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Abstract. The aim of this work is to propose an extension of the Deep BSDE solver by Han, E,

Jentzen (2017) to the case of FBSDEs with jumps. As in the aforementioned solver, starting from a

discretized version of the BSDE and parametrizing the (high dimensional) control processes by means

of a family of ANNs, the BSDE is viewed as model-based reinforcement learning problem and the ANN

parameters are fitted so as to minimize a prescribed loss function. We take into account both finite and

infinite jump activity by introducing, in the latter case, an approximation with finitely many jumps of

the forward process.

1. Introduction

Forward backward stochastic differential equations (FBSDEs) have become a popular tool in several

application domains. One reason is that, due to the Feynman-Kac theorem, they essentially represent

the stochastic counterpart of partial differential equations (PDEs): such equations naturally arise

when modelling phenomena in diverse fields such as physics, engineering and finance. In finance, for

example, PDEs/FBSDEs emerge in the context of the problem of pricing a contingent claim, when

the underlying security, i.e. the state variable, is modelled by means of a diffusion process. Similar

remarks apply when we consider state variables following a jump diffusion process: in this case a

further integral/non local term appears in the Cauchy problem, which is then referred to as a partial

integro-differential equation (PIDE). BSDEs in this case are in turn generalized by the introduction

of a jump term driven by a Poisson random measure.

When a closed-form solution to the PIDE is not available and the dimension of the vector of state

variables is low, several approaches for the numerical solution are availble, the most famous being finite

difference and finite element methods. For further details, we refer the reader to Cont and Tankov

(2003), Hilber et al. (2013). However, the application of such standard numerical techniques becomes

increasingly difficult as the dimension of the state space increases: the tightness of error bounds may

be negatively affected or, more simply, the required computational time might increase significantly.

Such phenomena are often referred to as the curse of dimension.

The above mentioned problems in a high dimensional setting provide the motivation for the recent

surge in interest in machine-learning based methods to solve PDEs/BSDEs, where artificial neural

networks (ANNs) are employed in order to parametrize e.g. the function satisfying the PDE and/or

its gradient. From a mathematical perspective, ANNs are multiple nested compositions of relatively

simple multivariate functions. ANNs can be graphically represented by logical maps with a structure

that loosely resembles the one of the human brain, where each neuron (corresponding to the appli-

cation of a simple function on a multi-dimensional vector) is linked to a multitude of neighboring

neurons grouped in sequential layers. The term deep neural networks refers to ANNs with several

interconnected layers. One remarkable property of ANNs is given in the ‘Universal Approximation
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Theorem’, which essentially states that any continuous function in any dimension can be represented

to arbitrary accuracy by means of an ANN, and has been proven in different versions, starting from

the remarkable insight of Kolmogorov’s Representation Theorem in Kolmogorov (1956) and the sem-

inal works of Cybenko (1989) and Hornik (1991). In a nutshell, this result states that any continuous

function in any dimension can be represented to arbitrary accuracy by means of an ANN. Several

authors have shown, under different assumption and in different settings, that ANNs can overcome

the curse of dimension when approximating the solutions of PDEs, see e.g. Jentzen et al. (2018),

Reisinger and Zhang (2020), Hutzenthaler et al. (2018).

Recently, several authors have proposed different numerical schemes for PDEs/BSDEs based on the

Feynman-KaKacc theorem in absence of jumps. Seminal works in this sense are E et al. (2017) and Han

et al. (2018), together with the convergence study in Han and Long (2020). In these works, the BSDE

is discretized forward in time via a standard Euler scheme. The initial condition and the controls

of the BSDE, at each point in time, are then parametrized by a family of ANNs. The parameters

of the ANNs are optimized by minimizing the expected square distance between the known terminal

condition and the terminal value of the discretized BSDE. An alternative route has been followed

in Huré et al. (2020). They propose two schemes, DBDP1 and DBDP2, that involve a backward

recursion based on the dynamic programming principle. At each time step, they seek to minimize the

distance between the BSDE at the subsequent time step and the parametrized dynamics of the BSDE

which depends on ANNs. In the first version (DBDP1) two families of neural networks are employed

to approximate the value process and the control in the solution of the BSDE. The second version

of the algorithm (DBDP2) exploits the fact that the control is linked to the gradient of the value

process of the BSDE so that only one family of neutral networks is employed for the approximation

of the value process. The control is obtained by automatic differentiation. Another alternative is

the so-called deep splitting method, first proposed in Beck et al. (2021): in this case the differential

operator of a parabolic PDE is split into a linear and a non-linear part. The non-unique split is chosen

is such a way that the non-linear part becomes small. The PDE is then solved iteratively over small

time intervals. Such numerical solution involves the recursive computation of conditional expectations

which are approximated by means of ANNs. We also mention, among others, the deep Galerkin method

proposed in Sirignano and Spiliopoulos (2018): this method is not based on the link between FBSDE

and PDEs instead, in their approach, the ANN is trained in order to satisfy the differential operator,

the initial condition, and the boundary conditions.

The above mentioned papers have been generalized in a multitude of directions and we refer to Beck

et al. (2021) for an extensive literature review.

Concerning the case with jumps the number of studies linking deep learning with the numerical solution

of PIDEs is lower. The aforementioned contribution Huré et al. (2020) has been extended to the jump

diffusion case in Castro (2021), which also proposes a convergence analysis. A generalization of Beck

et al. (2021) is presented in Frey and Köck (2021) with a convergence analysis provided in Frey and

Köck (2022). The deep Galerkin method instead is extended in Al-Aradi et al. (2019).

In this paper, we generalize the algorithm of E et al. (2017) and Han et al. (2018) to the jump diffusion

setting. Following their reasoning, we discretize the FBSDE with jumps in a forward loop with respect

to the time dimension. Next, we introduce deep learning approximations, in the form of two families

of ANNs with different tasks: the first family approximates the value process of the BSDE, i.e. the

solution of the PIDE, whereas the second is introduced in order to approximate the possibly high

dimensional integral with respect to the Lévy measure that appears in the discretized BSDE. Our

algorithm is first formulated for processes where the jump term exhibits finite activity. The first
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family of networks is trained by minimizing the expected square distance between the terminal value

of the parametrized BSDE and the known terminal condition, in line with E et al. (2017) and Han

et al. (2018). To train the second family of ANNs we exploit the martingale property of compensated

Poisson integrals and the L2-minimality of conditional expectations, which results in a second penalty

term to be minimized. We also propose an extension for the infinite activity/infinite variation of

jumps case: we rely on the literature on the approximation of paths of infinite activity Lévy processes

by means of compound Poisson processes, (see e.g. Asmussen and Rosiński (2001) among others)

and we also introduce a perturbation of the diffusion coefficient to approximate jumps smaller than a

pre-specified threshold.

The paper is organized as follows. In Section 2, we present our main assumptions and notations,

whereas Section 3 is devoted to the presentation of our algorithm both in the finite and the infinite

activity case. Section 4 presents some a priori error estimates that study the distance between the

solution of the true FBSDE with jumps of infinite activity and the one of the approximating FBSDE

driven by a compound Poisson process. Finally Section 5 presents some numerical experiments both

in the finite and infinite activity setting.

2. Setting and preliminaries

We fix a time horizon T ∈ R+ with T < ∞. Let (Ω,F ,F,Q) be a filtered probability space, where

the filtration F = (Ft)t∈[0,T ] satisfies the usual assumptions. All semimartingales introduced in the

following are càdlàg.

We suppose that the filtered probability space supports an Rd valued standard Brownian motion

W = (Wt)t∈[0,T ], together with a Poisson random measure N with associated Lévy measure ν, such

that

ν({0}) = 0,

∫
Rd

1 ∧ |z|2ν(dz) <∞, and

∫
|z|≥1

|z|2ν(dz) <∞,(2.1)

allowing us to introduce the compensated random measure

(2.2) Ñ(dt,dz) := N(dt,dz)− ν(dz)dt.

Let us introduce the following spaces

• L2
F
(
Rd
)
, the space of all F-measurable random variables X : Ω→ Rd satisfying

‖X‖2 := E
(
|X|2

)
< +∞;

• H2
T

(
Rd
)
, the space of all predictable process φ : Ω× [0, T ]→ Rd such that

‖φ‖2H2 := E
[∫ T

0
|φt|2 dt

]
< +∞.

As previously mentioned, the filtration F supports the Brownian motion W and the Poisson random

measure N . The following is the statement of the predictable representation property in the present

setting

Lemma 2.1 (See Lemma III, 4.24 in Jacod and Shiryaev (2003)). Any F local martingale M has the

representation

Mt = M0 +

∫ t

0
Zs dWs +

∫ t

0

∫
Rd
Us(z)Ñ(ds, dz), 0 ≤ t ≤ T

where Z and U are F-predictable processes both integrable with respect to W and Ñ .

Next, we introduce the following spaces that are needed to define the concept of solution to FBSDEs.
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• H2
T,N

(
Rd
)

is the space of all predictable process φ : Ω× [0, T ]× Rd → Rd satisfying

‖φ‖2H2
N

:= E
[∫ T

0

∫
Rd
|φt(z)|2 ν(dz)dt

]
< +∞,

where we integrate with respect to the predictable compensator of the Poisson random mea-

sure N .

• S2
T

(
Rd
)

is the space of F-adapted càdlàg processes φ : Ω× [0, T ]→ Rd satisfying

‖φ‖S2 := E

[
sup

0≤t≤T
|φt|2

]
< +∞.

Let us consider a SDE in the following general form:

Xs = x+

∫ s

t
b (Xr−) dr +

∫ s

t
σ (Xr−)> dWr +

∫ s

t

∫
Rd

Γ (Xr−, z) Ñ(dr, dz), t ∈ [0, T ], x ∈ Rd.(2.3)

The vector fields b : Rd 7→ Rd, σ : Rd 7→ Rd×d, Γ : Rd × Rd 7→ Rd are measurable functions satisfying

the following assumptions.

(A1) The functions b and σ are Lipschitz continuous;

(A2) The function Γ satisfies, for some constant K > 0∫
|z|<1

∣∣Γ (x, z)− Γ
(
x′, z

)∣∣2 ν(dz) ≤ K
∣∣x− x′∣∣2∫

|z|<1
|Γ(x, z)|2ν(dz) ≤ K

(
1 + |x|2

)
Under such assumption the SDE (2.3) admits a unique strong solution with initial time t and initial

condition x ∈ Rd that we denote by Xt,x = (Xt,x
s )t∈[t,T ]. In our setting the σ-algebra Ft is then the

trivial one.

Theorem 2.2. Let assumptions (A1)-(A2) be satisfied. The following holds:

(i) for each (t, x) ∈ [0, T ] × Rd exists a unique adapted, càdlàg solution Xt,x := (Xt,x
s )t≤s≤T to

(2.3);

(ii) the solution Xt,x is a homogeneous Markov process.

Proof. The claims follow from Theorem 6.2.9. and Theorem 6.4.6 in Applebaum (2009) respectively.

�

Let us then introduce the following BSDE:

(2.4)

Yt =g(XT ) +

∫ T

t
f

(
s,Xr−, Yr−, Zr,

∫
Rd
Ur(z)ν(dz)

)
dr −

∫ T

t
Z>r dWr

−
∫ T

t

∫
Rd
Ur(z)Ñ(dr, dz).

Remark 2.3. A more general formulation of the BSDE (2.4) may involve a driver of the form f : [0, T ]×
Rd×R×Rd×L2

ν(Rd)→ R, where L2
ν(Rd) is the space of functions φ such that

∫
Rd |φ(z)|2ν(dz) <∞,

i.e. the driver in (2.4) may be replaced by a generic functional f (s,Xr−, Yr−, Zr, Ur(·)). We introduce

instead a dependence on the integral of U with respect to the Lévy measure, which is often found in

applications, see e.g. Delong (2017).

We consider the following assumptions:
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(A3) the function f : [0, T ] × Rd × R × Rd × Rd → R is Lipschitz continuous with respect to the

state variables, uniformly in t, i.e. there exists K > 0 such that∣∣f(t, x, y, z, u)− f
(
t, x′, y′, z′, u′

)∣∣
≤ K

(∣∣x− x′∣∣+
∣∣y − y′∣∣+

∣∣z − z′∣∣+
∣∣u− u′∣∣)

for all (t, x, y, z, u), (t, x′, y′, z′, u′) ∈ [0, T ]× Rd × R× Rd × Rd;
(A4) the function g : Rd → R is Lipschitz continuous, i.e. there exists K > 0 such that∣∣g(x)− g

(
x′
)∣∣ ≤ K ∣∣x− x′∣∣ ,

for all x, x′ ∈ Rd.

The above conditions allow us to recall the following existence and uniqueness theorem. We use again

superscripts t, x to stress the dependence on the initial condition x at time t.

Theorem 2.4. [Theorem 4.1.3, Delong (2017)] Under assumptions (A1)-(A4) there exists a unique

solution (Xt,x, Y t,x, Zt,x, U t,x) ∈ S2
T

(
Rd
)
× S2

T (R)×H2
T

(
Rd
)
×H2

T,N (R) to the FBSDE (2.3)-(2.4).

To alleviate notations, hereafter we omit when possible the dependency on the initial condition (t, x)

of the processes (Xt,x
· , Y t,x

· , Zt,x· , U t,x· ).

Our objective is to numerically solve FBSDEs with jumps, possibly in a high dimensional setting, by

means of deep learning techniques. It is well known that FBSDEs with jumps are strongly related to

PIDEs, so our solver offers in turn a numerical approach to the solution of high dimentional PIDEs.

The main theoretical tool that underpins this link is the Feynman-Kac theorem, that links PIDEs

and FBSDEs in a Markovian setting. For the reader’s convenience, let us recall the version of the

Feynman-Kac theorem that is relevant for our purposes. We are interested in finding a function

u ∈ C1,2([0, T ]× Rd,R) that satisfies the PIDE

− ut(t, x)−L u(t, x)

− f (t, x, u(t, x), Dxu(t, x)σ(x),J u(t, x)) = 0, (t, x) ∈ [0, T )× Rd,

u(T, x) = g(x), x ∈ Rd,

(2.5)

where

L u(t, x) = 〈µ(x), Dxu(t, x)〉+
1

2

〈
σ(x)D2

xu(t, x), σ(x)
〉

+

∫
Rd

(u(t, x+ Γ(x, z))− u(t, x)− 〈Γ(x, z), Dxu(t, x)〉) ν(dz),

J u(t, x) =

∫
Rd

(u(t, x+ Γ(x, z))− u(t, x))ν(dz).

(2.6)

The link between the FBSDE (2.3)-(2.4) and the PIDE (2.5)-(2.6) is established via the following :

Theorem 2.5 (Theorem 4.2.1, Delong (2017)). Let assumptions (A1)-(A4) be satisfied and let u ∈
C1,2([0, T ]× Rd,R) satisfy the PIDE (2.5)-(2.6) and the linear growth conditions

|u(t, x)| ≤ K(1 + |x|), |ux(t, x)| ≤ K(1 + |x|), ∀ (t, x) ∈ [0, T ]× Rd,(2.7)

then

Y t,x
s =u(s,Xt,x

s ), t ≤ s ≤ T,

Zt,xs =σ(Xt,x
s−)>Dxu(s,Xt,x

s−), t ≤ s ≤ T,

U t,xs (z) =u(s,Xt,x
s− + Γ(Xt,x

s− , z))− u(s,Xt,x
s−), t ≤ s ≤ T, z ∈ Rd.

(2.8)
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The above formulation of FBSDEs is intrinsically linked to the following stochastic optimal control

problem:

minimise
y ∈ R,

Z ∈ H2
T

(
Rd
)
,

U ∈ H2
T,N (R)

E
[(
g
(
Xt,x
T

)
− Y y,Z,U

T

)2
]
,

subject to:(2.9) 
Xt,x
s = x+

∫ s
t b(X

t,x
r−)dr +

∫ s
t σ(Xt,x

r−)>dWr +
∫ s
t

∫
Rd Γ(Xt,x

r−, z)Ñ(dr, dz),

Y y,Z,U
s = y −

∫ s
t f(r,Xt,x

r−, Y
y,Z,U
r− , Zr,

∫
Rd Ur(z)ν(dz))dr +

∫ s
t (Zr)

>dWr

+
∫ s
t

∫
Rd Ur(z)Ñ(dr, dz), s ∈ [t, T ].

Lemma 2.6. Under assumptions (A1)-(A4), the minimum in problem (2.9) is achieved and the

corresponding minimizer (y?, Z?, U?) is the unique solution to the FBSDE (2.3)-(2.4). In particular,

one has

E
[(
g
(
Xt,x
T

)
− Y y?,Z?,U?

T

)2
]

= 0

and

y? = Y t,x
t = u (t, x) ,

Z?s = Zt,xs = σ(Xt,x
s−)>Dxu(s,Xt,x

s−), t ≤ s ≤ T,

U?s (z) = U t,xs (z) = u(s,Xt,x
s− + Γ(Xt,x

s− , z))− u(s,Xt,x
s−), t ≤ s ≤ T, z ∈ Rd.

Proof. Thanks to assumptions (A1)-(A4) the FBSDE (2.3)-(2.4) has a unique solution (Xt,x, Y t,x, Zt,x, U t,x)

as stated in Theorem 2.4. We consider now (Y t,x
t , Zt,x, U t,x) as the control of the minimization prob-

lem (2.9), observing that the dynamics constraint is satisfied. Since we have Y t,x
T = g(Xt,x

T ) P-a.s. it

means that

E

[(
g
(
Xt,x
T

)
− Y Y t,xt ,Zt,x,Ut,x

T

)2
]

= 0

and the minimum is then achieved at (y?, Z?, U?) = (Y t,x
t , Zt,x, U t,x). Moreover, any other minimizer

should be a solution of the FBSDE, but being such a solution unique we can conclude by Theorem

2.5 that the last statement of the lemma holds. �

2.1. The Deep BSDE solver by E-Han-Jentzen. We provide an overview of the algorithm pro-

posed in E et al. (2017). The main idea of their approach is to consider, in a setting without jumps,

a discretized version of the stochastic control problem in (2.9) and then approximate, at each time

step, the control process by using an artificial neural network (ANN). First of all, let us observe that,

in absence of jumps the dynamics constraints in (2.9) becomes

(2.10)

X
t,x
s = x+

∫ s
t b(X

t,x
r−)dr +

∫ s
t σ(Xt,x

r−)>dWr,

Y y,Z
s = y −

∫ s
t f(r,Xt,x

r−, Y
y,Z
r− , Zr)dr +

∫ s
t (Zr)

>dWr, s ∈ [t, T ],

and the control problem (2.9) reduces to an optimization with respect to y ∈ R and Z ∈ H2
T . Given

M ∈ N, a time discretization 0 ≤ t = t0 < t1 < . . . < tM = T is introduced. For simplicity let

us assume that the mesh grid is uniform with step ∆t > 0. Let ∆Wn = Wtn+1 −Wtn denote the

increments of the Brownian motion. An Euler-Maruyama discretization of the FBSDE is considered,
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i.e. for n = 0, . . . ,M − 1 we define the following discrete time version of the dynamics (2.10),

(2.11)

X̃n+1 = X̃n + b(X̃n)∆t+ σ(X̃n)∆Wn, X̃0 = x,

Ỹn+1 = Ỹn − f(tn, X̃n, Ỹn, Z̃n)∆t+ Z̃>n ∆Wn, Ỹ0 = y.

The next step is to represent, for each n, the control process Z̃n in (2.11) by using an artificial neural

network (ANN). In particular, feedforward ANN with L + 1 ∈ N \ {1, 2} layers are employed. Each

layer consists of υ` nodes (also called neurons), for ` = 0, . . . ,L. The 0-th layer represents the input

layer, while the L-th layer is called the output layer. The remaining L − 1 layers are hidden layers.

For simplicity, we set υ` = υ, ` = 1, . . . ,L − 1. In our setting, the dimension of the input layer is set

equal to d, i.e. the dimension of the forward process X.

A feedforward neural network is a function defined via the composition

x ∈ Rd 7−→ AL ◦ % ◦ AL−1 ◦ . . . ◦ % ◦ A1(x),

where all A`, ` = 1, . . . ,L, are affine transformations of the form A`(x) := W`x + β`, ` = 1, . . . ,L,

whereW` and β` are matrices and vectors of suitable size called, respectively, weights and biases. The

function %, called activation function, is a univariate function % : R 7→ R that is applied component-

wise to vectors. With an abuse of notation, we denote %(x1, . . . , xυ) = (%(x1), . . . , %(xυ)) . The elements

of W` and β` are the parameters of the neural network. One can regroup all parameters in a vector

of size R =
∑L

`=0 υ`(1 + υ`).

Let, for each n = 0, . . . ,M − 1, Zρnn : Rd → Rd be an ANN with parameters ρn ∈ RR. Replacing

Zn with Zρnn (X̃n) in (2.11) one obtains the following dynamics for the process Ỹ parametrized by

ρ= (ρ0, . . . , ρM−1) ∈ (RR)M

(2.12) Ỹ y,ρ
n+1 = Ỹ y,ρ

n − f(tn, X̃n, Ỹ
y,ρ
n ,Zρnn (X̃n))∆t+ (Zρnn (X̃n))>∆Wn, Ỹ y,ρ

0 = y.

Observe that the solver involves the introduction of M distinct neural networks, one network for each

time step.

The family of neural network is then trained simultaneously over a set of simulated Monte Carlo

samples of the dynamics via a standard training algorithm such as stochastic gradient descent or its

extensions (one notable example in this sense being given by the ADAM algorithm, see Kingma and

Ba (2015)) in order to minimize with respect to y ∈ R and ρ ∈ RR(Z) the loss function

(2.13) E
[(
g(X̃M )− Ỹ y,ρ

M

)2
]
.

3. Deep Solver with jumps

The aim of this section is to present our proposed extension of the Deep BSDE solver of E et al. (2017)

to cover the case of the FBSDE with jumps (2.3)-(2.4).

The main challenge in view of the extension is represented by the case where the forward (and con-

sequently the backward) process exhibits infinitely many jumps, be it of finite or infinite variation.

Clearly, such jumps cannot be simulated exactly on a pre-specified grid of time instants. This prob-

lem has been first encountered in the literature on the discretization and simulation of Lévy-driven

stochastic differential equations, see Fournier (2011) among others. For the reader’s convenience, we

split the presentation of our solver in two subsections. In the first subsection we only consider the

case with finitely many jumps since it can be simulated exactly via an Euler type discretization. In

the second subsection we present the additional steps that we propose in order to cover the infinite

activity case.
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3.1. Finite activity case. In this subsection we assume that the Lévy measure satisfies the condition

ν(Rd) < ∞, meaning that the jumps are those of a compound Poisson process. We fix M ∈ N and

introduce a uniform time discretization 0 ≤ t = t0 < t1 < . . . < tM = T with time step ∆t > 0. As

a starting point, we consider the forward SDE (2.3) between two subsequent time steps tn and tn+1,

namely,

Xtn+1 = Xtn +

∫ tn+1

tn

b (Xr−) dr +

∫ tn+1

tn

σ (Xr−)> dWr +

∫ tn+1

tn

∫
Rd

Γ (Xr−, z) Ñ(dr, dz),

with Xt0 = x ∈ Rd. We freeze the coefficients between to consecutive time steps introducing the

discrete time process X̃ = (X̃n)n=0,...,M , defined recursively by

X̃n+1 = X̃n+

∫ tn+1

tn

b(X̃n)dr+

∫ tn+1

tn

σ(X̃n)>dWr+

∫ tn+1

tn

∫
Rd

Γ(X̃n, z)Ñ(dr, dz), n = 0, . . . ,M−1,

with X̃0 = x. We write N([0, tn],Rd) to denote the number of Rd-valued jump sizes occurring over the

time interval [0, tn]. The previous equation can then be rewritten as

X̃n+1 = X̃n + b(X̃n)∆t+ σ(X̃n)>∆Wn

+

N([0,tn+1],Rd)∑
i=N([0,tn],Rd)+1

Γ(X̃n, zi)−∆t

∫
Rd

Γ(X̃n, z)ν(dz), n = 0, . . . ,M − 1.
(3.1)

We proceed similarly for the backward dynamics (2.4). We consider again two consecutive time

instants tn and tn+1

Ytn+1 =Ytn −
∫ tn+1

tn

f
(
r,Xr−, Yr−, Zr,

∫
Rd
Ur(z)ν(dz)

)
dr +

∫ tn+1

tn

Z>r dWr +

∫ tn+1

tn

∫
Rd
Ur(z)Ñ(dr, dz).

We now make use of the Feynman-Kac Theorem 2.5, meaning that above dynamics can be read as

follows

Ytn+1 = Ytn −
∫ tn+1

tn

f
(
r,Xr−, Yr−, σ(Xr−)>Dxu(r,Xr−),

∫
Rd
u(r,Xr− + Γ(Xr− , z))− u(r,Xr−)ν(dz)

)
dr

+

∫ tn+1

tn

(Dxu(r,Xr−))>σ(Xr−)dWr

+

∫ tn+1

tn

∫
Rd
u(r,Xr− + Γ(Xr− , z))− u(r,Xr−)Ñ(dr, dz).

Next, we freeze again the coefficients and consider the following discrete time approximation

Ỹn+1 =Ỹn − f
(
tn, X̃n, Ỹn, σ(X̃n)>Dxu(tn, X̃n),

∫
Rd
u(tn, X̃n + Γ(X̃n, z))− u(tn, X̃n)ν(dz)

)
∆t

+ (Dxu(tn, X̃n))>σ(X̃n)∆Wn

+

N([0,tn+1],Rd)∑
i=N([0,tn],Rd)+1

u(tn, X̃n + Γ(X̃n, zi))− u(tn, X̃n)

−∆t

∫
Rd
u(tn, X̃n + Γ(X̃n, z))− u(tn, X̃n)ν(dz).

At this point, we introduce neural network approximations. We shall introduce 2 distinctM -dimensional

families of neural network in the solution of the FBSDE (2.3)-(2.4).

We employ the first family of networks to parametrize the function u, thus introducing the neural net-

work approximation Uρnn : Rd 7→ Rd, n = 0, . . . ,M − 1, parametrized by ρ= (ρ0, . . . , ρM−1) ∈ (RR)M
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and indexed by the time discretization n ∈ {0, . . . ,M − 1}. Notice that, due to the Feynman-Kac

theorem, the control Z depends on the gradient of the function u, meaning that, in the numerical

scheme, we need to compute the gradient of the neural network. The computation of the gradient

of Uρnn at each time step involves an application of the chain rule for differentiation. This can be

easily implemented by relying on Tensorflow’s automatic differentiation capabilities. In our numer-

ical experiments we make use of a sigmoid activation function %(x) = 1
1+e−x in order to guarantee

differentiability.

Introducing the family of networks (Uρnn )n=0,...,M−1 makes it possible to obtain a straightforward

approximation for both the stochastic integral with respect to the Brownian motion and the one with

respect to the uncompensated Poisson random measure, leaving the question of approximating the

compensator term, namely ∫
Rd
u(tn, X̃n + Γ(X̃n, z))− u(tn, X̃n)ν(dz),(3.2)

open. Once replaced u(tn, ·) by the ANN Uρnn , thus obtaining∫
Rd
Uρnn (X̃n + Γ(X̃n, z))− Uρnn (X̃n)ν(dz),

the first option, which is feasible when the dimension d is low, is to employ a standard quadrature

rule. When the dimension increases one can resort to Monte Carlo integration. However, the training

of the networks we introduced involves a further Monte Carlo simulation during the training phase,

so that such approach would lead to costly nested Monte Carlo simulations.

We propose a different approach, where at each time step tn, we approximate (3.2) via a second family

of neural networks Vθnn : Rd → R, n = 0 . . . ,M−1, parametrized by θ= (θ0, . . . , θM−1) ∈ (RR)M . Here,

with the sole aim of simplifying the notation, we are assuming that the size of the parameter vector of

every ANN involved in the solver is equal to R. Let us recall that the stochastic integral with respect

to the compensated Poisson random measure is a square integrable martingale under our assumptions,

meaning that

E
[∫ tn+1

tn

∫
Rd
u
(
r,Xr− + Γ(Xr− , z)

)
− u (r,Xr−) Ñ(dr, dz)

∣∣∣∣Ftn] = 0.

Let us recall that the conditional expectation of a random variable X ∈ L2
F (R) with respect to

Ftn ⊂ F satisfies

E [X | Ftn ] = arg min
X̃ ∈L2

Ftn
(R)

E
[
(X − X̃ )2

]
so that, setting X =

∫ tn+1

tn

∫
Rd u

(
r,Xr− + Γ(Xr− , z)

)
− u (r,Xr−) Ñ(dr, dz) we are led to

0 = arg min
X̃ ∈L2

Ftn
(R)

E
[
(

∫ tn+1

tn

∫
Rd
u
(
r,Xr− + Γ(Xr− , z)

)
− u (r,Xr−) Ñ(dr, dz)− X̃ )2

]
,

which inspires the introduction of a further penalty term to be minimized during the training phase

in addition to (2.13): at each time tn, we would like to minimize the quantity

E


 N([0,tn+1],Rd)∑
i=N([0,tn],Rd)+1

(
Uρnn (X̃n + Γ(X̃n, zi))− Uρnn (X̃n)

)
−∆tVθnn (X̃n)

2
 .
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This concludes the description of the algorithm for the finite activity case. To summarize, our approach

considers the following discretized stochastic control problem

minimise
y∈R,

ρ∈(RR(U))M ,

θ∈(RR(V))M

E
[(
g(X̃M )− Ỹ y,ρ,θ

M

)2
]

+
M−1∑
n=0

E


 N([0,tn+1],Rd)∑
i=N([0,tn],Rd)+1

(
Uρnn (X̃n + Γ(X̃n, zi))− Uρnn (X̃n)

)
−∆tVθnn (X̃n)

2


(3.3)

subject to:

X̃n+1 = X̃n + b(X̃n)∆t+ σ(X̃n)>∆Wn

+
∑N([0,tn+1],Rd)

i=N([0,tn],Rd)+1
Γ(X̃n, zi)−∆t

∫
Rd Γ(X̃n, z)ν(dz)

Ỹ y,ρ,θ
n+1 = Ỹ y,ρ,θ

n − f
(
tn, X̃n, Ỹ

y,ρ,θ
n , σ(X̃n)>DxUρnn (X̃n),Vθnn (X̃n)

)
∆t

+(DxUρnn (X̃n))>σ(X̃n)∆Wn

+
∑N([0,tn+1],Rd)

i=N([0,tn],Rd)+1

(
Uρnn (X̃n + Γ(X̃n, zi))− Uρnn (X̃n)

)
−∆tVθnn

(
X̃n

)
.

3.2. Infinite activity case. To cover the case where the forward process X exhibits infinitely many

jumps, we will proceed by introducing an approximating jump diffusion Xε with finitely many jumps,

meaning that the jump component will correspond to a compound Poisson process. The small jumps

might be truncated or, as we do, they could be approximated via the diffusion term by increasing the

volatility. This will constitute the first source of numerical error of our algorithm. Concerning this

first approximation step for the forward SDE for X we follow, among others Asmussen and Rosiński

(2001), Cohen and Rosiński (2007) and Jum (2015)

Moving from the process X to the process Xε has an implication on the FBSDE as well. To proceed,

we will need to introduce some additional assumptions, in particular regarding the structure of the

Poisson random measure: let ε ∈ (0, 1]. We define

νε(dz) := 1{|z|>ε}ν(dz),

νε(dz) := 1{|z|≤ε}ν(dz),

so that we write

ν = νε + νε.

From the definition of the Lévy measure ν we immediately have
∫
Rd |z|

2νε(dz) < ∞ . We need the

following additional assumption

(A5) We assume νε
(
Rd
)
<∞ .

The assumption above means that we can can factorize the jump term in two components, the first

one corresponding to the small jumps, and the second one to the big jumps, i.e. a compound Poisson

process. The factorization of the Lévy measure means that we are assuming that we can write the

Poisson Random Measure N as

N = Nε +N ε ,(3.4)

with Nε and N ε having the compensator νε and νε, respectively.
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In line with Cohen and Rosiński (2007) we introduce the following quantity

Σε :=

∫
Rd
zz>νε(dz) =

∫
|z|<ε

zz>ν(dz),

taking values in the cone of positive semidefinite d × d matrices Sd+. We also introduce a further

assumption on the jump term of the forward SDE:

(A6) the function Γ : Rd × Rd → Rd is of the form

Γ(x, z) := γ(x)z

for some Lipschitz continuous function γ : Rd 7→ Rd×d.
The remaining assumptions on the vector fields b, σ,Γ are unchanged with respect to (2.3).

Given (t, x) ∈ [0, T ]×Rd, we approximate the solution Xt,x
· of the forward SDE (2.3) by means of the

process Xε,t,x
· , whose dynamics are

Xε,t,x
s =x+

∫ s

t
b(Xε,t,x

r− )dr +

∫ s

t
σ(Xε,t,x

r− )> + γ(Xε,t,x
r− )

√
ΣεdWr +

∫ s

t

∫
Rd
γ(Xε,t,x

r− )zÑ ε(dr, dz),

(3.5)

where
√

Σε denotes the matrix square root of Σε ∈ Sd+ and we set Ñ ε := N ε(dr, dz)−νε(dz)dr. Again,

whenever possible, we will simply use the notation Xε, thus neglecting the dependence on the starting

point (t, x). A priori error estimates of the error we introduce by approximating X via Xε can be

derived following, for instance, Cohen and Rosiński (2007) and Jum (2015) and will be discussed in

the next section.

At this point we apply the solver as described in Section 3.1 to the following BSDE

Y εε
t =g(Xε

T ) +

∫ T

t
f(s,Xε

r−, Y
εε
r−, Z

εε
r ,

∫
Rd
U εε(r, z)νε(dz))dr −

∫ T

t
Zεεr
>dWr

−
∫ T

t

∫
Rd
U εεr (z)Ñ ε(dr, dz).(3.6)

whose solution (Y εε, Zεε, U εε) is intended to approximate (Y,Z, U) solving (2.4).

4. Error estimates

In this section we present a priori error estimates for the error introduced by the approximation of

small jumps in the infinite activity case on the solution of the FBSDE.

4.1. A priori error estimates for the forward approximation. We start by providing the L2

estimate of the error that we introduce by approximating X· via Xε
· . We report the full derivation,

obtained following Cohen and Rosiński (2007) and Jum (2015), for the sake of completeness. We first

have the following moment bound:

Lemma 4.1. Under the assumptions (A1)-(A2), (A5)-(A6), the SDE (3.5) admits a unique solution

Xε := (Xε
s)t≤s≤T . Moreover, there exists C > 0 such that the following estimate holds

E

[
sup
s∈[t,T ]

|Xε
s|

2

]
≤ C

(
1 + |x|2

)
, ∀(t, x) ∈ [0, T ]× Rd.(4.1)

Proof. Existence and uniqueness follow from the same arguments used for (2.3). We concentrate on

the estimate in the following.

E

[
sup
s∈[t,T ]

|Xε
s|

2

]
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≤ C
(
|x|2 + E

[∫ T

t

∣∣b (Xε
r−
)∣∣2 dr

]
+E

[
sup
s∈[t,T ]

∣∣∣∣∫ s

t
σ
(
Xε
r−
)>

+ γ
(
Xε
r−
)√

ΣεdWr

∣∣∣∣2
]

+ E

[
sup
s∈[t,T ]

∣∣∣∣∫ s

t

∫
Rd
γ
(
Xε
r−
)
zÑ ε(dr, dz)

∣∣∣∣2
])

.

Using the Burkholder-Davis-Gundy inequality or equivalently Theorem 2.11 in Kunita (2004) we have

E

[
sup
s∈[t,T ]

|Xε
s|

2

]

≤ C
(
|x|2 + E

[∫ T

t

∣∣b (Xε
r−
)∣∣2 dr

]
+E

[∫ T

t

∣∣∣σ (Xε
r−
)>

+ γ
(
Xε
r−
)√

Σε

∣∣∣2 dr

]
+ E

[∫ T

t

∫
Rd

∣∣γ (Xε
r−
)
z
∣∣2 νε(dz)dr])

We use the fact that supε∈(0,1] |
√

Σε| < ∞, together with
∫
Rd |z|

2νε(dz) < ∞ (which is a direct

consequence of Assumption (A5)) and the Lipschitz continuity of b, σ and γ so that, redefining the

constant C we have

E

[
sup
s∈[t,T ]

|Xε
s|

2

]
≤ C

(
1 + |x|2 + E

[∫ T

t
|Xε

r |2dr

])
.

Using Gronwall’s inequality we obtain the claim. �

Proposition 4.2. Under the assumptions (A1)-(A2), (A5)-(A6), there exists a constant C > 0 such

that

E

[
sup
s∈[t,T ]

|Xs −Xε
s|

2

]
≤ C(1 + |x|2)

∫
Rd
|z|2νε(dz), ∀(t, x) ∈ [0, T ]× Rd.(4.2)

Proof.

E

[
sup
s∈[t,T ]

|Xs −Xε
s|

2

]

= E

[
sup
s∈[t,T ]

∣∣∣∣∫ s

t
b (Xr−)− b

(
Xε
r−
)

dr +

∫ s

t
σ (Xr−)> − σ

(
Xε
r−
)> − γ (Xε

r−
)√

ΣεdWr

+

∫ s

t

∫
Rd
γ (Xr−) zÑ(dr, dz)−

∫ s

t

∫
Rd
γ
(
Xε
r−
)
zÑ ε(dr, dz)

∣∣∣∣2
]

= E

[
sup
s∈[t,T ]

∣∣∣∣ ∫ s

t
b (Xr−)− b

(
Xε
r−
)

dr +

∫ s

t
σ (Xr−)> − σ

(
Xε
r−
)> − γ (Xε

r−
)√

ΣεdWr

+

∫ s

t

∫
Rd
γ (Xr−) zÑ(dr, dz)−

∫ s

t

∫
Rd
γ
(
Xε
r−
)
z(N − νε − νε︸ ︷︷ ︸

Ñ

)(dr, dz)

+

∫ s

t

∫
Rd
γ
(
Xε
r−
)
z(Nε − νε︸ ︷︷ ︸

Ñε

)(dr, dz)

∣∣∣∣2
 .

As in Jum (2015), we now use Theorem 2.11 in Kunita (2004) with p = 2 and obtain

E

[
sup
s∈[t,T ]

|Xs −Xε
s|

2

]



A DEEP SOLVER FOR BSDES WITH JUMPS 13

≤ C
{
E
[∫ T

t

∣∣b (Xr−)− b
(
Xε
r−
)∣∣2 dr

]
+ E

[∫ T

t

∣∣∣σ (Xr−)> − σ
(
Xε
r−
)> − γ (Xε

r−
)√

Σε

∣∣∣2 dr

]
+ E

[∫ T

t

∫
Rd

∣∣γ (Xr−)− γ
(
Xε
r−
)∣∣2 |z|2 ν(dz)dr

]
+ E

[∫ T

t

∫
Rd

∣∣γ (Xε
r−
)∣∣2 |z|2 νε(dz)dr]}

Exploiting the Lipschitz property of the coefficient functions b, σ, γ one obtains

E

[
sup
s∈[t,T ]

|Xs −Xε
s|

2

]

≤ C
{(

1 +

∫
Rd
|z|2ν(dz)

)
E
[∫ T

t
|Xr −Xε

r | dr
]

+

(∣∣∣√Σε

∣∣∣2 +

∫
Rd
|z|2νε(dz)

)
E
[∫ T

0
1 + |Xε

r |
2 dr

]}
so that, thanks to assumption (A5), applying Lemma 4.1 and observing that

∣∣√Σε

∣∣2 =
∫
Rd |z|

2νε(dz)

(see Jum (2015, Proposition 4.1.2)), one has

E

[
sup
s∈[t,T ]

|Xs −Xε
s|

2

]
≤ C

{
E
[∫ T

t
|Xr −Xε

r |dr
]

+ (1 + |x|2)

∫
Rd
|z|2νε(dz)

}
.

We then apply the Gronwall’s inequality to complete the proof. �

4.2. A priori error estimates for the backward approximation. In this section we estimate

the error induced by the approximation of small jumps on the solution (Y,Z, U) ∈ S2
T × HT × HT,N

to (2.4). Let (Y εε, Zεε, U εε) ∈ S2
T ×HT ×HT,Nε be the solution to (3.6). We have the following result

Proposition 4.3. Under assumptions (A1)-(A6), there exists a constant C > 0 such that the following

estimates hold

‖Y − Y εε‖2S2 + ‖Z − Zεε‖2H2 + ‖U − U εε‖2H2
Nε
≤ C(1 + |x|2)

∫
Rd
|z|2νε(dz) ∀x ∈ Rd.

for some positive constant C.

Proof. Let us consider, in addition to (2.4) and (3.6), a third BSDE where we only substitute the

forward process with the jump diffusion approximation and keep the original Poisson measure N for

the jump component:

(4.3)

Y ε
t =g(Xε

T ) +

∫ T

t
f

(
s,Xε

s−, Y
ε
s−, Z

ε
s,

∫
Rd
U εs(z)ν(dz)

)
ds−

∫ T

t
Zεs
>dWs

−
∫ T

t

∫
Rd
U εs(z)Ñ(ds, dz).

We clearly have

‖Y − Y εε‖2S2 :=E

[
sup
t∈[0,T ]

|Yt − Y εε
t |

2

]
= E

[
sup
t∈[0,T ]

|Yt − Y ε
t + Y ε

t − Y εε
t |

2

]
≤ 2

(
‖Y − Y ε‖2S2 + ‖Y ε − Y εε‖2S2

)(4.4)

‖Z − Zεε‖2H2 :=E
[∫ T

0
|Zt − Zεεt |

2 dt

]
= E

[∫ T

0
|Zt − Zεt + Zεt − Zεεt |

2 dt

]
≤ 2

(
‖Z − Zε‖2H2 + ‖Zε − Zεε‖2H2

)(4.5)
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‖U − U εε‖2H2
Nε

:=E
[∫ T

0

∫
Rd
|Ut(z)− U εεt (z)|2 νε(dz)dt

]
= E

[∫ T

0

∫
Rd
|Ut(z)− U εt (z) + U εt (z)− U εεt (z)|2 νε(dz)dt

]
≤ 2

(
E
[∫ T

0

∫
Rd
|Ut(z)− U εt (z)|

2 ν(dz)dt

]
+ E

[∫ T

0

∫
Rd
|U εt (z)− U εεt (z)|2 νε(dz)dt

])
≤ 2

(
‖U − U ε‖2H2

N
+ ‖U ε − U εε‖2H2

Nε

)

(4.6)

In what follows we will not keep track of the constants and we will denote them by a generic C.

We start by the first term in the right hand side of (4.4), (4.5) and (4.6). For any (ω, s, y, z, u) ∈
Ω× [0, T ]× R× Rd × L2

ν(Rd), let us define

F (ω, s, y, z, u) := f(s,Xs−, y, z,

∫
Rd
u(z)ν(dz))

and

F ε(ω, s, y, z, u) := f(s,Xε
s−, y, z,

∫
Rd
u(z)ν(dz)).

Applying the estimates (3.5) and (3.7) in Delong (2017) one has that for any ρ > 0 there exists some

constant C such that

E

[
sup
t∈[0,T ]

eρt|Yt − Y ε
t |2
]

+ E
[∫ T

0
eρt|Zt − Zεt |2dt

]
+ E

[∫ T

0

∫
Rd
eρt|Ut(z)− U εt (z)|2ν(dz)dt

]
≤ C

(
E
[
eρT |g(XT )− g(Xε

T )|2
]

+E
[∫ T

0
eρt |F (t, Yt−, Zt, Ut(·))− F ε(t, Yt−, Zt, Ut(·))|2 dt

])
= C

(
E
[
eρT |g(XT )− g(Xε

T )|2
]

+E

[∫ T

0
eρt
∣∣∣∣f(t,Xt−, Yt−, Zt,

∫
Rd
Ut(z)ν(dz))− f(t,Xε

t−, Yt−, Zt,

∫
Rd
Ut(z)ν(dz))

∣∣∣∣2 dt

])
.

(4.7)

Thanks to the Lipschitz continuity of g and f , see (A1) and (A2), and Proposition 4.2 we then obtain

‖Y − Y ε‖2S2 + ‖Z − Zε‖H2 + ‖U − U ε‖H2
N

≤ E

[
sup
t∈[0,T ]

eρt|Yt − Y ε
t |2
∣∣∣∣∣+ E

[∫ T

0
eρt|Zt − Zεt |2dt

]
+ E

[∫ T

0

∫
Rd
eρt|Ut(z)− U εt (z)|2ν(dz)dt

]

≤ CE

[
sup
t∈[0,T ]

|Xt −Xε
t |

2

]
≤ C(1 + |x|2)

∫
Rd
|z|2νε(dz).

Let us now move to the estimates for the terms ‖Y ε − Y εε‖2S2 , ‖Zε − Zεε‖2H2 and ‖U ε − U εε‖2H2
Nε

in

(4.4), (4.5), (4.6), respectively. First of all, let us observe that defining

Û εεs (z) := U εεs (z)1|z|≥ε

we can write Y εε as

Y εε
t =g(Xε

T ) +

∫ T

t
f

(
s,Xε

s−, Y
εε
s−, Z

εε
s ,

∫
Rd
Û εεs (z)ν(dz)

)
ds−

∫ T

t
Zεεs
>dWs
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−
∫ T

t

∫
Rd
Û εεs (z)Ñ(ds, dz).(4.8)

We proceed in line with Delong (2017, Lemma 3.1.1). We apply the Itô’s formula to eρt |Y ε
t − Y εε

t |
2

and we derive, for any τ ∈ [t, T ],

eρt |Y ε
t − Y εε

t |
2 + ρ

∫ τ

t
eρs |Y ε

s − Y εε
s |

2 ds+

∫ τ

t
eρs |Zεs − Zεεs |

2 ds

+

∫ τ

t

∫
Rd
eρs
∣∣∣U εs(z)− Û εεs (z)

∣∣∣2 ν(dz)ds

=eρτ |Y ε
τ − Y εε

τ |
2

− 2

∫ τ

t
eρs (Y ε

s − Y εε
s )

·
(
−f(s,Xε

s−, Y
ε
s−, Z

ε
s,

∫
Rd
U εs(z)ν(dz)) + f(s,Xε

s−Y
εε
s−, Z

εε
s ,

∫
Rd
Û εεs (z)ν(dz))

)
ds

− 2

∫ τ

t
eρs
(
Y ε
s− − Y εε

s−
)

(Zεs − Zεεs ) dWs

− 2

∫ τ

t

∫
Rd
eρs
(
Y ε
s− − Y εε

s−
) (
U ε(s, z)− Û εε(s, z)

)
Ñ(ds, dz)

−
∫ τ

t

∫
Rd
eρs
∣∣∣U εs(z)− Û εεs (z)

∣∣∣2 Ñ(ds, dz), 0 ≤ t ≤ τ ≤ T.

(4.9)

The stochastic integrals appearing above are local martingales. Even more, they are uniformly inte-

grable martingales. Taking the expectation of the inequality above and choosing τ = T we find

eρtE
[
|Y ε
t − Y εε

t |
2
]

+ ρE
[∫ T

t
eρs |Y ε

s − Y εε
s |

2 ds

]
+ E

[∫ T

t
eρs |Zεs − Zεεs |

2 ds

]
+ E

[∫ T

t

∫
Rd
eρs
∣∣∣U εs(z)− Û εεs (z)

∣∣∣2 ν(dz)ds

]
=2E

[ ∫ T

t
eρs (Y ε

s − Y εε
s )

·
(
f(s,Xε

s−, Y
ε
s−, Z

ε
s,

∫
Rd
U εs(z)ν(dz))− f(s,Xε

s−Y
εε
s−, Z

εε
s ,

∫
Rd
Û εεs (z)ν(dz))

)
ds

]
, 0 ≤ t ≤ T.

We can use the following inequality: for any α > 0.

2|uv| ≤ 1

α
|u|2 + α|v|2.(4.10)

We apply this to the term involving the difference between the drivers and obtain

2 |Y ε
s − Y εε

s |
∣∣∣∣f(s,Xε

s−, Y
ε
s−, Z

ε
s,

∫
Rd
U εs(z)ν(dz))− f(s,Xε

s−Y
εε
s−, Z

εε
s ,

∫
Rd
Û εεs (z)ν(dz))

∣∣∣∣
≤ α |Y ε

s − Y εε
s |

2 +
1

α

∣∣∣∣f(s,Xε
s−, Y

ε
s−, Z

ε
s,

∫
Rd
U εs(z)ν(dz))− f(s,Xε

s−Y
εε
s−, Z

εε
s ,

∫
Rd
Û εεs (z)ν(dz))

∣∣∣∣2 ,
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so that we get

eρtE
[
|Y ε
t − Y εε

t |
2
]

+ ρE
[∫ T

t
eρs |Y ε

s − Y εε
s |

2 ds

]
+ E

[∫ T

t
eρs |Zεs − Zεεs |

2 ds

]
+ E

[∫ T

t

∫
Rd
eρs
∣∣∣U εs(z)− Û εεs (z)

∣∣∣2 ν(dz)ds

]
≤ αE

[∫ T

t
eρs |Y ε

s − Y εε
s |

2 ds

]
+

1

α
E
[ ∫ T

t
eρs
∣∣∣∣f(s,Xε

s−, Y
εε
s−, Z

εε
s ,

∫
Rd
Û εεs (z)ν(dz))− f(s,Xε

s−, Y
ε
s−, Z

ε
s,

∫
Rd
U εs(z)ν(dz))

∣∣∣∣2 ds

]
.

(4.11)

Using the Lipschitz continuity of f one has∣∣∣∣f(s,Xε
s−, Y

ε
s−, Z

ε
s,

∫
Rd
U εs(z)ν(dz))− f(s,Xε

s−, Y
εε
s−, Z

εε
s ,

∫
Rd
Û εεs (z)ν(dz))

∣∣∣∣2
≤ C

{∣∣Y ε
s− − Y εε

s−
∣∣2 + |Zεs − Zεεs |

2 +

∣∣∣∣∫
Rd
U εs(z)− Û εεs (z)ν(dz)

∣∣∣∣2
}
.

Therefore, from (4.11) one gets

eρtE
[
|Y ε
t − Y εε

t |
2
]

+ ρE
[∫ T

t
eρs |Y ε

s − Y εε
s |

2 ds

]
+ E

[∫ T

t
eρs |Zεs − Zεεs |

2 ds

]
+ E

[∫ T

t

∫
Rd
eρs
∣∣∣U εs(z)− Û εεs (z)

∣∣∣2 ν(dz)ds

]
≤
(
α+

C

α

)
E
[∫ T

t
eρs |Y ε

s − Y εε
s |

2 ds

]
+
C

α
E
[ ∫ T

t
eρs |Zεs − Zεεs |

2 ds

]
+
C

α
E
[ ∫ T

t
eρs
∣∣∣∣∫

Rd
(U εs(z)− Û εεs (z))ν(dz)

∣∣∣∣2 ds

]
≤
(
α+

C

α

)
E
[∫ T

t
eρs |Y ε

s − Y εε
s |

2 ds

]
+
C

α
E
[ ∫ T

t
eρs |Zεs − Zεεs |

2 ds

]
+

2C

α
E
[ ∫ T

t
eρs

{∣∣∣∣∫
Rd

(U εs(z)− U εεs (z))νε(dz)

∣∣∣∣2 +

∣∣∣∣∫
Rd
U εs(z)νε(dz)

∣∣∣∣2
}

ds

]

≤
(
α+

C

α

)
E
[∫ T

t
eρs |Y ε

s − Y εε
s |

2 ds

]
+
C

α
E
[ ∫ T

t
eρs |Zεs − Zεεs |

2 ds

]
+

2C

α
E
[ ∫ T

t
eρs
∫
Rd
|U εs(z)− U εεs (z)|2 νε(dz)ds

]
+

2C

α
E
[ ∫ T

t
eρs
∫
Rd
|U εs(z)|

2 νε(dz)ds

]

(4.12)

Observing that

E
[∫ T

t

∫
R
eρs
∣∣∣U εs(z)− Û εεs (z)

∣∣∣2 ν(dz)ds

]
≥ E

[∫ T

t

∫
Rd
eρs |U εs(z)− U εεs (z)|2 νε(dz)ds

]
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one obtains

eρtE
[
|Y ε
t − Y εε

t |
2
]

+ ρE
[∫ T

t
eρs |Y ε

s − Y εε
s |

2 ds

]
+ E

[∫ T

t
eρs |Zεs − Zεεs |

2 ds

]
+ E

[∫ T

t

∫
Rd
eρs |U εs(z)− U εεs (z)|2 νε(dz)ds

]
≤
(
α+

C

α

)
E
[∫ T

t
eρs |Y ε

s − Y εε
s |

2 ds

]
+
C

α
E
[ ∫ T

t
eρs |Zεs − Zεεs |

2 ds

]
+
C

α
E
[ ∫ T

t
eρs
∫
Rd
|(U εs(z)− U εεs (z))|2 νε(dz)ds

]
+
C

α
E
[ ∫ T

t
eρs
∫
Rd
|U εs(z)|

2 νε(dz)ds

]
(4.13)

for a generic constant C that majorates all constants appearing in (4.12). Assuming ρ sufficiently big

we can take α such that ρ = α+ C
α and C < α in order to obtain

E
[∫ T

t
eρs |Zεs − Zεεs |

2 ds

]
+ E

[∫ T

t

∫
Rd
eρs |U εs(z)− U εεs (z)|2 νε(dz)ds

]
≤ CE

[ ∫ T

t
eρs
∫
Rd
|U εs(z)|

2 νε(dz)ds

]
.

To estimate the right end side of the last inequality we can use the representation of U ε given by

Theorem 2.5. Indeed, for the starting FBSDE (2.4) where we replace the forward component X with

Xε, we have

U ε(s, z) = u
(
s,Xε

s− + Γ
(
Xε
s−, z

))
− u

(
s,Xε

s−
)
, t ≤ s ≤ T, z ∈ Rd

so that by the Lipschitz continuity of u (see Delong (2017, Lemma 4.1.1)) and the growth condition

on Γ the following holds

(4.14) |U εs(z)|
2 =

∣∣u (s,Xε
s− + Γ

(
Xε
s−, z

))
− u

(
s,Xε

s−
)∣∣2 ≤ C(1 +

∣∣Xε
s−
∣∣2)|z|2.

In conclusion, thanks to Lemma 4.1, we obtain

(4.15)

‖Zε − Zεε‖2H2 + ‖U ε − U εε‖2H2
Nε

≤ E
[∫ T

0
eρs |Zεs − Zεεs |

2 ds

]
+ E

[∫ T

0

∫
Rd
eρs |U εs(z)− U εεs (z)|2 νε(dz)ds

]
≤ CeρT (1 + |x|2)

∫
Rd
|z|2νε(dz)
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Again from (4.9), taking τ = T , we have the following estimates

sup
t∈[0,T ]

eρt |Y ε
t − Y εε

t |
2

≤ 2

∫ T

0
eρs |Y ε

s − Y εε
s |

·
∣∣∣∣f(s,Xε

s−, Y
ε
s−, Z

ε
s,

∫
Rd
U εs(z)ν(dz))− f(s,Xε

s−Y
εε
s−, Z

εε
s ,

∫
Rd
Û εεs (z)ν(dz))

∣∣∣∣ds
+ 2 sup

t∈[0,T ]

∣∣∣∣∫ T

t
eρs
(
Y ε
s− − Y εε

s−
)

(Zεs − Zεεs ) dWs

∣∣∣∣
+ 2 sup

t∈[0,T ]

∣∣∣∣∫ T

t

∫
Rd
eρs
(
Y ε
s− − Y εε

s−
) (
U εs(z)− Û εεs (z)

)
Ñ(ds, dz)

∣∣∣∣
≤ 2

∫ T

0
eρs |Y ε

s − Y εε
s |

·
∣∣∣∣f(s,Xε

s−, Y
ε
s−, Z

ε
s,

∫
Rd
U εs(z)ν(dz))− f(s,Xε

s−Y
εε
s−, Z

εε
s ,

∫
Rd
Û εεs (z)ν(dz))

∣∣∣∣ds
+ 4 sup

t∈[0,T ]

∣∣∣∣∫ t

0
eρs
(
Y ε
s− − Y εε

s−
)

(Zεs − Zεεs ) dWs

∣∣∣∣
+ 4 sup

t∈[0,T ]

∣∣∣∣∫ t

0

∫
Rd
eρs
(
Y ε
s− − Y εε

s−
) (
U εs(z)− Û εεs (z)

)
Ñ(ds, dz)

∣∣∣∣ .

(4.16)

Taking the expectation and using the Burkholder-Davis-Gundy inequality together with other classical

estimates we get

E

[
sup
t∈[0,T ]

eρt |Y ε
t − Y εε

t |
2

]

≤ 2E
[∫ T

0
eρs |Y ε

s − Y εε
s |

·
∣∣∣∣f(s,Xε

s−, Y
ε
s−, Z

ε
s,

∫
Rd
U ε(s, z)ν(dz))− f(s,Xε

s−Y
εε
s−, Z

εε
s ,

∫
Rd
Û εε(s, z)ν(dz))

∣∣∣∣ds]

+ CE

(∫ T

0
e2ρs

∣∣Y ε
s− − Y εε

s−
∣∣2 |Zεs − Zεεs |2 ds

) 1
2


+ CE

(∫ T

0

∫
Rd
e2ρs

∣∣Y ε
s− − Y εε

s−
∣∣2 ∣∣∣U εs(z)− Û εεs (z)

∣∣∣2N(ds, dz)

) 1
2


≤ 2E

[∫ T

0
eρs |Y ε

s − Y εε
s |

·
∣∣∣∣f(s,Xε

s−, Y
ε
s−, Z

ε
s,

∫
Rd
U εs(z)ν(dz))− f(s,Xε

s−Y
εε
s−, Z

εε
s ,

∫
Rd
Û εεs (z)ν(dz))

∣∣∣∣ds]

+ CE

 sup
t∈[0,T ]

e
ρ
2
t |Y ε

t − Y εε
t |
(∫ T

0
eρs |Zεs − Zεεs |

2 ds

) 1
2


+ CE

 sup
t∈[0,T ]

e
ρ
2
t |Y ε

t − Y εε
t |
(∫ T

0

∫
Rd
eρs
∣∣∣U εs(z)− Û εεs (z)

∣∣∣2N(ds, dz)

) 1
2



(4.17)
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We use again (4.10) to majorate the two final terms.

E

[
sup
t∈[0,T ]

eρt |Y ε
t − Y εε

t |
2

]

≤ 2E
[∫ T

0
eρs |Y ε

s − Y εε
s |

·
∣∣∣∣f(s,Xε

s−, Y
ε
s−, Z

ε
s,

∫
Rd
U εs(z)ν(dz))− f(s,Xε

s−Y
εε
s−, Z

εε
s ,

∫
Rd
Û εεs (z)ν(dz))

∣∣∣∣ds]
+
C

α̃
E

[
sup
t∈[0,T ]

eρt |Y ε
t − Y εε

t |
2

]

+ Cα̃E
[∫ T

0
eρs |Zεs − Zεεs |

2 ds

]
+ Cα̃E

[∫ T

0

∫
Rd
eρs
∣∣∣U εs(z)− Û εεs (z)

∣∣∣2N(ds, dz)

]

(4.18)

In the last expectation we can substitute the random measure with its compensator hence

E

[
sup
t∈[0,T ]

eρt |Y ε
t − Y εε

t |
2

]

≤ 2E
[∫ T

0
eρs |Y ε

s − Y εε
s |

·
∣∣∣∣f(s,Xε

s−, Y
ε
s−, Z

ε
s,

∫
Rd
U εs(z)ν(dz))− f(s,Xε

s−Y
εε
s−, Z

εε
s ,

∫
Rd
Û εεs (z)ν(dz))

∣∣∣∣ds]
+
C

α̃
E

[
sup
t∈[0,T ]

eρt |Y ε
t − Y εε

t |
2

]

+ Cα̃E
[∫ T

0
eρs |Zεs − Zεεs |

2 ds

]
+ Cα̃E

[∫ T

0

∫
Rd
eρs
∣∣∣U εs(z)− Û εεs (z)

∣∣∣2 ν(dz)ds

]

(4.19)

We choose α̃ > C, then we have

E

[
sup
t∈[0,T ]

eρt |Y ε
t − Y εε

t |
2

]

≤ 2CE
[∫ T

0
eρs |Y ε

s − Y εε
s |

·
∣∣∣∣f(s,Xε

s−, Y
ε
s−, Z

ε
s,

∫
Rd
U εs(z)ν(dz))− f(s,Xε

s−Y
εε
s−, Z

εε
s ,

∫
Rd
Û εεs (z)ν(dz))

∣∣∣∣ds]
+ C

(
E
[∫ T

0
eρs |Zεs − Zεεs |

2 ds

]
+ E

[∫ T

0

∫
Rd
eρs
∣∣∣U εs(z)− Û εεs (z)

∣∣∣2 ν(dz)ds

])
(4.20)

Applying again (4.10), for some α̂ > 0,

2E
[∫ T

0
eρs |Y ε

s − Y εε
s |

·
∣∣∣∣f(s,Xε

s−, Y
ε
s−, Z

ε
s,

∫
Rd
U εs(z)ν(dz))− f(s,Xε

s−Y
εε
s−, Z

εε
s ,

∫
Rd
Û εεs (z)ν(dz))

∣∣∣∣ ds]
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≤ α̂E
[∫ T

0
eρs |Y ε

s − Y εε
s |

2 ds

]
+

1

α̂
E

[∫ T

0
eρs
∣∣∣∣f(s,Xε

s−, Y
ε
s−, Z

ε
s,

∫
Rd
U εs(z)ν(dz))− f(s,Xε

s−Y
εε
s−, Z

εε
s ,

∫
Rd
Û εεs (z)ν(dz))

∣∣∣∣2 ds

]

≤ α̂E
[∫ T

0
eρs |Y ε

s − Y εε
s |

2 ds

]
+
C

α̂
E
[∫ T

0
eρs|Y ε

s− − Y εε
s−|2 + eρs|Zεs − Zεεs |2 + eρs|

∫
Rd
U εs(z)− Û εεs (z)ν(dz)|2ds

]
≤
(
α̂+

C

α̂

)
E
[∫ T

0
eρs |Y ε

s − Y εε
s |

2 ds

]
+
C

α̂
E
[∫ T

0
eρs|Zεs − Zεεs |2ds

]
+
C

α̂
E
[∫ T

0

∫
Rd
eρs|U εs(z)− Û εεs (z)|2ν(dz)ds

]
Therefore, we get

E

[
sup
t∈[0,T ]

eρt |Y ε
t − Y εε

t |
2

]

≤ CE
[∫ T

0
eρs |Y ε

s − Y εε
s |

2 ds

]
+ CE

[∫ T

0
eρs|Zεs − Zεεs |2ds

]
+ CE

[∫ T

0

∫
Rd
eρs|U εs(z)− Û εεs (z)|2ν(dz)ds

]
For controlling the last to terms we use (4.14)-(4.15) getting

E
[∫ T

0
eρs |Zεs − Zεεs |

2 ds

]
+ E

[∫ T

0

∫
Rd
eρs
∣∣∣U εs(z)− Û εεs (z)

∣∣∣2 ν(dz)ds

]
≤ E

[∫ T

0
eρs |Zεs − Zεεs |

2 ds

]
+ E

[∫ T

0

∫
Rd
eρs |U εs(z)− U εεs (z)|2 νε(dz)ds

]
+ E

[∫ T

0

∫
Rd
eρs |U εs(z)|

2 νε(dz)ds

]
≤ CeρT (1 + |x|2)

∫
Rd
|z|2νε(dz).

Then, one has

E

[
sup
t∈[0,T ]

eρt |Y ε
t − Y εε

t |
2

]
≤ CE

[∫ T

0
eρs |Y ε

s − Y εε
s |

2 ds

]
+ C(1 + |x|2)

∫
Rd
|z|2νε(dz)

and applying Gronwall’s inequality we obtain

‖Y ε − Y εε‖S2 ≤ E

[
sup
t∈[0,T ]

eρt |Y ε
t − Y εε

t |
2

]
≤ C(1 + |x|2)

∫
Rd
|z|2νε(dz)

that together with (4.15) gives the desired result.

�

5. Numerical results

In order to check the performance of our algorithm, we provide four different examples where we

are able to compare the results from a theoretical point of view or via Monte Carlo simulations. The

code for our experiments is available at the following link https://github.com/AlessandroGnoatto/

DeepBsdeSolverWithJumps.

https://github.com/AlessandroGnoatto/DeepBsdeSolverWithJumps
https://github.com/AlessandroGnoatto/DeepBsdeSolverWithJumps
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5.1. Pure jump expectation. Consider the following pure jump process

(5.1)
dXt

Xt−
=

∫
R

(ez − 1)Ñ(dz, dt) ,

where ν(dz) = λϕ(z)dz is the Lévy measure with λ > 0 and ϕ(z) = 1√
2πσ

e−
1
2( z−µσ )

2

.

The solution to (5.1) satisfies

(5.2) XT = Xt exp

{
−
∫
R

(ez − 1− z)ν(dz)(T − t) +

∫ T

t

∫
R
zÑ(dz,ds)

}
.

The characteristic function of lnXT is

(5.3) E
[
eiq lnXT |Ft

]
= exp {iq lnXt − iq(T − t)ψ(−i) + (T − t)ψ(q)} ,

where ψ(q) := λ
(
eiuµ−

1
2
q2σ2 − 1

)
is the characteristic exponent.

Thanks to the Markov property we can write

(5.4) E
[
eiq lnXT |Ft

]
= u(t,Xt) ,

where u solves the following PIDE:

(5.5)

ut(t, x) +
∫
R u(t, xez)− u(t, x)− x(ez − 1)ux(t, x)ν(dz) = 0

u(T, x) = eiq lnx .

Therefore, the related BSDE is

(5.6)

−dYs = −
∫
R Us(z)Ñ(dz, ds)

YT = eiq lnXT ,

where, by the Feynman-Kac representation formula, Yt = u(t,Xt) and Ut(z) = u(t,Xt−e
z)−u(t,Xt−).

Assuming that q = −i in Equation (5.3), then

(5.7) Yt = E
[
eiq lnXT |Ft

]
= Xt , ∀t ∈ [0, T ] .

In this first example we fix X0 = 1 and we set λ = 0.3, µ = 0.5, σ = 0.25. The ANNs have L − 1 = 2

hidden layers, each one with υ = d+ 1 = 21 nodes. We consider M = 40 time steps and perform 8000

iterations of the SGD on a batch of size 64. The results are reported in Table 1 and in Figure 1.

Table 1. Algorithm results for the pure jump expectation example

Step Loss X0 Time∗

0 5.945 -0.145 33
100 0.252 0.042 147
500 0.230 0.365 187

1000 0.114 0.785 234
2000 0.126 0.937 329
3000 0.103 0.989 423
4000 0.886 1.005 515
5000 0.084 1.002 607
6000 0.131 1.001 701
7000 0.061 1.005 796
8000 0.059 1.008 894
∗ Elapsed time in seconds.



22 ALESSANDRO GNOATTO, MARCO PATACCA, AND ATHENA PICARELLI

Figure 1. The loss function value (left) and the fitted initial value X0 (right) increas-
ing the iteration number for the pure jump expectation example. In red the theoretical
value X0 = 1.

The loss function decreases very quickly and the fitted X0 reaches a good approximation after only

2000 iterations. At the end, the initial value obtained using the proposed approach is very close to

the theoretical one, showing an error of 0.76%.

5.2. Call option example. Let X denote the price of an underlying asset under the risk-neutral

probability measure Q described by the following dynamics

(5.8)
dXt

Xt−
= rdt+ σdWQ

t +

∫
R

(ez − 1)Ñ(dz, dt) , X0 = x0 ∈ R,

where r ∈ R, σ ∈ R+ and ν(dz) = λϕ(z)dz is the Lévy measure with λ > 0 and ϕ(z) = 1√
2πσJ

e
− 1

2

(
z−µJ
σJ

)2
.

The solution to (5.8) is given by:

XT = Xt exp

{(
r − σ2

2

)
(T − t) + σWQ

t −
∫
R

(ez − 1− z)ν(dz)(T − t) +

∫ T

t

∫
R
zÑ(dz, ds)

}
.

Let Y be a European call option on X with value at time t ∈ [0, T ] given by

Yt = EQ
[
e−r(T−t)(XT − k)+|Ft

]
,

where k ∈ R+ is the strike price and (x)+ = max(x, 0). Thanks to the Markov property of the process

X we can write Yt = u(t,Xt), where u solves the following PIDE:ut(t, x) + ux(t, x)rx+ 1
2σ

2x2uxx(t, x) +
∫
R u(t, xez)− u(t, x)− x(ez − 1)ux(t, x)ν(dz)− ru(t, x) = 0

u(T, x) = (x− k)+ .

Therefore, the related BSDE is−dYs = −rYsds− ZsdWQ
s −

∫
R U(s, z)Ñ(dz, ds)

YT = (XT − k)+ ,
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where, from the Feynman-Kac representation formula we also have Zt = ux(t,Xt−)σXt− and Ut(z) =

u(t,Xt−e
z)− u(t,Xt−).

Our goal is to estimate the value Y0 using the deep solver and compare it with a standard Monte

Carlo simulation. We set X0 = 1, k = 0.9, r = 0.04, σ = 0.25, λ = 0.3, µJ = 0.5, σJ = 0.25. For the

numerical scheme, we use M = 40 time steps and 8000 iterations for the optimization for ANNs with

2 hidden layers each one with υ = d + 1 = 21 nodes. The batch size is equal to 64. The deep solver

results are reported in Table 7 and Figure 5 while the Monte Carlo result is Y mc
0 = 0.251.

Table 2. Algorithm results for the call option example.

Step Loss Y0 Time∗

0 15.738 0.017 36
100 0.513 0.056 156
500 0.281 0.084 195

1000 0.108 0.182 243
2000 0.082 0.247 341
3000 0.162 0.252 439
4000 0.197 0.258 536
5000 0.127 0.254 629
6000 0.107 0.253 725
7000 0.106 0.250 827
8000 0.097 0.250 927
∗ Elapsed time in seconds

Figure 2. The loss function value (left) and the fitted initial value Y0 (right) increasing
the iteration number for the call option example. In red the Monte Carlo fitted value
Y mc

0 = 0.251
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As in the previous case, the loss function decreases rapidly and the fitted Y0 provides a good approx-

imation after only 2000 iterations. Finally, the initial valued obtained using the deep solver is very

close to the value resulting from Monte Carlo approach; the error is only 0.46%.

5.3. A Basket call option example. The examples we presented so far are mainly meant to provide

a validation of the methodology in the one dimensional case. The example we proceed to discuss now

instead provides evidence that the methodology is viable in a high dimensional setting. We consider

the case of several underlying assets (X1; · · · ;Xd):

(5.9)
dXi

t

Xi
t−

= ridt+ σidWQ,i +

∫
R

(ez − 1)Ñ i(dz,dt) , Xi
0 = xi0 ∈ Rd, i = 1, · · · , d ,

where ri ∈ R, σi ∈ R+, i = 1, · · · , d, WQ = (WQ,1, · · · ,WQ,d) is a standard Brownian motion in Rd

and νi(dz) = λϕ(z)dz, i = 1, · · · , d, is the Lévy measure with λ > 0 and ϕ(z) = 1√
2πσJ

e
− 1

2

(
z−µJ
σJ

)2
.

The solution to (5.9) satisfies, for any i = 1, . . . , d,

Xi
T = Xi

t exp

{(
ri − σ2,i

2

)
(T − t) + σiWQ,i

t −
∫
R

(ez − 1− z)νi(dz)(T − t) +

∫ T

t

∫
R
zÑ i(dz, ds)

}
.

Let Y be a basket of European call option on (X1; · · · ;Xd) with value at time t ∈ [0, T ] given by

(5.10) Yt = EQ

e−r(T−t)( d∑
i=1

Xi
T − d k

)+∣∣∣∣Ft
 .

where k ∈ R+ is the strike price. From the Feynman-Kac representation formula we have Yt =

u(t,X1
t , · · · , Xd

t ) = u(t,Xt) where u solves the following PIDE:

(5.11)


ut(t, x) +∇xu(t, x)bx +

1

2
Tr
[
σσᵀ(t, x)D2

xu(t, x)
]
− ru(t, x)

+

∫
Rd
u(t, x.e

z)− u(t, x)− x.(ez − 1)∇xu(t, x)ν(dz) = 0

u(T, x) =
(∑d

i=1 xi − d k
)+

;

where we use . to denote the component-wise product between vectors, ez is the vector where each

entry is of the form ezi , i = 1, . . . d, 1 is the vector with all elements equal to one and ν is the product

of the d Lévy measures of the individual driving processes. Therefore, the related BSDE is

(5.12)

−dYs = −rYsds− ZsdWQ
s −

∫
Rd U(s, z)Ñ(dz, ds)

YT =
(∑d

i=1X
i
T − d k

)+
; ,

where Ut(z) = u(t,Xt− .e
z)− u(t,Xt−).

Once again, we estimate the value Y0 using the deep solver and compare it with a standard Monte

Carlo simulations. We set d = 100, X0 = 1, k = 0.9; r = 0.04;σi = σ = 0.25 for all i = 1, · · · , d,

λ = 0.3, µJ = 0.5, σJ = 0.25. We consider M = 40 time steps and perform 20.000 iterations, with

ANNs with L − 1 = 2 hidden layers each with υ = d+ 20 = 120 nodes. The batch size is maintained

equal to 64. We have increased the iterations number compared to the previous examples to have

more accurate estimates as the problem dimension increases. The deep solver results are reported in

Table 3 and Figure 3 while the Monte Carlo result is Y mc
0 = 13.607.

In spite of the high dimension of the problem, also in this case, the loss function decreases quite fast and

the fitted Y0 reaches a good approximation after only 2000 iterations. At the end, the initial valued

obtained using the deep solver is very close to the value resulting from the Monte Carlo approach
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Table 3. Algorithm results for a basket call option example of dimension 100.

Step Loss Y0 Time∗

0 274.500 -0.068 57
100 40.219 1.590 242

1000 31.378 12.241 444
2000 23.488 12.820 648
3000 35.340 11.852 854
4000 25.627 12.367 1065
5000 21.274 12.493 1270
8000 29.688 13.299 1900

10000 20.917 13.028 2319
15000 18.102 13.510 3372
20000 17.951 13.479 4438
∗ Elapsed time in seconds

Figure 3. The loss function value (left) and the fitted initial value Y0 (right) increasing
the iteration number for the basket call option example of dimension 100. In red the
Monte Carlo fitted value Y mc

0 = 13.607

showing an error of 0.95%. The estimation procedure requires about 74 minutes to perform 20.000

iterations. Comparing the elapsed time at 8000 iterations as in the previous cases, we note that we

can obtain good results in d = 100 with only twice as much computational time.

5.3.1. Robustness checks. It may be argued that the goodness of estimates could be affected by a

specific set of parameters. In order to address such type of questions we propose a set of robustness

checks. At first, we run the algorithm on the basket call example by varying the dimension of the

problem. In Table 4 we show the results which display an error lower than 1% in all cases.

It is important to note that by increasing the number of time steps, the proposed procedure implies

a substantial growth in the number of parameters to be estimated, since each additional time step
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Table 4. Simulations results by varying basket dimension.

Dim MC Price BSDE Price Err.% Time∗

5 0.903 0.908 0.59% 1984
10 1.614 1.612 0.15% 1861
25 3.618 3.612 0.17% 2105
50 6.858 6.902 0.64% 2450
75 10.138 10.093 0.44% 2840
100 13.607 13.479 0.95% 4438

∗ Elapsed time in seconds

implies the introduction of two additional neural networks whose parameters need to be estimated.

For this reason, as the number of time steps increases, it could be necessary to increase the number

of iterations of the optimizer. This is shown in Table 5: moving from 20000 to 40000 iterations, we

can reduce the error of the procedure from 7.01% to 0.03%.

Table 5. Simulation results by varying iterations number.

Iter. MC Price BSDE Price Err.% Time∗

20,000 13.645 12.751 7.01% 10231
40,000 13.528 13.524 0.03% 20274

∗ Elapsed time in seconds

Finally, we control for the intensity jump parameter λ, see Table 6. The intuition behind the exper-

iment is the following: if the jump intensity/activity is high, a finer time discretization grid will be

needed in order to realistically approximate the trajectories of the FBSDE. As expected, we find that

the error substantially increases when λ increases, thus signaling the need to introduce a finer time

discretization. We remark however that the values of λ we are employing in the present experiment

are much higher in comparison to those obtained from a calibration to prices of financial products,

see among others Kienitz and Wetterau (2013).

Table 6. Simulation results by varying λ.

λ MC Price BSDE Price Err.%

0.1 13.515 13.505 0.08%
0.3 13.607 13.479 0.95%
0.5 13.772 13.602 1.25%
0.7 14.019 13.839 1.30%
0.9 14.524 14.085 3.12%
1.1 14.944 14.263 4.78%
1.3 16.111 14.457 11.44%

5.4. Infinite activity example. The final example we propose provides evidence for the feasibility

of the proposed algorithm for the infinite activity case. We consider the CGMY process, which is a
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pure jump Lévy process L with characteristic triplet (0, 0, ν(dz)), where the Lévy measure is given by

ν(dz) = C
e−G|z|

|z|1+Y
1{z<0}dz + C

e−Mz

z1+Y
1{z>0}dz.

The Lévy measure corresponds to that of a difference of two tempered stable subordinators, meaning

that we can write Lt = L+
t − L

−
t where

• L+ has triplet (0, 0, ν+(dz)), where ν+(dz) := C e−Mz

z1+Y
1{z>0}dz;

• L− has triplet (0, 0, ν−(dz)), where ν−(dz) := C e−Gz

z1+Y
1{z>0}dz.

In the following we outline the procedure to approximate a tempered stable subordinator by following

Cont and Tankov (2003) and references therein among others. Since the procedure is the same for L+

and L−, we choose to concentrate on L+. We fix ε > 0: this will represent a threshold for jump sizes:

all jumps smaller than ε will be approximated by a diffusion process, whereas all jumps larger than

ε will be approximated by a suitably constructed compensated compound Poisson process. We first

look at the large jumps. The jump compensator of the approximating compound Poisson process is

given by ∫ ∞
ε

zC
e−Mz

z1+Y
dz = C

∫ ∞
ε

z−Y e−Mzdz = C

∫ ∞
Mε

(
`

M

)−Y
e−`d`

=
C

Ma

∫ ∞
Mε

`a−1e−`d` ,

where we set a := 1− Y . Let us now recall the lower incomplete Gamma function as implemented in

scipy or Matlab Γ(a,Mε) := 1
Γ(a)

∫Mε
0 `a−1e−`d`, where Γ(a) is the Gamma function computed in a.

We conclude that ∫ ∞
ε

zC
e−Mz

z1+Y
dz = Γ(a) (1− Γ(a,Mε)) := −bε+ .

The intensity of the approximating compound Poisson process is given by

λ+
ε :=

∫ ∞
ε

C
e−Mz

z1+Y
dz .

To find a convenient expression for the intensity, we integrate by parts and obtain∫ ∞
0

zC
e−Mz

z1+Y
dz =

C

M
e−Mεε−Y − Y C

M

∫ ∞
ε

e−Mzz−1−Y dz .

By rearranging terms, we can write

λ+
ε = Ce−Mε ε

−Y

Y
+
M

Y
bε+ .

Next, we need to determine the jump size distribution. We denote by fε+ such density. Recalling the

general form of the Lévy measure of a compound Poisson process we can write

fε+(z) =
1

λ+
ε
C
e−Mz

z1+Y
1{z>ε} .

It is possible to sample from such distribution by means of the acceptance rejection method as outlined

in Cont and Tankov (2003). Finally, we also introduce a diffusion approximation of small jumps. The

coefficient of the diffusion approximation is given by

σ2
ε :=

∫ ε

−ε
z2ν(dz) .
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Again, due to the particular structure of the Lévy measure, we can split the computation between the

positive and negative jumps. For the positive jumps we have∫ ε

0
z2C

e−Mz

z1+Y
dz =

C

M2−Y Γ(a+ 1)Γ(a+ 1,Mε) ,

and similarly for the negative jumps. In summary, to simulate the CGMY process L, we introduce

the discrete time approximation Lε given by

Lεtn+1
= Lεtn + σε∆Wn+1 +

N+
n+1∑
j=1

∆L+
n+1,j − bε+∆n+1 −

N−n+1∑
j=1

∆L−n+1,j + bε−∆n+1 ,

where

N+
n+1 ∼ P

(
λ+
ε ,∆n+1

)
,

N−n+1 ∼ P
(
λ−ε ,∆n+1

)
,

∆L+
n+1,j ∼ fε+ ,

∆L−n+1,j ∼ fε− .

The approximating asset price process is then of the form

(5.13) Xε
tn+1

= Xε
tn exp

{
−
∫
R

(ez − 1− z)ν(dz)(tn+1 − tn) + Lεtn+1
− Lεtn

}
,

where

−
∫
R

(ez − 1− z)ν(dz) = −CΓ(−Y )
(
(M − 1)Y −MY + (G+ 1)Y −GY

)
.

5.4.1. Call option under the CGMY model. Let X be the price of a stock described by (5.13) and Y

a European call option with value

(5.14) Yt = EQ
[
e−r(T−t)(XT − k)+|Ft

]
.

Our goal is to estimate the value Y0 using the deep solver and compare it with a standard Monte

Carlo simulations. Before we proceed with the estimation, we test the goodness of fit of the proposed

approximation by comparing it with the semi closed-form density obtained via the Fast Fourier Trans-

form (FFT) applied to the characteristic function of the CGMY process. In Figure 4 we are able to

verify the goodness of fit.

Figure 4. Histogram of empirical density in orange and true density in blue.
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We set X0 = 1, k = 0.9, r = 0.04, C = 0.1, G = 1.4, M = 1.3, Y = 0.5, ε = 0.0001. We consider

M = 100 time steps, 8000 iterations and the same ANNs’ architecture of the previous examples. The

deep solver results are reported in Table 7 and Figure 5 while the Monte Carlo result is Y mc
0 = 0.164.

Table 7. Algorithm results for the call option with CGMY example.

step loss Y0 Time∗

0 54.462 0.518 127
100 0.212 0.494 519
500 0.442 0.428 666

1000 0.148 0.353 845
2000 0.248 0.289 1211
3000 0.459 0.140 1586
4000 2.991 0.141 1948
5000 0.023 0.140 2304
6000 0.085 0.162 2652
7000 0.032 0.158 2999
8000 0.019 0.161 3363
∗ Elapsed time in seconds

Figure 5. The loss function value (left) and the fitted initial value Y0 (right) increasing
the iteration number for the call option example. In red the Monte Carlo fitted value
Y mc

0 = 0.164

The loss function varies significantly during the first 2500 iterations and then stabilizes during the

subsequent 2500 iterations: this is due to the choice of a schedule for the learning rate. The fitted Y0

reaches a good approximation after 3000 iterations. At the end, the initial value obtained by using

the deep solver is very close to the value resulting from the Monte Carlo approach, showing an error

of 1.72%. However, in this case, the elapsed time for the fitting is greater and takes about 56 minutes:

the increase in the computational time is due to the procedure that constructs the approximating

Poisson processes.
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