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ABSTRACT
We attempt to describe surface defects in smectic A thin films by formulating a free discontinuity 
problem – that is, a variational problem in which the order parameter is allowed to have jump 
discontinuities on some (unknown) set. The free energy functional contains an interfacial energy, 
which penalises dislocations of the smectic layers at the jump. We discuss mathematical issues 
related to the existence of minimisers and provide examples of minimisers in some simplified 
settings.
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1. Introduction

In this paper, we report on an attempt to formulate 
a mathematical model, capable of rigorous mathematical 
analysis, to describe aspects of the interesting experiments 
on smectic A thin films of the group of E. Lacaze [1–5]. In 
these experiments, thin films of 8CB liquid crystal are 
deposited on various substrates, for example, MoS2, mica 
and rubbed PVA. Depending on the thickness of the films 
and on the nature of the substrate different configurations 
of the smectic layers are observed [6]. The main features are 
illustrated in Figures 1 and 2. Viewed from above (Figure 1) 
families of parallel ‘oily streaks’ are observed, each of which 
consists of a flattened hemi cylinder of smectic layers 
(Figure 2). The representation in Figure 2 of the configura
tion of layers in an oily streak on a rubbed PVA substrate is 
not a direct observation, but is deduced from X-ray diffrac
tion and ellipsometry; indeed, recently, some slight mod
ifications to the likely configuration have been suggested by 
Jeridi et al. [7].

The observed layer configurations are a consequence of 
the antagonistic boundary conditions, homeotropic on the 
upper surface in contact with air, and unidirectional planar 
anchoring on the bottom surface parallel to the substrate. 
Because for smectic A the director n is perpendicular to the 
layers, this means that the layers prefer energetically to be 
tangent to the upper free surface and perpendicular to the 
substrate.

A feature of the observed layer configurations is the 
presence of surface (wall) defects across which the layer 
normal, and thus n, jumps. This suggests that a good 
mathematical framework to handle this problem is the 
free discontinuity setting originated by De Giorgi & 
Ambrosio [8] for image segmentation and subsequently 
used by Francfort & Marigo for Griffith fracture models 
[9]. The relevance of such a setting for liquid crystal 
problems was proposed in [10]. The free discontinuity 
formulation uses a free energy in which there is 
a competition between bulk (volumetric) energy and 
interfacial energy corresponding to unknown surfaces of 
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discontinuity. In the case of fracture mechanics, the bulk 
energy is the elastic energy, and the interfacial energy is 
located on the unknown crack surfaces. For smectic 
A thin films, we will take the bulk energy to be the elastic 
(Oseen-Frank) energy, and the discontinuity surfaces will 
correspond to walls across which n jumps.

The thin-film experiments described above would best 
be treated as a free boundary problem for a given volume 
of liquid crystal deposited on the substrate, with the aim 
of predicting the possible 3D configurations of oily 
streaks as well as their internal structure. A key prediction 
of such a model would be the width of the oily streaks. 
However, we are not currently able to give conditions 
under which the minimum of the corresponding energy 
is attained, and if so by what configurations of layers.

Instead, we will work on a fixed domain Ω � R 2, 
to be thought of as the cross-section of an oily 
streak, and seek to predict the corresponding config
urations of layers given suitable boundary 
conditions.

2. The model

2.1. The elastic energy

We use as a basic variable the director n, jnj ¼ 1, which 
for smectic A is parallel to the layer normal m, so that 
n� n ¼ m�m. The three-dimensional Oseen-Frank 
energy density 

Wðn;ÑnÞ ¼
1
2

K1ðdiv nÞ2
�

þ K2ðn � curl nÞ2 þ K3 n ^ curl nj j
2

þ ðK2 þ K4Þ ðtr ðÑnÞ2 � ðdiv nÞ2Þ
�
; ð1Þ

with Frank constants Ki, is invariant to changing the 
sign of n, and thus can be expressed in terms of M :¼

n� n and ÑM. For example, we have that 

jn ^ curlnj2 ¼ jðn � ÑÞnj2

¼
1
2

MrsMij;rMij;s;
(2) 

where Mij ¼ ninj and we have used 2nini;j ¼ ðjnj2Þ;j ¼ 0. 
We make the assumption of constant layer thickness (or 
locally parallel layers), which for sufficiently smooth m is 
equivalent to the condition curl m ¼ 0, and thus (assum
ing n sufficiently smooth so that we can take n ¼ m) to 
the condition curl n ¼ 0.

We assume two-dimensional symmetry for n, so that 
for x ¼ ðx1; x2Þ 2 Ω 

nðxÞ ¼ ðnðx1; x2Þ; 0Þ (3) 

with nðx1; x2Þ 2 S
1, where S

1 is the unit circle. For such 
two-dimensional director fields, an explicit computation 
shows that the term trðÑnÞ2 � ðdiv nÞ2 is identically 
equal to zero so that, taking into account also the con
straint curl n ¼ 0, the Oseen-Frank energy (1) reduces to 

Wðn;ÑnÞ ¼
1
2

K1jÑnj2; (4) 

where we assume that K1 > 0. This is the original model 
for smectics proposed by Oseen [11]. It can be viewed as 
a special case m ¼ n of the model of [12]. There are 
various other models for smectics allowing variable 
layer thickness ([13–16]), that typically introduce the 
molecular number density ρ ¼ ρðxÞ or fluctuations 
about it as a new macroscopic variable, with the smectic 
layers being seen as density waves. These models can 
describe dislocations in smectic layers, for example, 
although it is unclear how to understand the macro
scopic variable ρ varying over a molecular length-scale.

To allow for nonorientable configurations, we refor
mulate the problem in terms of the two-dimensional 
Q-tensor 

Figure 1. AFM image of families of oily streaks of 8CB on MoS2 

substrate. Reprinted with permission from [1] (copyright 2014, 
American Physical Society).

Figure 2. (Colour online) Experimental representation of cross-sectional layer configuration in an oily streak of 8CB on PVA substrate. 
Reproduced from [5] with permission from the Royal Society of Chemistry.
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Q :¼
1
ffiffiffi
2
p n� n �

I
2

� �

(5) 

where I is the 2� 2 identity matrix. The constant 1=
ffiffiffi
2
p

is a normalisation factor, which plays no essential role in 
our analysis. At each point x 2 Ω, QðxÞ is a symmetric 
trace-free 2� 2 matrix, which belongs to the set 

N :¼
1
ffiffiffi
2
p n� n �

I
2

� �

: n 2 S
1

� �

: (6) 

If n : Ω! S
1 is a smooth vector field and Q is defined 

as in (5), an explicit computation shows that 
Ñnj j

2
¼ ÑQj j

2
:¼ Qij;k Qij;k, expressing the elastic 

energy (4) in terms of Q.
We also need to express the constraint curl n ¼ 0 in 

terms of Q. We define 

AðQÞðÑQ;ÑQÞ :¼
ffiffiffi
2
p

Qhk þ
1
2

δhk

� �

Qij;h Qij;k :

This is a quadratic form in ÑQ, reminiscent of the cubic 
term in the Landau-de Gennes elastic energy (see, e.g. 
[[17], Section 4]). Thanks to (2), (5), we find that 

AðQÞðÑQ;ÑQÞ ¼ jn ^ curl nj2;

and since curl nj j
2
¼ n ^ curl nj j

2
þ ðn � curl nÞ2, 

and keeping in mind that a two-dimensional vector 
field is orthogonal to its curl, we obtain 
AðQÞðÑQ; ÑQÞ ¼ curl nj j

2. Therefore, we impose the 
constraint 

AðQÞðÑQ; ÑQÞ ¼ 0; (7) 

which expresses the constant layer thickness in terms 
of Q.

2.2. The function space

In order to specify in precise mathematical terms any 
energy minimisation problem, it is necessary to say in 
which function space the minimum is sought. The func
tion space describes the allowed singularities of the 
unknown function or map and is part of the model. 
Making the function space larger, so that worse singula
rities are allowed, may lead to different minimisers (this 
is known as the Lavrentiev phenomenon, see [[17], 
Section 3]). The main function space used for free dis
continuity problems, and developed by De Giorgi and 
Ambrosio [8], is the space SBV of special functions of 
bounded variation. In fact, in this work, we will consider 
a slight variant of the space SBV, i.e. the space SBV2. Let 
Ω be an open, bounded planar region. In technical terms, 
a map u : Ω! R m belongs to SBV2ðΩ; R mÞ if its dis
tributional derivative Du is a finite measure with no 

Cantor part, and whose absolutely continuous part Ñu 
is square integrable (see, e.g. [8,18] for more details). For 
the purposes of this paper, the key points of the definition 
and theory are the following:

(1) for any u 2 SBV2ðΩ; R mÞ there is a one- 
dimensional jump set Su consisting of the points 
x 2 Ω at which u has a jump discontinuity,

(2) for (almost) any point x 2 Su there is a well- 
defined unit normal νðxÞ ¼ νuðxÞ to Su and well- 
defined limits uþðxÞ;u� ðxÞ from either side of 
Su. There may be an exceptional set of points x 2
Su at which νðxÞ, uþðxÞ or u� ðxÞ are not defined, 
but this must be a set of zero length;

(3) the gradient Ñu is defined in ΩnSu and 
òΩjÑuðxÞj2 dx< þ1.

The space SBV2ðΩ; R 2�2Þ, whose elements are 2� 2 
matrix fields on Ω in the class SBV2, is defined analo
gously by identifying R 2�2 with R 4.

As we are considering a free discontinuity problem, 
the map Q is allowed to have jump discontinuities on 
a one-dimensional set SQ, and the condition (7) loses its 
meaning at points of SQ. Therefore, the constraint (7) is 
only enforced in the complement ΩnSQ. In technical 
terms, (7) only involves the absolutely continuous part 
ÑQ of the distributional derivative of Q.

2.3. The jump energy

Let 

SBV2ðΩ; NÞ :¼ Q 2 SBV2ðΩ; R 2�2Þ; QðxÞ 2 N for x 2 Ω
� �

(8) 

be the set of N -valued Q-tensors in the class SBV2. For 
Q 2 SBV2ðΩ; NÞ, we consider the jump energy 

ð

SQ

φðQþ; Q� ; νÞdH1 (9) 

where the integral is taken over the (one-dimensional) 
jump set SQ, with respect to the length measure dH1, 
and φ : N �N � S

1
! R is a continuous function. 

We want to choose the jump energy density φ so that 
(9) is a good model for the energy of a defect wall. 
Natural conditions on φ are:

(C1) φðQþ; Q� ; νÞ ¼ 0 if Qþ ¼ Q� ;
(C2) invariance with respect to the orientation of the 

jump set, that is 

φðQ� ; Qþ; � νÞ ¼ φðQþ; Q� ; νÞ

for any Qþ 2 N , Q� 2 N , ν 2 S
1;
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(C3) frame-indifference, that is 

φðRQþRT ; RQ� RT ;RνÞ ¼ φðQþ; Q� ; νÞ

for all Qþ 2 N , Q� 2 N , ν 2 S
1 and all orthogonal 

matrices R 2 Oð2Þ.
Another condition we impose is that φ should pena

lise dislocations of the smectic layers. Generically, it may 
not be possible to define the smectic layers consistently 
across the jump set, because there may be dislocations. 
A geometric condition for the layers to match at the 
jump set is that, at each jump point, the normal to the 
jump set ν bisects any of the angles between the smectic 
layers. For smectic A liquid crystals, the layers are 
orthogonal to the molecular directors nþ, n� on either 
side of the jump, so bisecting any of the angles between 
the layers is equivalent to bisecting any of the angles 
between nþ and n� . This can be written as 

ðnþ � νÞ2 ¼ ðn� � νÞ2 (10) 

or equivalently, in terms of the Q-tensor, as 

Qþν � ν ¼ Q� ν � ν: (11) 

In order to penalise dislocations, we therefore impose 
the following condition on φ:

(C4) for given Qþ;Q� 2 N , the function ν 2
S

1
7!φðQþ; Q� ; νÞ is minimised for a ν satisfy

ing (11).
Given distinct Qþ and Q� , there are four such ν that 

bisect the angles between the corresponding directors 
nþ, n� ; we label them as ν1, ν2, ν3 ¼ � ν1 and ν4 ¼ � ν2, 
as in Figure 3. By taking R ¼ � I in condition (C3), we 
obtain that φðQþ; Q� ; ν1Þ ¼ φðQþ; Q� ; ν3Þ and 
φðQþ; Q� ; ν2Þ ¼ φðQþ; Q� ; ν4Þ. However, we must 
account for the possibility that, in general, 
φðQþ; Q� ; ν1Þ�φðQþ; Q� ; ν2Þ. Indeed, configurations 
whose jump sets are oriented according to the unit 
normal ν1 or ν2 have (generically) different geometric 
properties, because Qþν1 � ν1�Qþν2 � ν2 unless the 

directors nþ, n� corresponding to Qþ, Q� are orthogo
nal to each other. The condition (C4) is compatible with 
an energy density that, as a function of ν, has two global 
minima at ν1, ν3 (or, respectively, at ν2, ν4) and, say, two 
local minima at ν2, ν4 (respectively, at ν1, ν3), at 
a possibly higher energy value.

A singular jump energy satisfying all the conditions 
(C1)–(C4) is given by 

ζαðQþ; Q� ; νÞ :

¼
Qþ � Q�j j

α if Qþν � ν ¼ Q� ν � ν
þ1 otherwise;

�

(12) 

where α is a parameter such that 0< α< 1. Choosing 
α> 0 guarantees that the condition (C1) is satisfied. On 
the other hand, taking α< 1 is required for reasons of 
mathematical consistency; had we taken α � 1, then 
there would be no guarantee that a minimiser for the 
energy functional exists in the space SBV2ðΩ; NÞ. (We 
do not discuss this issue in detail and refer to e.g [18], 
Sections 4.1–2.) However, even if the parameter α is 
chosen carefully, the functional associated with (12) suf
fers from a mathematical pathology, which is illustrated 
in Figure 4: there exist sequences Qj 2 SBVðΩ; NÞ that 
converge to a limit map Q 2 SBVðΩ; NÞ in a suitable 
sense, yet the energy of Q is strictly larger than the limit, 
as j! þ1, of the energy of Qj. This behaviour, known 
as lack of lower semicontinuity, is particularly evident in 
Figure 4, because the energy of the limit configuration is 
infinite. However, even if we considered a modified 
energy density that takes only finite values, this patholo
gical behaviour could persist. The main issue is that the 
energy density ζα is not BV-elliptic. BV-ellipticity, which 
was introduced by Ambrosio and Braides [19], is 
a necessary condition for the lower semicontinuity of 
the energy functional, and is an important assumption 
to ensure the existence of minimisers of free discontinuity 
problems [19,20]. 

Figure 3. (Colour online) Left: given Q+ and Q–, there are four unit vectors ν1, ν2, ν3, ν4 that satisfy (10). The Q-tensors Q+ and Q– are 
represented by (arrowless black) straight lines, oriented parallel to the molecular directors n+, n– corresponding to Q+, Q– respectively. 
Here Q+ and n+ (respectively, Q– and n–) are related to each other by (5). Centre and right: two piecewise constant configurations that 
satisfy (10). The black lines represent the smectic layers, which are orthogonal to the molecular director, and the thick red line 
represents the jump.

4 J. M. BALL ET AL.



We briefly explain the notion of BV-ellipticity. Let 
Qþ 2 N , Q� 2 N , ν 2 S

1 be given. Let C be a (closed) 
unit square, centred at the origin, whose sides are par
allel to ν and to ν? :¼ ðν2; � ν1Þ (see Figure 5). Let C0
be a slightly larger such square, such that C is contained 
in the interior of C0. We consider a piecewise constant 
map Q� 2 SBVðC0; NÞ, defined as

Q�ðxÞ :¼
Qþ if x � ν > 0
Q� if x � ν < 0

�

(13) 

The map Q� jumps along a straight line orthogonal to ν. 
The notion of BV-ellipticity is defined in terms of 

a suitable minimisation problem. Let C½Qþ; Q� ; ν� be 
the class of all maps P 2 SBV2ðC0; NÞ that satisfy the 
following properties:

(i) P ¼ Q� in C0nC;
(ii) P has finite range (i.e. P is a piecewise constant 

configuration that only takes finitely many 
values).

The condition (i) plays the rôle of a boundary con
dition. As for condition (ii), restricting our attention to 
piecewise constant configurations with finite range 
allows us to neglect all elastic contributions for the 
moment and focus on the jump energy.

Definition 2.1 (BV-ellipticity). We say that a function 
φ : N �N � S

1
! R is BV-elliptic if and only if, for 

any ðQþ; Q� ; νÞ 2 N �N � S
1, we have 

inf
P2C½Qþ;Q� ;ν�

ð

SP\C
φðPþ; P� ; νPÞdH1 ¼ φðQþ; Q� ; νÞ:

Equivalently, φ is BV-elliptic if and only if, for any 
ðQþ; Q� ; νÞ 2 N �N � S

1, the map Q� defined in 
(13) minimises the jump energy functional associated 
with φ among all competitors in C½Qþ; Q� ; ν�. 
Roughly speaking, a jump energy density φ is BV- 
elliptic if the corresponding jump energy functional 
favours the jump set to be (locally) a straight line. 
This indeed rules out pathological behaviour, such as 
the one discussed in Figure 4 (see, e.g. [18,19]). In 
practice, deciding whether a given function is BV- 
elliptic or not may not be an easy task. Sufficient and 
necessary conditions for BV-ellipticity have been 
proposed in the literature (see, e.g. [18,19,21,22]), 
but even these might not be immediately applicable 
to concrete examples.

The function ζα is not BV-elliptic, because it fails to 
satisfy some necessary conditions for BV-ellipticity (such 
as convexity in the variable ν — see e.g. [18], 

Figure 4. (Colour online) A mathematical pathology associated with the energy density ζα, given by (12). The black lines represent the 
smectic layers, while the thick red line represents the jump set. On the left, a piecewise constant configuration in a rectangle, with 
a zig-zag interface and zig-zag angles of 45 degrees; on the right, a piecewise constant configuration with a horizontal jump set. If we 
choose the energy density as in (12), the energy of the configuration on the left is 

ffiffiffi
2
p

bμ, where b is the length of the bottom base of 
the rectangle, irrespective of the spacing of the zig-zag. As the latter tends to zero, the configuration on the left converges (in 
a suitable sense) to that on the right, which costs an infinite energy.

Figure 5. (Colour online) The domain and boundary conditions 
in the definition of BV-ellipticity (Definition 2.1). The domain C is 
a unit square, rotated in such a way that the sides are parallel to 
ν, ν?. The ‘boundary conditions’, defined in a collar of @C, are 
piecewise constant and are defined by Q+ and Q–. The admissible 
configurations P are piecewise constant inside C (and are 
allowed to take finitely many values only).
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Theorems 5.11 and 5.14). However, a natural candidate for 
a BV-elliptic function that satisfies (C1)–(C4) is the BV- 
elliptic envelope of ζα, that is, the largest BV-elliptic func
tion φ such that φ � ζα. As it turns out, the BV-elliptic 
envelope of ζα can be calculated explicitly, and is given by 

φαðQ
þ; Q� ; νÞ :¼ Qþ � Q�j j

α 1þ
ffiffiffi
2
p

Qþν � ν � Q� ν � νj j

Qþ � Q�j j

� �1=2

(14) 

if Qþ�Q� , and φαðQ
þ; Q� ; νÞ ¼ 0 if Qþ ¼ Q� . The 

function φα can be expressed in terms of angular vari
ables, which is sometimes convenient for computations. 
If nþ ¼ ðcos βþ; sin βþÞ, n

� ¼ ðcos β� ; sin β� Þ are the 
directors corresponding to Qþ, Q� respectively, and 
ν ¼ ðcos γ; sin γÞ, with βþ, β� , γ real numbers, then 

φαðQ
þ;Q� ; νÞ ¼ sinðβþ � β� Þ

�
�

�
�α 1þ sin βþ þ β� � 2γ

� ��
�

�
�

� �1=2

¼ sinðβþ � β� Þ
�
�

�
�α cos

βþ þ β�
2

� γ
� ��

�
�
�

�
�
�
�

�

þ sin
βþ þ β�

2
� γ

� ��
�
�
�

�
�
�
�

�

(15) 

Equation (15) is obtained from (14), by substituting (5) 
for Qþ, Q� and applying trigonometric identities.

The proof that φα is indeed BV-elliptic (and, in fact, is 
the BV-elliptic envelope of ζα) is rather technical, and 
we will present it in a forthcoming paper [23]1. 
However, from (14) and (15), it is immediate to check 
that φα satisfies (C1)–(C4). For given values Qþ�Q� , 
the function ν 7!φαðQ

þ; Q� ; νÞ has four global 
minima, at the same energy value, corresponding 
exactly to the four unit vectors ν that satisfy (11) (i.e. 
γ ¼ ðβþ þ β� Þ=2þ kπ=2, for integer k). We do not 
have an example of an energy density that satisfies 
(C1)–(C4), is BV-elliptic and has non-equal local 
minima at the four vectors ν that satisfy (11).

3. Existence of minimisers and examples

When the jump energy density is chosen as in (14), 
we can prove existence of minimisers for the energy 
functional, subject to appropriate boundary condi
tions. For instance, strong anchoring at the bound
ary is often represented mathematically by imposing 
Dirichlet boundary conditions, of the form Q ¼ Qbd 
on @Ω, where Qbd : @Ω! N is a boundary datum. 
However, these Dirichlet boundary conditions are 
not well suited to free discontinuity problems. 
Instead, one has to define the boundary conditions 
carefully in order to cater for the possibility that Q 

jumps at the boundary. This is done by ‘thickening 
the boundary’. In other words, we consider an 
exterior neighbourhood � of the boundary @Ω and 
impose the condition 

Q ¼ Qbd on � ; (16) 

where the datum Qbd is now defined in � . The map 
Qbd needs to be compatible with our setting 
(i.e. Qbd 2 SBV2ð� ; NÞ and it must satisfy 
AðQbdÞðÑQbd; ÑQbdÞ ¼ 0 in � ).

Using the direct methods in the Calculus of 
Variations, we could prove the following existence 
theorem:

Theorem 3.1. For any K1 > 0, μ> 0 and 0< α< 1, the 
energy functional:  

IðQÞ ¼
K1

2

ð

Ω
jÑQj2dxþ μ

ð

SQ

φαðQ
þ;Q� ; νÞdH1 (17) 

with φα as in (14), attains a minimum among Q 2
SBV2ðΩ;NÞ satisfying AðQÞðÑQ;ÑQÞ ¼ 0 and the 
boundary conditions (16).

The proof of Theorem 3.1 will be given in [23]. To try 
to get some understanding of the behaviour of minimi
sers, we consider a simplified (or over-simplified) pro
blem, for which we can find the minimiser explicitly. We 
consider a rectangular domain, Ω ¼ ð� L; LÞ � ð0; HÞ, 
with L> 0 and H > L=2. We focus our attention on 
a restricted class of configurations, whose jump set can 
be described in polar coordinates as the curve 

C ¼ ðρðθÞ cos θ; ρðθÞ sin θÞ : 0 � θ � πf g

where ρ : ½0; π� ! R is a scalar function to be deter
mined, subject to the conditions ρð0Þ ¼ ρðπÞ ¼ L. 
Moreover, we assume that Q is given by 

QðxÞ :¼
1
ffiffiffi
2
p nðxÞ � nðxÞ �

I
2

� �

(18) 

where the director n is defined in polar coordinates as 

nðr cos θ; r sin θÞ :¼
ðcos θ; sin θÞ if r< ρðθÞ
ð0; 1Þ otherwise:

�

This configuration Q is uniquely determined by the 
function ρ, Q ¼ Q½ρ�; it has horizontal layers above 
the curve C and concentric circular layers below C. In 
particular, Q satisfies planar anchoring conditions at the 
boundary x2 ¼ 0, homeotropic anchoring conditions at 
x2 ¼ H and periodic boundary conditions at x1 ¼ � L. 
To simplify the problem further, we neglect the elastic 

6 J. M. BALL ET AL.



energy. (Heuristically, we expect this approximation to 
be relevant in the limit as μ=K1 ! þ1.)

Proposition 3.2. For any 0< α< 1, the unique mini
miser of the functional  

ρ 7!
ð

C
φαðQ

þ½ρ�;Q� ½ρ�; νQ½ρ�ÞdH1;

among all (Lipschitz continuous) functions ρ : ½0; π� !
R such that ρð0Þ ¼ ρðπÞ ¼ L, is given by  

ρðθÞ :¼
L

1þ sin θ
(19) 

for θ 2 ½0; π�:

The proof of Proposition 3.2 will be given in [23]. 
When ρ is given by (19), the jump set C can be described 
in Cartesian coordinates as the graph of 

x2 ¼
L
2
�

x2
1

2L
for � L � x1 � L:

In particular, C is a parabolic arc (see Figure 6). It can be 
shown that, at each point, the normal to the curve C
bisects the angle between the smectic layers.

Next, we consider a domain, which is a quarter disk of 
unit radius, Ω :¼ fx ¼ ðx1; x2Þ 2 R 2 : x2

2 þ x2
2 < 1; x1 >

0; x2 > 0g. Again, we minimise within a restricted class 
of configurations, whose jump set has the form 

C ¼ ðρðθÞ cos θ; ρðθÞ sin θÞ : 0 � θ �
π
2

n o
(20) 

The function ρ is unknown but, in contrast to the pre
vious example, the boundary values ρð0Þ, ρðπ=2Þ are 
unspecified. We consider maps Q of the form (18), 
where the director n is given by 

nðr cos θ; r sin θÞ :¼
ð0; 1Þ if r< ρðθÞ; 0< θ< π=2
ðcos θ; sin θÞ if r > ρðθÞ; 0< θ< π=2:

�

(21) 

In particular, the layers are horizontal on the left side of C
and circular on the right side. Moreover, we impose planar 
anchoring conditions near the boundary at x1 ¼ 0, defined 

in terms of the director as nðx1; x2Þ ¼ ð1; 0Þ for x2 < 0. As 
a result, the jump set of Q contains an additional compo
nent on the boundary of @Ω, i.e. the straight-line segment 
with endpoints ð0; 0Þ and ð0; ρð0ÞÞ, where the director 
jumps from the value ð1; 0Þ to ð0; 1Þ. In the energy func
tional, we account for this additional contribution as well. 
Moreover, in this example, we do not neglect the elastic 
energy.

Figure 7 shows a numerical approximation of the mini
miser of (17) within this restricted class, for K1 ¼ 2 and 
different values of α, μ. The simulation is based on 
a MATLAB code, and the details are provided in 
Appendix A. The numerical method we use is not guaran
teed to converge to a global minimum of the problem. 
However, we repeated the simulations using several differ
ent initial guesses for ρ, including random ones, and 
obtained qualitatively similar profiles for the jump set. 
The numerically found jump set very nearly agrees with 
a union of two parabolic arcs that bisect the smectic layers 
at each point, given explicitly as

x1 ¼ min a2 þ 2ax2
� �1=2

; b2 � 2bx2
� �1=2

� �
(22) 

for some positive numbers a, b. In Figure 7, we compare 
the numerical solution with the parabolic arcs given by 
(22), where we have chosen the parameters a, b so as to 
match the boundary values of the numerically found solu
tion; the difference between the two curves is almost unno
ticeable. Numerical tests show that the jump set tends to 
shrink towards the centre of the circle as μ increases or α 
decreases, although the dependence on α seems to be 
weaker. This is consistent with the fact that the jump energy 
density is monotonically increasing as a function of μ and 
decreasing as a function of α. Therefore, as μ increases or α 
decreases, energy minimisation requires the jump set to 
become shorter, in order to compensate for the larger 
values of the jump energy density.

4. Discussion and future directions

In this paper, we have shown how a free discontinuity 
model has the potential to describe the configurations of 

Figure 6. (Colour online) The minimizing configuration given by Proposition 3.2. The black lines represent the smectic layers, while the 
thick red line is the jump set C.
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smectic A layers observed in thin-film experiments. An 
advantage of free discontinuity models in this context is 
that they represent defect walls as sharp interfaces with 
precise locations. However, our analysis is just 
a beginning and much remains to be done. In particular, 
we are currently unable to formulate the thin-film pro
blem as a well-posed free-boundary problem in either 
two or three dimensions, so that the profile of the upper 
free surface and the width of the oily streaks can be 
predicted.

Of course, it would be physically relevant to consider 
three-dimensional free discontinuity problems. The condi
tions (C1)–(C3) are still meaningful in three dimensions, 
up to a few obvious modifications. (As a side remark, 
assuming that the three-dimensional energy density is 
invariant with respect to the action of rotations �R 2
SOð3Þ only is enough to guarantee that, in the two- 
dimensional case, the condition (C3) is satisfied for any 
R 2 Oð2Þ. Indeed, any R 2 Oð2Þ can be realised as a 
ð2� 2Þ-submatrix of a three-dimensional rotation 
�R 2 SOð3Þ.) The definition of BV-ellipticity, too, extends 
to higher dimensions with no essential change (see, e.g. 
[18], Definition 5.13 for the details). However, the condi
tion (C4) needs more substantial modifications, because 

(10) (or equivalently, (11)) is not enough to avoid disloca
tions of the smectic layers at the defect walls in three 
dimensions. In order for the layers to be consistently 
defined across a defect wall, the unit normal ν to the 
jump set and the molecular directors nþ, n� on either 
side of the jump, must satisfy (10) and, additionally, they 
must be coplanar. (If nþ, n� and ν are not coplanar, then 
the intersection lines between the layers on either side do 
not belong to the jump set and, hence, dislocations arise.) 
The singular energy density ζα, defined in (12), needs to be 
modified accordingly. Finally, the energy density φα is still 
well defined in three dimensions, as (14) remains mean
ingful. However, we do not know whether the three- 
dimensional analogue of φα is the BV-elliptic envelope of 
the three-dimensional analogue of ζα, nor whether it is BV- 
elliptic at all, because our arguments in [23] do not apply to 
the three-dimensional case.

Analytic work on these problems would need to be 
supplemented by numerical studies, and there is a need 
to develop appropriate numerical methods for free 
discontinuity (and free boundary) problems associated 
with jump energy densities of the type (14). Such jump 
energies also need further study, and it would be useful 
to broaden the class of BV-elliptic jump energies 

Figure 7. (Colour online) Numerics for the problem on a quarter circle. All the pictures have K1 ¼ 2.
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satisfying (C1)–(C4) in particular, to allow different 
minima at the two angle bisectors.

Finally, it is important to understand the relation 
between models based on a molecular density and our 
‘sharp interface’ model. In this context, there are inter
esting numerical computations of Xia, Maclachlan, 
Atherton & Farrell [24] using a modification of 
a model of Ball & Bedford [10], which is in turn based 
on that of Pevnyi, Selinger & Sluckin [25].

Note

1. In [23], we will show that φα is not only BV-elliptic, but 
also jointly convex, in the sense of [18], Definition 5.17. 
Joint convexity is a sufficient condition for BV- 
ellipticity, but it is not known whether it is a necessary 
condition as well.
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Appendix A. Numerical simulations

In this section, we present the details of the numerical simula
tions for the minimisation problem on a quarter circle, described 
in Section 3. The Q-tensor is defined in terms of a scalar function 
ρ : ½0; π=2� ! R , as in (18), (21). However, we find it conveni
ent to introduce a new variable u ¼ uðθÞ, defined by 

ρðθÞ ¼ e� uðθÞ for any 0< θ<
π
2
: (23) 

The original variable ρ is subject to the geometric constraints 
0< ρ< 1, because the domain is a quarter circle of unit radius. 
However, we minimise numerically the energy functional 
subject to no constraints on u. Equation (23) guarantees that 
ρ> 0, but for some values of α, μ (not shown in Figure 7), we 
did find numerical solutions that are not admissible, because 
they do not satisfy ρ< 1.

The energy can be written as a functional of u by a direct 
computation, using (18), (21) and (23). The energy consists of 
a sum of three terms: 

IðuÞ ¼ IelðuÞ þ Ijump;intðuÞ þ Ijump;bdðuÞ (24) 

The first term, IelðuÞ, is the elastic energy: 

IelðuÞ :¼
K1

2

ð

Ω
ÑQðxÞj j

2dx ¼
K1

2

ðπ=2

0

ð1

e� uðθÞ

dρ
ρ

� �

dθ

¼
K1

2

ðπ=2

0
uðθÞ dθ

(25) 

The second term, Ijump;intðuÞ, is the contribution to the jump 
energy from the curve C, given in (20): 

Ijump;intðuÞ :¼ μ
ð

C
φðQþ;Q� ; νÞdH1

¼ μ
ðπ=2

0
cos θj j

αe� uðθÞ u0ðθÞ2 þ 1
þ f ðθ; u0ðθÞÞj j

 !1=2

dθ

(26) 

with 

f ðθ; u0ðθÞÞ :¼ ðu0ðθÞ2 � 1Þ cos θþ 2u0ðθÞ sin θ (27) 

The expression (26)–(27) is deduced from (15), by applying 
trigonometric identities to simplify the form of the integrand. 
The integrand in (26) is not differentiable at the points where 

f ðθ; u0ðθÞÞ ¼ 0. As the numerical minimisation is based on 
a quasi-Newton method, which works best for differentiable 
functions, we regularise the integrand by introducing 
a parameter ε> 0: 

Ijump;intðuÞ � μ
ðπ=2

0
cos θj j

αe� uðθÞ ðu0ðθÞ2 þ 1

þ ðεþ f ðθ; u0ðθÞÞ2Þ1=2
Þ

1=2dθ
(28) 

The pictures in Figure 7 are obtained for ε¼ 10� 12. Finally, 
Ijump;bdðuÞ is the contribution to the jump energy from jumps 
that are located on the boundary of Ω — more precisely, on 
the line segment S with endpoints ð0; 0Þ and ð0; ρð0ÞÞ: 

Ijump;bdðuÞ :¼ μ
ð

S
φðQþ; Q� ; νÞdH1 ¼

ffiffiffi
2
p

μe� uð0Þ (29) 

This term can also be written in integral form, by considering 
a smooth function g : ½0; π=2� ! R such that gð0Þ ¼ 1, 
gðπ=2Þ ¼ 0 and writing 

Ijump;bdðuÞ ¼ �
ffiffiffi
2
p

μ
ðπ=2

0

d
dθ e� uðθÞgðθÞ
� �

dθ

¼
ffiffiffi
2
p

μ
ðπ=2

0
e� uðθÞ u0ðθÞgðθÞ � g0ðθÞð Þdθ

(30) 

We found that, when writing the boundary term in the form 
(29), the numerical solution deviates from the parabolic arcs 
(22) near θ ¼ 0. However, the thickness of this ‘boundary 
layer’ is mesh-dependent, so this feature is probably 
a numerical artifact. The pictures in Figure 7 are obtained by 
considering the integral form (30) of Ijump;bd, with 
gðθÞ :¼ 1 � 2θ=π, and present no boundary layer. Other 
choices of the function g, e.g. gðθÞ :¼ cos θ, produce qualita
tively similar profiles for the jump set.

We discretise the functional (24) on a uniform mesh of m 
points in ½0; π=2�. We approximate the derivative u0ðθÞ
by second-order central finite differences, and we approxi
mate the integrals by the trapezoid rule. The number m of 
mesh points is increased gradually, from m ¼ 50 to m ¼ 100. 
At each step of the iteration over m, we call the built-in 
MATLAB function fminunc, which applies the Broyden- 
Fletcher-Goldfarb-Shanno Quasi-Newton algorithm to mini
mise the functional (24) under no constraints on u. The initial 
guess for the minimisation process is defined by the numerical 
minimiser found at the previous step.
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