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Abstract: β-thalassemia and sickle cell disease (SCD) are inherited hemoglobinopathies that result in
both quantitative and qualitative variations in the β-globin chain. These in turn lead to instability in
the generated hemoglobin (Hb) or to a globin chain imbalance that affects the oxidative environment
both intracellularly and extracellularly. While oxidative stress is not among the primary etiologies
of β-thalassemia and SCD, it plays a significant role in the pathogenesis of these diseases. Different
mechanisms exist behind the development of oxidative stress; the result of which is cytotoxicity,
causing the oxidation of cellular components that can eventually lead to cell death and organ damage.
In this review, we summarize the mechanisms of oxidative stress development in β-thalassemia and
SCD and describe the current and potential antioxidant therapeutic strategies. Finally, we discuss the
role of targeted therapy in achieving an optimal redox balance.

Keywords: β-thalassemia; sickle cell disease; oxidative stress; oxidant; antioxidant; redox; reactive
oxygen species

1. Introduction

The oxidative status of cells is dependent on the balance between oxidants and
antioxidants. This balance is crucial to achieving normal physiology and maintaining
cellular homeostasis. Thus, the thinning control of reactive oxygen species (ROS) is
extremely important since low levels of ROS might participate in the signaling pathways
involved in the differentiation and proliferation of the erythroid precursors [1–4].

Oxidative stress can manifest in several pathologies when the balance between oxidants
and antioxidants is broken, as evident in β-thalassemia and sickle cell disease (SCD).
Excessive levels of ROS can lead to cytotoxicity as these radicals often bind to cellular
components such as proteins, membrane lipids, and DNA. Different mechanisms exist
behind oxidative stress development. These include the accumulation of α-globin chains
and free iron as seen in β-thalassemia or the cyclic polymerization/depolymerization
of hemoglobin S (HbS) as seen in SCD. Thus, the activation and expression of potent
anti-oxidant machinery are required to ensure the proper maturation of erythroid precursors
and the survival of red blood cells (RBCs) in the peripheral circulation [5,6]. While more
studies are necessary to better understand the role and mechanism of action of antioxidant
agents, they have shown to be effective in improving the pathological manifestations of
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β-thalassemia or SCD by re-balancing the cellular redox state. Different molecules have
been tested and these have acted as endogenous or as exogenous antioxidants that scavenge
and inactivate ROS, leading to cellular protection against oxidation.

Progress in the knowledge of oxidation and cellular damages in β-thalassemia and
SCD may lead to the identification of new antioxidant therapies that can prevent or delay the
development of organ complications behind erythroid cells in patients. In this review, we
summarize the mechanisms of oxidation in β-thalassemia and SCD and describe the current
and potential antioxidant therapeutic strategies. Finally, we discuss the role of targeted
therapy in achieving an optimal redox balance in these chronic invalidating disorders.

2. Evolutionary Perspective of a Redox Balance

Reactive oxygen species are chemically reactive molecules that are formed as a
by-product of different cellular metabolic reactions. They include hydrogen peroxide
(H2O2), superoxide free radicals (O2

•−), as well as nitrogen-based free radical species such
as peroxynitrite (ONOO−) or nitric oxide (NO) [7,8]. Reactive oxygen species are significant
cellular entities that play a role in cellular proliferation, signal transduction, host defense
mechanisms, homeostatic preservation, and gene expression [9].

Being heritable biological adaptations, ROS have evolved concurrently with natural and
environmental modifications. Such modifications have been crucial for better understanding
their role and mechanisms of action while providing insights into the evolutionarily
preferred mechanistic physiologies of cells. One strategy of major significance in physiological
functions is that cellular events revolve around fixed and coordinated set points. This
phenomenon is physiologically referred to as homeostasis, and ROS are tightly counterbalanced
by various cellular antioxidants to promote optimal redox homeostasis [10]. In fact, all
cells possess effective antioxidant mechanisms that neutralize and remove ROS. Moreover,
several enzyme systems present in our bodies neutralize ROS by metabolic conversion [11].

Reactive oxygen species are recognized as specific mediators and second messengers
of cell signaling that play a role in vascular tone, immune responses, cell protection, and
hormonal actions [12–14]. In sync with this homeostatic balance, these functions are
primarily maintained and counter-balanced by anti-oxidative mechanisms that regulate
the bioavailability of oxidative species. However, under pathological conditions, oxidant
radicals lead to a state of oxidative stress. In cells, this results in the malfunctioning of
many organelles, particularly the membrane, and may lead to cytotoxicity and eventually
organ damage and failure [8].

Several reports have indicated increased ROS levels to be directly correlated with
the irreversible oxidation of cellular components that eventually contribute to cellular
dysfunction and necrosis [15]. Many studies have validated the implications of redox
alternations in distinct pathologies such as diabetes and cancer. However, attempts to
reduce bioactive ROS to very minimal levels have been shown to be detrimental because
in lower concentrations these ROS can act as signaling molecules [16]. This highlights
the significance of the redox system in cellular physiology and homeostatic balance
between oxidant and antioxidant molecules [17]. Extensive research is currently aiming
at identifying specific cellular sources of ROS production and those that are specifically
altered in a cell- and disease-specific manner.

3. Sources of Reactive Oxygen Species in Red Blood Cells

Erythroid precursors and erythrocytes are unique cells since they are exposed to cyclic
oxygenation/deoxygenation (auto-oxidation) events as long-term survival cells, and they
require iron for hemoglobin (Hb) synthesis. Thus, anti-oxidant and cytoprotective systems
are crucial for erythroid cell homeostasis. The process of auto-oxidation (from oxygenated
Hb to methemoglobin) plays a major role in the generation of ROS inside RBCs [18,19]. This
process is characterized by the rapid conversion of O2

•− to H2O2 [19,20]. In β-thalassemia
and SCD RBCs, Hb auto-oxidation is more pronounced as the Hb molecules in these
diseases are highly unstable [19]. Moreover, in SCD, the Hb auto-oxidation process is
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further exacerbated under hypoxic conditions in the microcirculation and leads to the
formation of unstable dimers at reduced Hb concentrations [19].

Heme and iron are also highly oxidizing agents and sources of ROS in RBCs. Whether
iron is in its free form or bound to heme and Hb, it can act as a Fenton reagent in the
Haber–Weiss cycle, thereby generating hydroxyl radicals (•OH) and promoting extensive
oxidative damage [21,22]. Being a hydrophobic molecule, heme interacts with proteins and
membrane lipids and thus promotes a series of oxidation reactions [23]. On the other hand,
free iron bound to the RBC membrane has been described to participate in the oxidation of
membrane proteins and lipid components, thereby affecting their mechanical properties.
This increases erythrophagocytosis and contributes to the reduction in RBC survival in
peripheral circulation [24–27]. In β-thalassemia and in SCD, chronic hemolysis overcomes
physiologic buffer systems such as haptoglobin and hemopexin and results in increased
plasma free Hb and heme [28,29]. Oxidants derived from heme can induce the recruitment
of platelets, leukocytes, and RBCs to the vessel wall and produce lipoprotein oxidation
and consume •NO to form strong oxidants [30]. In vascular endothelial cells, this activates
the transcription factor nuclear factor-κB (NF-κB) which is redox-sensitive and promotes
a proinflammatory response by binding to receptors, enzymes, and transcription factors
that alter cell metabolism, cell function, and gene expression [31]. All the above-mentioned
mechanisms of ROS production are depicted in Figure 1.
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Figure 1. Sources of ROS in RBCs.

In normal erythropoiesis, heme biosynthesis is a key event in Hb production. Inβ-thalassemic
erythropoiesis, different studies have shown an early phase of heme accumulation, followed
by the activation of antioxidant and cytoprotective systems that generate a second phase
of relative heme deficiency [3]. This is important since heme can act as a source of ROS
in RBCs and cause oxidative damage [19,32,33] (Figure 2). Thus, prolonged and severe
oxidation, due to the combination of abnormal heme biosynthesis and the accumulation of
alpha-globin chains play a crucial role in the ineffective erythropoiesis of β-thalassemia.
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4. Oxidative Damage to Intracellular Components in Red Blood Cells
4.1. Oxidative Damage to Membrane-Cytoskeleton Proteins

Oxidative stress also has an effect on the overall cytoskeletal network and its associated
proteins [34,35]. One study conducted on β-thalassemia RBCs showed that spectrins might
be targeted by oxidation. This perturbates their interactions with other cytoskeletal proteins
such as actin or with multiprotein complexes bridging the membrane to the cytoskeleton
such as protein 4.1 or band 3 [35]. Consequently, impaired stability in the interaction
between the cytoskeleton and the cellular membrane becomes evident. It is noteworthy to
mention that the oxidation-induced and abnormal clusterization of band 3 contributes to
increased RBC fragility and the generation of erythroid microvesicles which contributes to
the pro-coagulant phenotype of both β-thalassemia and SCD [24,36,37].

Several cytoskeletal proteins in RBCs derived from SCD patients have been shown to
undergo oxidation-mediated post-translational protein modifications (PTPM). Additionally,
RBCs from transgenic SCD mice revealed that these irreversible PTPM detected in HbS
molecules were found in the β-chain and included the ubiquitination of Lys96 and Lys145
and the irreversible oxidation of Cys93 and [38,39]. This ubiquitination process in HbS
molecules occurs as a result of the accumulation of oxidatively damaged HbS molecules in
RBCs as well as in microparticles and could likely be due to the redox imbalance-dependent
proteasomal inhibition in SCD. A recent study conducted on RBCs and microparticle
proteomes from SCD patients showed increased ubiquitination and phosphorylation
of cytoskeletal proteins when compared to control cells [39]. Remarkably, these PTPM
have been identified in spectrin, ankyrin, band 3, carbonic anhydrase, and band 4.1 [39].
Moreover, an increase in ROS production by auto-oxidized HbS led to an increase in the
accumulation of oxidative lesions by membrane components. These, in turn, can degrade
polyunsaturated lipids and thus lead to the formation of malondialdehyde as a by-product
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and damage proteins localized in the region near membrane-associated Hb [40]. Among
PTPM, oxidation might also activate tyrosine kinases such as Syk or Lyn, a kinase of the
Src family. Both Syk and Lyn target RBC membrane proteins such as band 3, contributing
to both protein conformation state and protein–protein interaction [2,25,36,41,42]. This
is important for the mechanical properties of the membrane and the volume/surface
regulation of pathologic RBCs.

4.2. Oxidative Damage to Membrane Lipids

Lipid peroxidation and protein oxidation disturb the organization of the lipid mem-brane
and lead to cellular deformability [43]. This disruption causes phosphatidylserine (PS) to
be exposed to the outer membrane of the cell which in turn signals macrophages to engulf
and degrade the PS-exposed RBCs [44], a phenomenon seen in β-thalassemia patients [44].
The exposure of PS and subsequent macrophage degradation is the mechanism of RBC
removal during eryptosis. Eryptosis is the suicidal death process of RBCs that occurs prior
to senescence and after injury. This phenomenon is characterized by cell shrinkage and the
loss of membrane organization and can be further exacerbated by several factors, including
oxidative stress.

As for SCD RBCs, the high rate of intracellular ROS production in addition to the
presence of auto-oxidizing HbS in the cell membrane leads to the oxidative damage of
membrane lipids and the loss of membrane lipid asymmetry. This alters membrane
surface properties and permeability and exposes PS [45]. The externalization of PS
is a critical event in the disease progression [46]. It is considered a key step in the
premature senescence process, favoring the removal of RBCs from circulation and the
release of erythroid microvesicles. This leads to a state of chronic anemia as well as
endothelial dysfunction in SCD [47]. The pathophysiology of SCD is also characterized by
increased plasma levels of secretory phospholipase A2 (sPLA2), a powerful inflammatory
mediator that can selectively hydrolyze phospholipids in RBCs exposing PS, promoting
their hemolysis [48,49]. The activation of sPLA2 also generates phospholipid breakdown
products that can affect overall endothelial function. Moreover, PS-exposing RBCs can
also activate phospholipase D, which catalyzes the hydrolysis of phosphatidylcholine into
phosphatidic acid and choline [50].

5. A Focus on Oxidative Stress in β-Thalassemia
5.1. Oxidative Stress and Hemoglobin

β-thalassemia is characterized by the unbalanced production of globin chains, resulting
in excess free α-globins [51]. These unstable α-globins tend to auto-oxidize, denature, and
precipitate as hemichromes [52,53]. Hemichromes then bind to the cytoplasmic domain
of band 3 and mediate the oxidative cross-linking through disulfide bonds. Subsequently,
both heme and free iron are released and globin proteins precipitate. This initiates a
self-amplifying redox reaction that oxidizes additional Hb molecules, depletes cellular
reduction potential, and triggers phosphorylative responses, which lead to membrane
destabilization and the acceleration of RBC removal by splenic macrophages [51,54,55].
In fact, deoxyhemoglobin (deoxyHb) binds avidly and reversibly to band-3 [56]. Because
band 3 is associated with multiple metabolic, solute transport, signal transduction, and
structural proteins, the oxygen-dependent regulation of erythrocyte properties is mediated
by the reversible association of deoxyHb with band 3 [56].

5.2. Oxidative Stress and Ineffective Erythropoiesis

Ineffective erythropoiesis is one of the main pathophysiological culprits in β-thalassemia.
The impaired ratio between α and β subunits results in the accumulation of unbounded
α-chains during erythroblast maturation. These bind heme and eventually form hemichromes,
which precipitate and bind to the plasma membrane [57,58]. Evidence of oxidative stress
due to ineffective erythropoiesis comes from studies conducted on bone marrow cells
and in developing thalassemia erythroid precursor cells. Many studies conducted with
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bone marrow cells of β-thalassemia patients have indicated an increased number of
activated macrophages, which might cope with the several damaged erythroblasts [59,60].
Interestingly, one study showed that the presence of α-globin precipitates in cells at the
polychromatophilic erythroblast stage of maturation, a stage characterized by increased
hemoglobinization and apoptosis in β-thalassemia erythropoiesis [61,62]. Another study
conducted in a mouse model of β-thalassemia intermedia (β-TI) showed that growth
differentiation factor 11 (GDF11), a transforming growth factor β (TGF-β) superfamily
ligand, blocks the terminal differentiation of erythroid precursors by promoting oxidative
stress and α-globin precipitation [63]. The expression of GDF11 is also induced by oxidative
stress, which indicates the presence of an autocrine amplification loop that can promote
ineffective erythropoiesis [63]. Oxidative stress in developing thalassemia erythroid precursors
has also been associated with increased apoptosis, as manifested by the externalization of
PS. This notion suggests that oxidative stress can also be responsible for the ineffective
erythropoiesis itself [64].

5.3. Oxidative Stress and Iron Overload

In β-thalassemia, iron overload is one of the most common disease-related complications
and is a major cause of morbidity and mortality [65,66]. In the plasma, iron is normally
bound to transferrin. In β-thalassemia patients, however, iron overload saturates the
ability of the transferrin iron transport system, leading to the formation of non-transferrin
bound iron (NTBI) and labile plasma iron (LPI). Both NTBI and LPI circulate in plasma
and subsequently become deposited inside the susceptible cells [67,68]. The long-term
uptake and accumulation of these molecules can lead to high levels of storage iron
and labile cellular iron [69]. When the scale of the cellular production of the labile
iron pool exceeds the capacity of the cell to synthesize new ferritin molecules, a critical
concentration is reached. This intracellular labile iron pool is redox-active, catalyzing the
Fenton and Haber-Weiss reactions, thus generating ROS [70]. The production of ROS due
to iron overload by the metabolism of NTBI plays an essential role in inducing cellular
dysfunction, apoptosis, and ferroptosis [71–74]. For example, one study showed that
NTBI-triggered iron overload can aggravate atherosclerosis in ApoE-/- FPNwt/C326S
mice, suggesting a pro-atherogenic role for iron [75]. This finding was characterized
by endothelial permeabilization, activation, dysfunction, elevation in pro-inflammatory
mediators, and the induction of highly vulnerable plaques [75].

6. A Focus on Oxidative Stress in Sickle Cell Disease
6.1. Connection between Oxidation and Oxidases in SCD

In the vascular compartment of patients with SCD, the overactivation of nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase, xanthine oxidase (XO), and uncoupled
nitric oxide synthase (eNOS) can generate ROS [76–79]. NADPH oxidase is the major
O2
•−-producing enzyme in RBCs, vascular endothelial cells, and leucocytes. The production

of ROS by NADPH oxidase can lead to a state of hemolysis that is often associated with
infections or vessel-occlusive crises [78]. The O2

•− derived from this process contributes
to the pro-thrombogenic and pro-inflammatory responses that are often associated with
SCD [24]. Intracellularly, NADPH oxidase activity is regulated by protein kinase C and
Rac GTPases in RBCs. Extracellularly, however, it is regulated by signaling factors such as
TGF-β1 and endothelin-1 [79]. NADPH oxidase-induced ROS may cause direct oxidative
damage to several subcellular structures. This reduces the deformability of RBCs and
results in increased fragility and hemolysis [79]. On the other hand, XO is considered to
be another major source of O2

•− and H2O2 in RBCs. In SCD patients, the activity of XO
is often increased in the plasma. Episodes of hypoxia/reoxygenation in SCD patients can
excite the release of this enzyme from the liver and into the circulation. These circulating
XO molecules can then bind to vessel luminal cells, impair vascular function, and create an
oxidative setting [25].
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6.2. Oxidative Stress and Reduced •NO Bioavailability in SCD

SCD is characterized by a local reduction in NO, resulting in vascular dysfunction and
abnormal vascular tone [80,81]. This occurs as a result of intravascular hemolysis and the
consumption of physiologic buffer systems such as haptoglobin and hemopexin. Indeed,
free heme and free Hb bind to NO, promoting the local reduction in NO availability [82–85].
The reaction of •NO with oxygenated Hb results in the formation of methemoglobin and
nitrate [86]. Additionally, superoxides bind to NO to produce ONOO−. This contributes to
a decrease in NO levels and leads to further ROS production [30,87]. Another NO-derived
metabolite known as nitrite is consumed by the heme-containing myelop-eroxidase. Often
found in neutrophils, this myeloperoxidase enzyme catalytically reacts with nitrite in the
presence of H2O2 and generates powerful radicals such as nitrogen di-oxide (•NO2), which
can create a state of oxidation [88].

In SCD, the release of arginase during hemolysis can also contribute to low NO levels.
Arginase competes with nitric oxide synthase (NOS) for its substrate, L-arginine, which it
uses to produce NO and L-citrulline [77]. The absence of tetrahydrobiopterin (BH4), due to
peroxynitrite production, or L-arginine leads to the “uncoupling” of NOS and results in
further ROS production in SCD [77,89]. This condition diminishes •NO bioavailability in
both SCD and other vasculopathies [90].

Asymmetric dimethylarginine (ADMA) is the major endogenous inhibitor of NOS
that competes with L-arginine for NOS [91,92]. ADMA can lead to the uncoupling of all
NOS isoforms by converting them from •NO-producing enzymes to enzymes generating
O2
•− and other derived oxidant products, thus leading to an increase in oxidative stress

and decreasing •NO bioavailability [93,94]. When plasma concentrations of ADMA are
elevated, this can be a risk factor for the development of endothelial dysfunction and is used
as a predictor for all-cause and cardiovascular mortality [95]. In SCD patients, increased
plasma levels of ADMA have been reported. These were not only correlated with hemolytic
markers but also associated with increased amounts of soluble vascular cell adhesion
molecule-1 (sVCAM-1), SCD-related pulmonary hypertension, and early death [96–98].

7. Antioxidant Enzymes and Cytoprotective Defenses in β-Thalassemia and SCD

In the previous sections, we discussed how oxidation contributes to red cell damage and
ineffective erythropoiesis in both β-thalassemia and SCD. Here, we focus on endogenous
antioxidant and cytoprotective systems, which are crucial to limit prolonged oxidation and
ensure cell survival.

7.1. Cytoprotective and Anti-Oxidant Systems in Erythroid Cells
7.1.1. Peroxiredoxin-2

Peroxiredoxins play a significant role in RBCs through their antioxidant properties
and chaperone function. Proteasomes are multi-catalytic complexes with important roles
in protein control. Their activity in stored RBCs is affected by both storage time and the
donor’s characteristics. In fact, some recent studies on patients with β-thalassemia trait and
SCD have provided significant information about the interaction of peroxiredoxins and the
RBC proteasomal machinery [99–102]. Of interest is peroxiredoxin-2 (Prx2), one of the most
abundant proteins in RBCs, which plays a major role against oxidation [24,27,103–109]. It
is a member of the typical homodimeric 2-Cys Prxs, the wider group that uses two cysteine
residues to detoxify many organic peroxides, including H2O2 and ONOO− [2,103,110]. The
tyrosine phosphorylation of Prx2 increases its activity in response to severe oxidation [2].
In addition to its enzymatic function, and under oxidative stress conditions, peroxiredoxins
have been shown to acquire a chaperone function, allowing them to migrate to the
membrane and interact with numerous proteins [111,112]. The importance of Prx2 in
RBCs and erythropoiesis has been supported by results in mouse models genetically
lacking Prx2 (Prx2-/-), which display age-dependent chronic hemolysis and ineffective
erythropoiesis [107,113]. We have recently shown that Prx2 expression is increased in
β-thalassemic RBCs and plays an important role during both normal and pathologic
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erythropoiesis to support erythroid maturation against oxidative stress [25,114]. In addition,
Prx2 acts as a backup mechanism in the presence of severe oxidation due to iron overload. This
highlights the importance of Prx2 in chronic hemolytic anemia such as β-thalassemia [104,107].
In fact, one recent study showed that peroxiredoxin 1 cooperates with Prx2 in the antioxidant
pathways of erythroid cells in patients with β-TI [115].

In SCD, Prx2 has been also shown to be involved in the dynamic cross-talk between the
cytoplasm compartment and the RBC membrane of SCD mice exposed to hypoxia-reoxygenation
stress, a condition used to mimic acute sickle cell-related vaso-occlusive crisis (VOC) [101,102,116].
Indeed, Prx2 membrane association might decrease local oxidation, preventing band 3
clusterization and the generation of erythroid microvesicles.

7.1.2. Superoxide Dismutase and Catalase

In RBCs, superoxide dismutase (SOD) acts as a first-line defense mechanism against
free radicals. This cytosolic enzyme that contains both copper and zinc converts O2

•−

into the less reactive H2O2 [117]. Found at high concentrations in RBCs, catalase is an
intracellular enzyme that protects cells and tissues from the toxic effects of H2O2 [118].
A major increase in SOD was found in beta-thalassemia major (β-TM) patients when
compared to healthy controls [119]. Another study, however, showed no significant change
in the levels of SOD and catalase in patients with β-thalassemia [120]. As for SCD, one study
by Antwi-Boasiako et al. reported that levels of SOD and catalase in RBCs were significantly
lower in SCD patients when compared to healthy controls [121]. This is in agreement with
other studies that also showed low levels of antioxidant enzymes in SCD patients [122–124].
A previous study conducted by Manfredini et al., however, reported significantly higher
levels of SOD in the RBCs of SCA patients compared to their healthy counterparts [125].
In the same study, levels of catalase were not found to be significantly different between
the SCA and controls. Moreover, HbSS patients with VOCs had significantly lower levels
of SOD in RBCs when compared to the other study subjects. The excessive amount of
ROS produced during a VOC may have partly contributed to the lower levels of SOD
and catalase in these patients. Findings from a 2019 study by Antwi-Boasiako et al. also
proposed that the low levels of SOD and catalase in RBCs seen in SCD patients with the
SS genotype may be due to the significant depletion of antioxidants, such as nitric oxide
and vitamins [121]. As evident by many of these studies, there has been a discrepancy in
reports on SOD and catalase activity. Increased levels of antioxidant enzymes such as SOD
and catalase may be seen in various settings including an acute inflammatory phase, a state
of trauma, and upon exposure to increased levels of pro-oxidants [126]. Decreased SOD
levels could be due to increased oxidative stress which results in excessive antioxidant
consumption and thus antioxidant deficiency [127]. On the other hand, a decrease in
catalase activity might be due to the chronic level of oxidative stress itself, whereas an
increase in its activity might be due to a protective measure by the body to scavenge ROS.
Increased catalase levels could also be a consequence of higher reticulocyte content in
SCD patients, for example [128]. Consequently, further studies with a much larger sample
size and unified methodological approach are needed to better understand the reasons
behind the varying levels of SOD and catalase that have been reported in β-thalassemia
and SCD patients.

7.1.3. The Glutathione System

The glutathione system (GSH) is an important scavenger of free radicals and a potent
endogenous antioxidant that can protect cells from oxidative injury [129,130]. In β-TM
patients, higher levels of glutathione peroxidase (GPx) were observed as compared to
healthy controls [119]. Another study, however, reported the levels of the antioxidant
enzyme GPx to be significantly lower in β-thalassemia patients [131]. These findings are in
agreement with the study of Garelnabi et al., which showed that the low levels of GPx in
children with β-thalassemia seem to result from the enzyme inhibition or reduced activity
due to the excessive production of H2O2 [132]. In a study on SCD patients, the oxidative
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status of RBCs was evaluated by exploring the glutathione system. The overall total
content of GSH and reduced GSH in SCD RBCs was 32–36% lower in these patients [133].
This finding is in line with other previous studies and further highlights this increased
oxidative stress status that is characteristic of sickle RBCs [134–136]. The same study also
reported higher GPx activities in SCD patients compared to controls, and no significant
differences in the activity of glutathione reductase activity among the studied cohorts [133].
The contradictory conclusions of these studies might be related to patient selection (age,
presence/absence of the spleen, kidney disease), reticulocyte count, and/or the number
of circulating erythroblasts. Moreover, the enzymatic levels/activity of the glutathione
system is higher in young RBCs compared to mature/old RBCs.

7.2. Cytoprotective Systems in Erythropoiesis
7.2.1. Heme-Regulated Inhibitor of Protein Translation

In β-thalassemic erythropoiesis, the thinning control of iron and heme is a priority
for cell survival. Heme-regulated inhibitor of protein translation (HRI) has been shown
to repress globin translation in heme-deficient erythroid precursors [137]. HRI is the
heme-regulated eukaryotic initiation factor-2α (eIF2α) kinase that phosphorylates a subunit
of eIF2. In vitro studies have shown that HRI activation also involves ROS and necessitates
the presence of the heat shock proteins 70 and 90 [138]. In β-thalassemic mice that
genetically lack HRI, a more severe hematological phenotype was shown when compared to
normal β-thalassemia mice, supporting the key role of eIF2α in stress erythropoiesis [139].
Translational up-regulation of activating transcription factor 4 (ATF4) mRNA by the
HRI-eIF2αP signaling pathway was necessary to mitigate oxidative stress and promote
erythroid differentiation [140]. The repression of globin mRNA translation by HRI decreased
proteotoxicity and allowed the ATF4 protein to be expressed. This is an important process
in terminal erythropoiesis to maintain pivotal mitochondrial functions and oxidative
homeostasis [141].

7.2.2. Heme Oxygenase-1 (HO-1)

The catabolism of heme is also important in normal and pathologic erythropoiesis.
HO-1 (heme oxygenase-1) is an enzyme that catalyzes the degradation of heme [142]. It
is generally considered to be a protective enzyme because of its ability to breakdown the
pro-oxidant “free” heme and release biliverdin and bilirubin, which exhibit antioxidant
properties. Thus, HO-1 might represent a potential therapeutic target in ineffective
erythropoiesis and thus improve oxidative stress in β-thalassemia. In fact, the administration
of tin-protoporphyrin IX, an HO-1 inhibitor, improved overall hematological parameters
and decreased anemia, ineffective erythropoiesis, spleen size, liver iron, and erythropoietin
levels, and increased the hepcidin serum levels in Th3/+ mice. Treatment with tin protoporphyrin
IX also decreased apoptosis, increased RBC lifespan, and reduced ROS levels [143].

7.2.3. Alpha Hemoglobin-Stabilizing Protein

Among atypical chaperone systems, the α hemoglobin stabilizing protein (AHSP) has
been reported to play an important role in β-thalassemic erythropoiesis. AHSP binds to
α-Hb, prevents its precipitation, and limits free α-Hb toxicities. Alpha Hb bound to AHSP
is more resistant to oxidant-induced precipitation and the phenotype of β-TI mice has
been shown to be exacerbated by the concomitant loss of AHSP [144]. Moreover, AHSP
knock-out mice showed pathological features and a degree of ineffective erythropoiesis
that is similar to that seen in β-thalassemia [145]. One cross-sectional study on 37 patients
with β-thalassemia and 12 sickle cell anemia (SCA) patients showed that AHSP levels
were significantly higher in patients with SCA compared to those with β-thalassemia [146].
Moreover, no significant differences in the level of AHSP were seen between patients with
β-TM and β-TI [146].
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8. Antioxidant Therapeutic Agents

Because oxidative stress plays a significant role in the pathophysiology of diseases
such as β-thalassemia and SCD, numerous molecules and pharmacological agents with
antioxidant properties have been used as a potential therapeutic strategy. Evidence from
the literature outlining these antioxidants and describing their therapeutic effect and
contribution to a redox balance has been summarized in Table 1.

Table 1. Antioxidant therapies in β-thalassemia and SCD patients.

Antioxidant Subjects Outcomes

Vitamins C and E

• TDT • Vitamin C plus Vitamin E supplementation promoted antioxidant status [147]
• NTDT • Vitamin E supplementation was also associated with a decrease in MDA levels, and

amelioration of RBCs osmotic fragility [148]
• NTDT • Vitamin E decreased lipid peroxidation in thalassemic RBCs, increased their survival and

suppresses hemolysis [149]
• TDT • Vitamin E also safely improved total oxidative stress status [150]

Flavonoids
• TDT • Silymarin decreased serum oxidative stress and enhanced serum

antioxidant capability [151]

Curcuminoids
• NTDT • Curcuminoids supplementation ameliorated oxidative stress and iron overload [152]
• TDT • The combination of curcumoid and green tea extract decreased redox-active iron [153]

Zinc Supplementation
• SCD • Zinc supplementation decreased not only the incidence of infection, but also oxidative

stress, inflammatory cytokine generation [154]

NAC
• TDT • NAC was shown to effectively reduce systemic and serum oxidative stress [155,156]
• SCD • NAC treatment decreased oxidative stress through a reduced expression of PS expression

on the cell membrane, in addition to ↓ levels of advanced glycoxidation end-products [157]

Alpha-lipoic acid and
acetyl-L-Carnitine

• TDT • Alpha-lipoic acid supplementation may have an effect on lipid profile and oxidative
stress status [158]

• SCD • Combination of α-lipoic acid and acetyl-L-carnitine increased glutathione levels and
decreased lipid peroxidation and improves plasma redox status [159,160]

Arginine Therapy • SCD

• IV arginine therapy increased mitochondrial activity and decreased oxidative stress in
children with vaso-occlusive pain [161]
• The use of low-dose oral supplementation of L-arginine improved liver function,
oxidative stress, plasma arginine concentration and nitric oxide metabolites levels [162]

Fermented papaya
preparation

• TDT and NTDT • Administration of FPP led to a decrease in ROS generation, membrane lipid peroxidation,
and externalization of PS residues concomitant with an increase in GSH levles [163]

Omega-3 fatty acids
• SCD • Administration of omega-3 long-chain polyunsaturated fatty acids can provide an

antioxidant protection [164]

Gum Arabic
• SCA • Gum Arabic increased total antioxidant capacity and decreased

MDA and H2O2 levels [165,166]

Abbreviations: TDT: Transfusion Dependent Thalassemia; NTDT: Non-Transfusion Dependent Thalassemia;
SCD: Sickle Cell Disease; SCA: Sickle Cell Anemia; MDA: Malondialdehyde; RBC: Red blood cells; NAC:
N-acetylcysteine; ROS: Reactive oxygen species; FPP: Fermented papaya preparation; GSH: Glutathione.

9. Conclusions and Future Perspectives

In conclusion, while oxidative stress is not among the primary etiologies of β-thalassemia
and SCD, it plays a significant role in the pathogenesis of these diseases. The mechanism
of oxidative stress development in β-thalassemia and SCD is not only multifactorial in
nature but also different. Oxidative stress can be ameliorated with antioxidative treatment
modalities that act at various levels. The identification of cytoprotective and antioxidant
enzymes and molecules has paved the way for a new era of new pharmacological targets
for treating β-thalassemia and SCD. For optimal outcomes, future studies should aim at
identifying specific sources of ROS, applying direct and targeted therapy, and improving
overall outcomes for patients. A better understanding of the main oxidants and antioxidants
involved, and the associated cascade of biological events will provide a better insight to
achieve an optimal redox balance.
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