =
∑
i<k

f̂iϕi(x) ≈ f(x) (9)

of a d-variate function and its evaluation on a Cartesian grid. First of all, for each fixed µ,
1 ≤ µ ≤ d, we define the matrix Φµ ∈ Ckµ×mµ with components

(Φµ)iℓ = ϕµ
i (X

µ
ℓ ),

and we denote by FW ∈ Cm1×···×md the tensor with elements f(xℓ)wℓ and by F̂ ∈ Ck1×···×kd

the tensor with elements f̂i. Then, in terms of the Tucker operator, we can write equation
(8) as follows

F̂ = FW ×1 Φ1 ×2 · · · ×d Φd. (10)
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It is then possible to evaluate the function f̂(x) in (9) at a Cartesian grid yp = (Y 1
p1
, . . . , Y d

pd
),

that is
f̂(yp) =

∑
i<k

f̂iϕi(yp), p < q, (11)

by the Tucker operator, too. Here the component qµ of the multi-index q is the number

of uni-variate evaluation points Y µ
pµ . Indeed, if we collect the elements f̂(yp) in the tensor

ˆ̂
F ∈ Cq1×···×qd and, for fixed µ, we define the matrix Ψµ ∈ Cqµ×kµ with components (Ψµ)pi =
ϕµ
i (Y

µ
p ), then

ˆ̂
F = F̂×1 Ψ1 ×2 · · · ×d Ψd (12)

is the tensor formulation of formula (11).
Now, we restrict our attention to the common case where the quadrature nodes are chosen

in such a way that ∑
ℓ<m

ϕi(xℓ)ϕj(xℓ)wℓ = δij, i, j < k

with m = k, that is, the orthonormality relation among the ϕi functions is true also at the
discrete level. This is the case, for instance, when using Gauss–Hermite quadrature nodes
for ϕi(x) = Hi(x). Then, the matrices Φµ ∈ Cmµ×mµ turn out to be square and formula
(10) is the spectral transform from the space of values to the space of coefficients. Moreover,
if the evaluation points coincide with the quadrature nodes, then we have Ψµ = Φ∗

µ, where
the symbol ∗ denotes the conjugate transpose of the matrix, and formula (12) is the inverse
spectral transform from the space of coefficients to the space of values.

As mentioned at the beginning of the section, we will employ the Hermite spectral de-
composition in some of our experiments (see sections 4.3 and 4.4). Hence, we will use (10)
and (12) for the required spectral transforms.

We also remark that a similar approach was pursued in [26] in the framework of three-
dimensional Chebyshev interpolation.

4. Numerical comparison

In this section, we will compare the proposed µ-mode integrator with some widely used
techniques to solve partial differential equations. For that purpose a range of PDEs, mainly
from quantum mechanics, is considered. Concerning the experiments in sections 4.1, 4.2
and 4.5, we will test the proposed method against the following iterative schemes commonly
employed to compute the action of the matrix exponential etM :

• expmv: a polynomial method described in [3] which is based on a Taylor expansion of
the exponential;

• phipm: a full Krylov method presented in [40];

• kiops: a Krylov method based on an incomplete orthogonalization process, described
in [25].
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The MATLAB source code of these methods is publicly available. Although the underlying
algorithms of these schemes only require the action of the matrix on a vector, only kiops

is readily available to do that. Therefore, in order to ensure a fair comparison, we feed
the functions with the matrix. Moreover, considering the action of the matrix on a vector
(which in our case could be performed entirely in tensor formulation by means of sums of
µ-mode products) instead of the matrix itself would not result in a speedup for the schemes
(see section 4.1). The tolerance for all the algorithms considered has been set to 2−53, which
corresponds to the machine epsilon for double precision computations. As a measure of
cost, we consider the computational time (wall-clock time) needed to solve numerically the
differential equation under consideration up to a fixed final time. As mentioned in section
2, the µ-mode integrator requires the explicit computation of small matrix exponentials.
This is performed using the internal MATLAB® function expm, which is based on the scaling
and squaring rational Padé approximation described in [2]. In this context, another method
which could be directly used in MATLAB is exptayotf from [12]. It is based on a backward
stable Taylor approximation for the matrix exponential and is faster than expm. Moreover,
as it works in single, double and variable precision arithmetic data types, it produces ap-
proximations with the desired accuracy. This is not possible for the iterative schemes which
approximate the action of etM , because the MATLAB® sparse format is restricted to double
precision. Another fast method using a similar technique and suited for double precision is
expmpol from [46]. We will demonstrate that our MATLAB implementation of the proposed
µ-mode integrator outperforms all the other schemes by at least a factor of 7.

Concerning the experiments in sections 4.3 and 4.4, we compare our µ-mode based ap-
proach with a splitting scheme/FFT based space discretization that is well-established and
efficient. In order to perform direct and inverse Fourier transforms, we employ the internal
MATLAB® functions fftn and ifftn respectively, which are in turn based on the very efficient
FFTW library [23]. Care has been taken to ensure that comparisons conducted in MATLAB®

give a good indication of the performance that would be obtained in a compiled language.
This is possible here as the majority part of the computational time is spent in the FFT
routines. For these problems, we will show that the µ-mode integrator can reach a speedup
of at least 5.

All the tests in this section have been conducted on an Intel Core i7-5500U CPU with
12GB of RAM using MATLAB® R2020b.

4.1. Code validation

As an introductory test problem, in order to highlight some qualities of our µ-mode
method, we consider the three-dimensional heat equation{

∂tu(t,x) = ∆u(t,x), x ∈ [0, 2π)3, t ∈ [0, T ],

u(0,x) = cos x1 + cosx2 + cosx3
(13)

with periodic boundary conditions.
The equation is discretized in space using centered finite differences with nµ grid points

in the µth direction (the total number of degrees of freedom stored in computer memory
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is hence equal to N = n1n2n3). By doing so we obtain the following ordinary differential
equation (ODE)

u′(t) =Mu(t), (14)

where u denotes the vector in which the degrees of freedom are assembled. The exact solution
of equation (14) is given by the action of the matrix exponential

u(t) = etMu(0). (15)

The matrix M has the following Kronecker structure

M = I3 ⊗ I2 ⊗ A1 + I3 ⊗ A2 ⊗ I1 + A3 ⊗ I2 ⊗ I1,

where Aµ ∈ Rnµ×nµ results from the one-dimensional discretization of the operator ∂2µ, and
Iµ ∈ Rnµ×nµ is the identity matrix. The quantity u(t) can be seen as vectorization of the
tensor U(t), and we can write (15) in tensor form as

U(t) = U(0)×1 e
tA1 ×2 e

tA2 ×3 e
tA3 ,

where U(t)(i1, i2, i3) = u(t)i1+n1(i2−1)+n1n2(i3−1).
We now present three numerical tests.

Test 1. We consider second order centered finite differences and compute the solution at
time T = 1 for nµ = n, µ = 1, 2, 3 with various n. We investigate the wall-clock time
as a function of the problem size.

Test 2. We fix the problem size (nµ = 40, µ = 1, 2, 3) and compute the solution at time
T = 1 for different orders p of the finite difference scheme. We thereby investigate the
wall-clock time as a function of the sparsity pattern of M .

Test 3. We consider second order centered finite differences and fix the problem size (nµ =
40, µ = 1, 2, 3). We then compute the solution at different final times T . By doing so
we investigate the wall-clock time as a function of the norm of M .

The corresponding results are shown in Figure 1. We see that the proposed µ-mode
integrator is always the fastest algorithm. The difference in computational time is at least a
factor of 60.

Concerning the first test, we measure also the relative error between the analytical so-
lution and the numerical one. As the dimensional splitting performed by the µ-mode inte-
grator is exact, its errors are equal to the ones obtained by computing (15) using the other
algorithms. Indeed, for the values of n under consideration, we obtain 2.06e-03, 1.09e-03,
6.71e-04, 4.55e-04 and 3.29e-04 for all the methods. We highlight also that the main cost of
the µ-mode integrator is represented by the computation of the µ-mode products and not
by the exponentiation of the matrices Aµ (see Table 1). Lastly, notice that the iterative
algorithms would not have taken advantage from the computation of the internal matrix-
vector products, which constitute their main cost, in tensor formulation (i.e. by means of
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Figure 1: The wall-clock time for solving the heat equation (13) is shown as a function of n (left), of the
order of the finite difference scheme p (middle), and of the final time T (right). Note that p = ∞ corresponds
to a spectral space discretization.

sums of µ-mode products). Indeed, if we measure the wall-clock time for a single action of
the matrix on a vector we observe, for the values of n under consideration, a speedup of
averagely 1.5 times by using the standard sparse matrix-vector product as opposed to the
tensor formulation.

n 40 55 70 85 100

expm 0.52 0.71 1.37 3.15 3.54

µ-mode products 0.79 1.71 5.74 10.92 16.89

Total 1.31 2.42 7.11 14.07 20.43

Table 1: Breakdown of wall-clock time (in ms) for the µ-mode integrator for different values of n (cf. left
plot of Figure 1).

The second test shows that the iterative schemes see a decrease in performance when
decreasing the sparsity of the matrix (i.e. by increasing the order of the method p or by
using a spectral approximation). This effect is particularly visible when performing a spectral
discretization, which results in full matrices Aµ. On the other hand, the µ-mode integrator
is largely unaffected as it computes the exponential of the full matrices Aµ, independently
of the initial sparsity pattern, by using expm.

Similar observations can be made for the third test. While the iterative schemes suffer
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from increasing computational time as the norm of the matrix increases, for the µ-mode
integrator this is not the case. The reason for this is that the scaling and squaring algorithm
in expm scales very favorably as the norm of the matrix increases.

4.2. Pipe flow

To demonstrate that the µ-mode integrator can be used for some problems with non-
constant coefficients, we consider a model for a fluid flowing in a pipe. The main assumptions
are that of radial symmetry (i.e. the solution does not depend on the angle variable in the
circular cross section, see for example [47]) and a prescribed length-dependent flow velocity.
In this case we obtain the following diffusion-advection equation for the concentration c

∂tc(t, ρ, z) = α

(
∂ρρc(t, ρ, z) +

1

ρ
∂ρc(t, ρ, z) + ∂zzc(t, ρ, z)

)
− s(z)∂zc(t, ρ, z), (16)

where t ∈ [0, T ], ρ ∈ [ρmin, ρmax] and z ∈ [0, zmax]. Here α is the diffusivity and s(z) represents
the advection velocity.

After space discretization, which in our case is performed by means of second order
centered finite differences with equal number of discretization points nµ in each direction
(i.e. nµ = n, with µ = 1, 2), the resulting ODE is a linear problem in Kronecker form (6).
The system can then be integrated exactly by the µ-mode integrator. For the simulations
conducted, we use the following initial and boundary conditions

c(0, ρ, z) = exp(−8(ρ− ρ0)
2 − 8(z − z0)

2),

c(t, ρ, 0) = 0,

∂zc(t, ρ, zmax) = 0,

∂ρc(t, ρmin, z) = 0,

∂ρc(t, ρmax, z) = 0,

while the flow velocity is set to

s(z) = 2 + tanh(4(z − 5/2))− tanh(4(z − 5)).

The parameters are chosen as ρmin = 0.1, ρmax = 5, zmax = 8, α = 1/90, ρ0 = (ρmin+ρmax)/2
and z0 = 3/2. The structure of the problem does not allow an effective use of FFT based
methods. The results of the experiment are presented in Figure 2. The µ-mode integrator
outperforms all the iterative methods by a consistent factor, with an average speedup of 45
times with respect to kiops, the fastest competitor in this simulation.

4.3. Schrödinger equation with time-independent potential

In this section we solve the Schrödinger equation in three space dimensionsi∂tψ(t,x) = −1

2
∆ψ(t,x) + V (x)ψ(t,x), x ∈ R3, t ∈ [0, 1]

ψ(0,x) = ψ0(x)
(17)
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Figure 2: Wall-clock time (in seconds) for the integration of (16) up to T = 4 as a function of n (total
number of degrees of freedom N = n2).

with a time-independent potential V (x) = V1(x1) + V2(x2) + V3(x3), where

V1(x1) = cos(2πx1), V2(x2) = x22/2, V3(x3) = x23/2.

The initial condition is given by

ψ0(x) = 2−
5
2π− 3

4 (x1 + ix2) exp
(
−x21/4− x22/4− x23/4

)
.

This equation could be integrated using any of the iterative methods considered in the
previous section. However, for reasons of efficiency a time splitting approach is commonly
employed. This treats the Laplacian and the potential part of the equations separately. For
the former the fast Fourier transform (FFT) can be employed, while an analytic solution is
available for the latter. The two partial flows are then combined by means of the Strang
splitting scheme. For more details on this Time Splitting Fourier Pseudospectral method
(TSFP) we refer the reader to [30].

Another approach is to use a Hermite pseudospectral space discretization. This has the
advantage that harmonic potentials are treated exactly, which is desirable in many applica-
tions. However, for most of the other potentials, the resulting matrices are full which, for
traditional integration schemes, means that using a Hermite pseudospectral discretization is
not competitive with respect to TSFP. However, as long as the potential is in Kronecker form,
we can employ the µ-mode integrator to perform computations very efficiently. Moreover,
the resulting method based on the µ-mode integrator combined with a Hermite pseudospec-
tral space discretization can take arbitrarily large time steps without incurring any time
discretization error (as it is exact in time). We call this scheme the Hermite Kronecker
Pseudospectral method (HKP).

Before proceeding, let us note that for the TSFP method it is necessary to truncate the
unbounded domain. In order to relate the size of the truncated domain to the chosen degrees
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Figure 3: Precision diagram for the integration of the Schrödinger equation with a time-independent potential
(17) up to T = 1. The number of degrees of freedom N and the number of time steps (ts) are varied in order
to achieve a result which is accurate up to the given tolerance. The reference solution has been computed
by the HKP method with N = 3003.

of freedom, we considered that, in practice, in the HKP method the domain is implicitly
truncated. This truncation is given by the convex hull of the quadrature points necessary
to compute the Hermite coefficients corresponding to the initial solution. For any choice of
degrees of freedom of the TSFP method, we decided to truncate the unbounded domain to
the corresponding convex hull of the quadrature points of the HKP method. In this way, for
the same degrees of freedom, the two methods use the same amount of information coming
from the same computational domain.

The TSFP and the HKP methods are compared in Figure 3. In both cases, we consider
a constant number of space discretization points nµ = n for every direction µ = 1, 2, 3 (total
number of degrees of freedom N = n3) and integrate the equation until final time T = 1 with
constant time step size. We see that in terms of wall-clock time the HK method outperforms
the TSFP scheme for all levels of accuracy considered here. Also note that the difference in
performance increases as we move to more stringent tolerances. The reason for this is that
the splitting error forces the TSFP scheme to take relatively small time steps.

4.4. Schrödinger equation with time-dependent potential

Let us now consider the Schrödinger equation{
∂tψ(t,x) = H(t,x)ψ(t,x), x ∈ R3, t ∈ [0, 1]

ψ(0,x) = 2−
5
2π− 3

4 (x1 + ix2) exp
(
−x21/4− x22/4− x23/4

)
,

(18)

where the Hamiltonian is given by

H(x, t) =
i

2

(
∆− x21 − x22 − x23 − 2x3 sin

2 t
)
.
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Note that the potential is now time-dependent, as opposed to the case presented in sec-
tion 4.3. Such potentials commonly occur in applications, e.g. when studying laser-atom
interactions (see, for example, [42]).

Similarly to what we did in the time-independent case, we can use a time splitting
approach: the Laplacian part can still be computed efficiently in Fourier space, but now
the potential part has no known analytical solution. Hence, for the numerical solution of
the latter, we will employ an order two Magnus integrator, also known as the exponential
midpoint rule. Let

u′(t) = A(t)u(t)

be the considered ODE with time-dependent coefficients, and let un be the numerical ap-
proximation to the solution at time tn. Then, the exponential midpoint rule provides the
numerical solution

un+1 = exp
(
τnA(tn + τn/2)

)
un (19)

at time tn+1 = tn + τn, where τn denotes the chosen step size. The two partial flows are
then combined together by means of the Strang splitting scheme. We call this scheme the
Time Splitting Fourier Magnus Pseudospectral method (TSFMP). For the domain truncation
needed in this approach, the same reasoning as in the time-independent case applies.

Another technique is to perform a Hermite pseudospectral space discretization. However,
as opposed to the case in section 4.3, the resulting ODE cannot be integrated exactly in time.
For the time discretization, we will then use the order two Magnus integrator (19). We call
the resulting scheme Hermite Kronecker Magnus Pseudospectral method (HKMP).

The results of the experiments are depicted in Figure 4. In both cases, we consider a
constant number of space discretization points nµ = n for every direction µ = 1, 2, 3 (total
number of degrees of freedom N = n3) and solve the equation until final time T = 1 with
constant time step size. Moreover, concerning the TSFMP method, we integrate the subflow
corresponding to the potential part with a single time step. Again, as we observed in the
time-independent case, the HKMP method outperforms the TSFMP scheme in any case.
Notice in particular that, for the chosen degrees of freedom and time steps, the TSFMP
method is not able to reach an accuracy of 1e-07, while the HKMP is.

4.5. Nonlinear Schrödinger/Gross–Pitaevskii equation

In this section we consider the nonlinear Schrödinger equation

∂tψ(t,x) =
i

2
∆ψ(t,x) +

i

2

(
1− |ψ(t,x)|2

)
ψ(t,x), (20)

which is also known as Gross–Pitaevskii equation. The unknown ψ represents the wave
function, x ∈ R3, t ∈ [0, 25], and the initial condition is constituted by the superimposition
of two straight vortices in a background density |ψ∞|2 = 1, in order to replicate the classical
experiment of vortex reconnection (see [13] and the references therein for more details).

The initial datum and the boundary conditions given by the background density make it
quite difficult to use artificial periodic boundary conditions in a truncated domain, unless an
expensive mirroring of the domain in the three dimensions is carried out. Therefore, in order
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Figure 4: Precision diagram for the integration of the Schrödinger equation with a time-dependent potential
(18) up to T = 1. The number of degrees of freedom N and the number of time steps (ts) are varied in order
to achieve a result which is accurate up to the given tolerance. The reference solution has been computed
by the HKMP method with N = 1003 and ts = 2048.

to solve (20) numerically, we consider the Time Splitting Finite Difference method proposed
in [13]. More specifically, we truncate the unbounded domain to x ∈ [−20, 20]3 and discretize
by non-uniform finite differences with homogeneous Neumann boundary conditions. The
number nµ of discretization points is the same in each direction, i.e. nµ = n, with µ = 1, 2, 3.
After a proper transformation of variables in order to recover symmetry, we end up with a
system of ODEs of the form

ψ′(t) =
i

2
MWψ(t) +

i

2

(
1−W−1|ψ(t)|2

)
ψ(t),

where MW is a matrix in Kronecker form and W is a diagonal weight matrix. Then, we
employ a Strang splitting scheme for the time integration, in which the linear part is solved
either by means of the µ-mode integrator or by using the iterative methods indicated at the
beginning of section 4. The nonlinear subflow is integrated exactly.

The results of the experiment are presented in Figure 5. The µ-mode integrator out-
performs expmv by approximately a factor of 7. The speedup compared to both phipm and
kiops is even larger.

5. Implementation on multi-core CPUs and GPUs

It has increasingly been realized that in order to fully exploit present and future high-
performance computing systems we require algorithms that parallelize well and which can be
implemented efficiently on accelerators, such as GPUs [5]. In particular, for GPU computing
much research effort has been undertaken to obtain efficient implementations (see, e.g.,
[6, 8, 17, 18, 19, 33, 36, 43, 45, 49]).
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Figure 5: Wall-clock time (in seconds) for the integration of (20) up to T = 25 as a function of n (total
number of degrees of freedom N = n3). A constant time step size τ = 0.1 is employed.

In this section we will consider an efficient implementation of the proposed µ-mode in-
tegrator on multi-core CPUs and GPUs. We note that all modern hardware platforms are
much better at performing floating point operations (such as addition and multiplication)
than they are at accessing data in memory. This favors algorithms with a high flop/byte
ratio; that is, algorithms that perform many floating point operations for every byte that is
loaded from or written to memory. The µ-mode product of a square matrix for an array of
size n1×· · ·×nµ−1×nµ×nµ+1×· · ·×nd is computed using a matrix-matrix multiplication of
size nµ × nµ times nµ × (n1 · · ·nµ−1nµ+1 · · ·nd), see section 2 for more details. For moderate
nµ the relatively small nµ × nµ matrix can be kept in cache and thus O(nµN) arithmetic
operations are performed compared to O(N) memory operations, where N = n1 · · ·nd is the
total number of degrees of freedom. Thus, the flop/byte ratio of the algorithm is O(nµ),
which makes it ideally suited to modern computer hardware. This is particularly true when
the µ-mode integrator is compared to an implicit scheme implemented with sparse matrix-
vector products. In this case the flop/byte ratio is only O(1) and modern CPU and GPUs
will spend most of their time waiting for data that is fetched from memory.

To make this analysis more precise, we have to compare the flop/byte ratio of the algo-
rithm to that of the hardware. For the benchmarks in this section we will use a multi-core
CPU system based on a dual socket Intel Xeon Gold 5118 with 2×12 cores. The system has
a peak floating point performance of 1.8 TFlops/s (double precision) and a theoretical peak
memory bandwidth of 256 GB/s. Thus, during the time a double precision floating point
number is fetched from memory approximately 56 arithmetic operations can be performed.
In addition, we will use a NVIDIA V100 GPU with 7.5 TFlop/s double precision perfor-
mance and 900 GB/s peak memory bandwidth (approximately 67 arithmetic operations can
be performed for each number that is fetched from memory). Due to their large floating
point performance we expect the algorithm to perform well on GPUs. A feature of the V100
GPU is that it contains so-called tensor cores that can dramatically accelerate half-precision
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computations (up to 125 Tflops/s). Tensor cores are primarily designed for machine learning
tasks, but they can also be exploited for matrix-matrix products (see, e.g., [1, 34]).

For reasonably large nµ the proposed µ-mode integrator is thus compute bound. However,
since very efficient (close to the theoretical peak performance) matrix-matrix routines are
available on both of these platforms, one can not be entirely indifferent towards memory
operations. There are two basic ways to implement the algorithm. The first is to explicitly
form the nµ × (n1 · · ·nµ−1nµ+1 · · ·nd) matrix. This has the advantage that a single matrix-
matrix multiplication (gemm) can be used to perform each µ-mode product and that the
corresponding operands have the proper sequential memory layout. The disadvantage is that
a permute operation has to be performed before each µ-mode product is computed. This is
an extremely memory bound operation with strided access for which the floating point unit
in the CPU or GPU lies entirely dormant. Thus, while this is clearly the favored approach in
a MATLAB implementation, it does not achieve optimal performance. The approach we have
chosen in this section is to directly perform the µ-mode products on the multi-dimensional
array stored in memory (without altering the memory layout in between such operations).

Both Intel MKL and cuBLAS provide appropriate batched gemm routines (cblas gemm batch

for Intel MKL and cublasGemmStridedBatched for cuBLAS) that are heavily optimized,
and we will make use of those library functions in our implementation (for more details on
these routines we refer to [14]). Our code is written in C++ and uses CUDA for the GPU
implementation.

Before proceeding, let us briefly discuss how the µ-mode integrator would perform in a
distributed memory setting (i.e. when parallelized using MPI). Since, in general, the matrix
exponentials are full matrices, each degree of freedom along a coordinate axis couples with
each other degree of freedom on that same axis. This data communication pattern is similar
to computing a FFT. Thus, we would expect the µ-mode product to scale comparable to
FFT on a distributed memory system. This would be worse than a stencil code. However,
one should keep in mind that the µ-mode integrator can take much larger time steps. Thus,
the overall communication overhead to compute the solution at a specified final time could
still be larger for an explicit or an iterative method.

In the remainder of this section we will present benchmark results for our implementa-
tions. The speedups are always calculated as ratio between the wall-clock time needed by
the CPU and the one needed by the GPU.

5.1. Heat equation

We consider the same problem as in section 4.1, Test 1. The wall-clock time for com-
puting the matrix exponentials and a single time step of the proposed algorithm is listed in
Table 2. We consider both a CPU implementation using MKL (double and single precision)
and a GPU implementation based on cuBLAS (double, single, and half precision). The
GPU implementation outperforms the CPU implementation by a factor of approximately
13. Using half-precision computations on the GPU results in another performance increase
by approximately a factor of 2. The relative error with respect to the analytical solution
reached by the double precision and single precision, for both CPU and GPU and the values
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of n under consideration, are 8.22e-05, 3.66e-05, 2.06e-05, 1.47e-05. Results in half precision
are not reported as the accuracy of the method is lower than the precision itself.

n exp double single half

CPU GPU speedup CPU GPU speedup GPU

200 2.92 38.39 2.66 14.4x 19.48 1.33 14.6x 0.39

300 4.88 136.17 8.90 15.3x 81.65 5.27 15.5x 2.73

400 10.14 310.11 29.88 10.4x 161.97 16.89 9.6x 6.68

500 17.74 711.07 52.86 13.5x 373.36 30.51 12.2x 15.43

Table 2: Wall-clock time for the heat equation (13) discretized using second-order centered finite differences
with n3 degrees of freedom. The time for computing the matrix exponentials (exp) and for one step of the
µ-mode integrator are listed (in ms). The speedup is the ratio between the single step performed in CPU
and GPU, in double and single precision. The matrix exponential is always computed in double precision.

For a number of simulations conducted we observed a drastic reduction in performance
for single precision computations when using Intel MKL. To illustrate this we consider the
heat equation ∂tu(t,x) = ∆u(t,x), x ∈

[
−11

4
, 11

4

]3
, t ∈ [0, 1],

u(0,x) =
(
x41 + x42 + x43

)
exp
(
−x41 − x42 − x43

) (21)

with (artificial) Dirichlet boundary conditions, discretized in space as above. From Table 3
we see that the performance of single precision computations with Intel MKL can be worse by
a factor of 3.5 compared to double precision, which obviously completely defeats the purpose
of doing so. The reason for this performance degradation are so-called denormal numbers,
i.e. floating point numbers with leading zeros in the mantissa. Since there is no reliable way
to disable denormal numbers on modern x86-64 systems, we avoid them by scaling the initial
value in an appropriate way. Since this is a linear problem, the scaling can easily be undone
after the computation. The results with the scaling workaround, listed in Table 3, now show
the expected behavior (that is, single precision computations are approximately twice as fast
as double precision ones). We note that this is not an issue with our µ-mode integrator but
rather an issue with Intel MKL. The cuBLAS implementation is free from this artifact and
thus no normalization is necessary on the GPU.

5.2. Schrödinger equation with time-independent potential

We consider the Schrödinger equation with time-independent potential from section 4.3.
The equation is integrated up to T = 1 in a single step, as for this problem no error is in-
troduced by the µ-mode integrator. For the space discretization the Hermite pseudospectral
discretization is used. The results for both the CPU and GPU implementation are listed in
Table 4. The GPU implementation, for both single and double precision, shows a speedup
of approximately 15 compared to the CPU implementation.
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n exp double single scaled single half

CPU GPU CPU GPU CPU GPU

200 2.92 38.80 2.64 92.19 1.34 19.98 0.38

300 6.01 157.41 8.87 385.84 5.22 71.24 2.71

400 13.40 314.96 29.85 1059.78 16.86 154.84 6.67

500 30.19 702.48 52.92 2567.56 30.42 367.34 13.44

Table 3: Wall-clock time for the heat equation (21) discretized using second order centered finite differences
with n3 degrees of freedom. The performance degradation in CPU due to denormal numbers disappears
when using the scaling workaround (scaled single). Speedups are not computed in this case.

n double single

exp CPU GPU speedup exp CPU GPU speedup

127 5.56 20.89 1.27 16.4x 4.71 13.71 0.64 21.4x

255 8.31 224.13 16.02 13.9x 5.16 134.21 8.11 16.5x

511 50.79 3121.42 219.13 14.2x 28.01 1824.93 119.46 15.2x

Table 4: Wall-clock time for the linear Schrödinger equation with time-independent potential (17) integrated
with the HKP method (n3 degrees of freedom). The time for computing the matrix exponential (exp) and
for one step of the µ-mode integrator are listed (in ms). The speedup is the ratio between the single step
performed in CPU and GPU, in double and single precision.

5.3. Schrödinger equation with time-dependent potential

We consider once again the Schrödinger equation with the time-dependent potential from
section 4.4 solved with the HKMP method. The equation is integrated up to T = 1 with
time step τ = 0.02. The results are given in Table 5. In this case, the matrix exponential
changes as we evolve the system in time. Thus, the performance of computing the matrix
exponential has to be considered alongside the µ-mode products. On the CPU this is not an
issue as the time required for the matrix exponential is significantly smaller than the time
required for the µ-mode products. However, for the GPU implementation and small problem
sizes it is necessary to perform the matrix exponential on the GPU as well. To do this we
have implemented an algorithm based on a Taylor backward stable approach. Overall, we
observe a speedup of approximately 15 by going from the CPU to the GPU (for both single
and double precision).

6. Conclusions

We have shown that with the proposed µ-mode integrator we can make use of modern
computer hardware to efficiently solve a number of partial differential equations. In par-
ticular, we have demonstrated that for Schrödinger equations the approach can outperform
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n double

exp (ext) CPU GPU speedup

exp (int) µ-mode exp (int) µ-mode

127 0.02 2.56 19.38 0.37 1.05 15.3x

255 0.05 4.52 200.46 0.66 13.79 14.2x

511 0.07 29.71 3043.88 2.38 213.21 14.3x

n single

exp (ext) CPU GPU speedup

exp (int) µ-mode exp (int) µ-mode

127 0.01 2.16 12.51 0.25 0.54 18.9x

255 0.03 2.88 100.35 0.34 7.01 13.9x

511 0.05 14.25 1600.86 1.09 108.31 14.8x

Table 5: Wall-clock time for the Schrödinger equation with time-dependent potential (18) integrated with
the HKMP method (n3 degrees of freedom). The time for computing the matrix exponentials and for one
step of the µ-mode integrator is listed (in ms). The acronym exp (ext) refers to exponentiation of the time-
independent matrices, which are diagonal, while exp (int) refers to the time-dependent ones that have to be
computed at each time step. The speedup is the ratio between the single step performed in CPU and GPU,
in double precision (top) and single precision (bottom).

well-established integrators in the literature by a significant margin. This was also possi-
ble thanks to the usage of the µ-mode product to efficiently compute spectral transforms,
which can be beneficial even in applications that are not related to solving partial differen-
tial equations. The proposed integrator is particularly efficient on GPUs too, as we have
demonstrated, which is a significant asset for running simulation on the current and next
generation of supercomputers.
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