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Unsupervised Human Action Recognition (U-HAR) methods currently leverage

large-scale datasets of human poses to solve this challenging problem. As most

of the approaches are dedicated to reaching the best recognition accuracies,

no attention has been put into analyzing the resilience of such methods given

perturbed data, a likely occurrence in real in-the-wild testing scenarios. Our

first contribution is to systematically validate the decrease in performance of

current U-HAR state-of-the-art using perturbed or altered data (e.g., obtained by

removing some skeletal joints, rotating the entire pose, and injecting geometrical

aberrations). Then, we propose a novel framework based on a transformer

encoder–decoder with remarkable de-noising capabilities to counter such

perturbations e�ectively. Moreover, we also present additional losses to have

robust representations against rotation variances and provide temporal motion

consistency. Our model, SKELTER, shows limited drops in performance when

skeleton noise is present compared with previous approaches, favoring its use in

challenging in-the-wild settings.

KEYWORDS

action recognition, autoencoder, transformers, full-body movement, skeletal data,

unsupervised feature learning

1. Introduction

Human Action Recognition (HAR), performed based on the visual analysis of the body,

including posture and movements of individuals, brings in a rich source of information

for numerous tasks, from video surveillance to biomedical applications. HAR from video

sequences is a challenging problem for several reasons, such as the diverse camera

viewpoints, similarity of visual contents, range of poses and size among subjects performing

the action, different illumination, and weather conditions. Several approaches use 3D-

skeleton data instead of raw videos due to the intrinsic properties of this pre-processed

information: being lightweight, privacy-preserving, free of background noises, abrupt

changes in lighting condition, and so forth (Cao et al., 2017; Yan et al., 2018; Si et al., 2019;

Xu et al., 2020a,b; Beyan et al., 2021).

The successes in skeleton-based HAR (Zhang et al., 2017; Yan et al., 2018; Cheng et al.,

2020) primarily rely on the supervised learning paradigm, which requires a significant

amount of manually labeled data. However, data annotation is expensive, time-consuming,

and prone to human errors (Paoletti et al., 2021a,b, 2022). Moreover, action classes may

vary significantly from dataset to dataset, while several methods lack enough generalization

to apply in different scenarios without requiring extra annotations. As (recent) alternative,
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unsupervised HAR approaches (Zheng et al., 2018; Lin et al.,

2020; Nie et al., 2020; Su et al., 2020a; Paoletti et al., 2021b;

Rao et al., 2021) (called U-HAR for the rest of this study)

are tremendously increasing their impact while competing to

reduce the performance gap with the fully supervised counterparts.

As most of the approaches are dedicated to reaching the best

recognition accuracies, no attention has been put into analyzing the

resilience of suchmethods given perturbed data, a likely occurrence

in real in-the-wild testing scenarios. The benchmark datasets, on

which the existing U-HAR methods are tested, were recorded

using depth sensors (Wang et al., 2019a) (e.g., by using Microsoft

Kinect) in relatively controlled experimental settings, being free

from several challenges such as noisy data and severe occlusions,

thus being far from realistic scenarios. It is also important to

notice that in real-world conditions, there can be errors in sensors

resulting in missing frames and/or errors occurring due to the

misdetection of the pose estimators. It is paramount to evaluate

the resilience of proposed methodologies before deploying them in

practical settings, particularly in applications such as those related

to biomedical [e.g., action recognition-based elderly monitoring

Petrushin et al. (2022), fall detection Cebanov et al. (2019),

action-based anomaly detection Parvin et al. (2018)], where highly

robustness and denoising capabilities are essential.

The first contribution of this study is to provide a systematic

analysis of the state-of-the-art (SOTA) skeleton-based U-HAR

methods when evaluated on perturbed and altered data, simulating

several real-world challenges, e.g., noise, clutter, occlusions, and

geometrical distortions. Consequently, we present an extensive set

of perturbations and alterations to simulate in-the-wild scenarios

for HAR (e.g., obtained by removing some skeletal joints, rotating

the entire pose, injecting geometrical aberrations, etc., see Section

3.2) and verifying the decrease in performance of current SOTA,

evidencing cases where such loss is more predominant.

On the other hand, we also propose a novel framework,

SKELTER (SKELeton TransformER), which is capable of learning

robust representations from the spatiotemporal 3D-skeletal data

in an unsupervised fashion (Section 3.3). Our proposed encoder–

decoder architecture uses transformers that get inputs as 3D-

skeletal data over time. A transformer-based encoder–decoder

architecture is chosen due to its superior ability to encode skeletal

joint information across the entire temporal span. At the same

time, its attention modules provide context for any position in

the input sequence of sequential data, weighing their influence on

different temporal parts. We also devise additional components

to SKELTER to obtain robustness toward skeletal rotations and

temporal consistencies w.r.t. time-frames alterations (Section 3.2).

Overall, the performance of our method is compared with

SOTA skeleton-based U-HAR when tested on perturbed and

altered data, which are applied on NTU-60 (Shahroudy et al.,

2016) and NTU-120 (Liu et al., 2019) datasets’ cross-subject cross-

view and cross-setup splits. The comprehensive analysis shows that

SKELTER is more robust against several data perturbations and

alterations than SOTA, showing its better denoising capability.

The main contributions of this study are listed as follows.

• For the first time, we evaluate SOTA skeleton-based U-

HAR methods on perturbed and altered data, which simulate

in-the-wild challenging scenarios. We believe that the results

allow the community better to understand the existing

methods’ applicability to real-world scenarios.

• We present a novel method based on transformers

(SKELTER), which processes the skeletal data within a

spatiotemporal pipeline by integrating a multi-attention

mechanism. This encoder–decoder structure relies on

mean squared error (MSE), so the feature learning is fully

unsupervised. In addition, we devise two additional losses:

one for resulting in more robust representations against

rotation variances (Section 3.3.5) and the other is to handle

the possible temporal motion consistency by integrating

triplet loss (Section 3.3.6).

• We show that SKELTER is more resilient than the SOTA

skeleton-based U-HAR methods when subject to data

perturbations and alterations, showing that it can handle

various real-world challenges (reconstructing smoother and

uncorrupted skeleton poses) compared with other approaches.

The rest of the study is organized as follows. Section 2

summarizes SOTA unsupervised skeleton-based human action

recognition approaches and transformers. The proposed method

is introduced in Section 3, specifying the application scenarios

for skeleton-based HAR and the related data perturbation and

alteration which could likely occur. Section 4 presents the

experimental analysis, datasets, implementation details, and results.

Section 5 reports qualitative analysis and a case study of a real-

life scenario. Finally, we conclude the study with a summary and

discussions in Section 6.

2. Related work

The HAR literature is very extensive; we refer to the following

surveys (Poppe, 2010; Presti and La Cascia, 2016; Xing and Zhu,

2021) for a general overview. This study focuses on skeleton-based

U-HAR approaches and reviews transformers as strictly related to

our backbone architecture.

2.1. Skeleton-based U-HAR

To solve supervised skeleton-based HAR task, early approaches

leveraged upon hand-craft features (Ni et al., 2011; Wang et al.,

2012; Ohn-Bar and Trivedi, 2013; Oreifej and Liu, 2013; Evangelidis

et al., 2014; Vemulapalli et al., 2014; Yang and Tian, 2014;

Vemulapalli and Chellapa, 2016). As for deep neural networks,

recent studies are based on recurrent neural networks (RNNs) (Du

et al., 2015b; Shahroudy et al., 2016; Zhang et al., 2017, 2019; Song

et al., 2018), convolutional neural networks (CNNs) (Du et al.,

2015a; Ke et al., 2017; Li et al., 2017; Liang et al., 2019), and graph

convolutional networks (GCNs) (Yan et al., 2018; Lu et al., 2019;

Shi et al., 2019a,b; Si et al., 2019; Wang et al., 2020; Xu et al.,

2020b; Zhang et al., 2020a,b), demonstrating the benefits of learning

intrinsic properties of skeletal actions performed over time. As for

unsupervised skeleton-based HAR (Zanfir et al., 2013; Martinez

et al., 2017; Ben Tanfous et al., 2018; Gui et al., 2018; Li et al.,
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FIGURE 1

Overall methodology (best viewed in color). (i) Data perturbation: given a clean skeletal action sequence Xclean (blue skeleton), a plausible real-world

data perturbation is simulated and applied to the data sample to obtain the input sequence Xpert (red skeleton). (ii) Unsupervised transformer: our

proposed approach, SKELTER, is a transformer-based Encoder and Decoder architecture, able to learn how to denoise the Xpert data and reconstruct

the animated pose as X̂pert (green skeleton), using the reconstruction loss LMSE. (iirot) Rotation invariance: in cases of rotated data, RotHead are

plugged into SKELTER (one for each 3D axis). The rotation loss Lrot ensures a correct prediction of the rotation angles, granting invariant properties

toward 3D rotations. (iirm) Temporal motion consistency: the triplet margin loss Lcontr ensures temporal motion consistency in altered data. (iii)

Human action recognition (inference stage): to perform HAR, a linear classifier is set on the top of the learned feature representations.

2018), several representation learning methods first encode the

skeleton sequences into a latent space, followed by a reconstruction

stage, then a linear classifier is trained using the frozen latent

representations. Methods such as PCRP (Xu et al., 2023) and

Predict & Cluster (P&C) (Su et al., 2020a) are built on an encoder–

decoder structure. The former reconstructs skeletal data using

EM with learnable class prototypes; the latter uses RNNs as an

encoder. LongTGAN (Zheng et al., 2018) is a generative adversarial

network (GAN)-based method, which uses GRUs with a mixture

of adversarial loss and additional inpainting tasks. In contrast,

the GAN-based encoder of EnGAN (Kundu et al., 2019) learns

representations of skeletal body poses in time. SeBiReNet (Nie

et al., 2020) is a Siamese denoising autoencoder tested on feature

disentanglement, pose denoising, and unsupervised cross-view

HAR. According to Paoletti et al. (2021b), unsupervised feature

learning is performed with a convolutional residual autoencoder,

demonstrating the benefits of performing residual convolutions

to learn representations with spatiotemporal convolutions jointly.

In the same study, the authors also used Laplacian regularization

to inject the intrinsic knowledge of the connectivity patterns of

the body into the network. Li et al. (2021) process the joint,

motion, and bone (see study for their definition) information

altogether instead of using only skeleton data. U-HAR results

are improved using these three modalities within a contrastive

learning schema. ISC (Thoker et al., 2021) leverages inter-skeleton

contrastive learning and spatiotemporal augmentations to learn

invariances w.r.t. skeleton representations. AimCLR (Guo et al.,

2022) builds upon contrastive methods, and it can obtain robust

representation from extreme augmentations and novel movement

patterns.

This study evaluates the aforementioned U-HAR

methods when trained and/or tested on corrupted data.

Hendrycks and Dietterich (2018) and Yi et al. (2021) tackled

similar approaches but for different tasks (i.e., not U-HAR), and

the type of data were images and videos (i.e., not skeletons).

Different from Hendrycks and Dietterich (2018) and Yi et al.

(2021), herein, such data represent real-world challenges, such

as noise, clutter, and occlusions. Moreover, we propose a novel

method based on an encoder–decoder transformer architecture,

showing better performance for the realistic scenarios where

perturbed and altered data exist, w.r.t. the already existing U-HAR

methods.

2.2. Transformers

Since their inception in NLP research (Vaswani et al., 2017;

Brown et al., 2020), transformers have gained popularity in

different tasks such as for machine translation (Wang et al.,

2019b; Yang et al., 2019), visual question answering (Lu et al.,

2019; Su et al., 2020b), action recognition (Girdhar et al., 2019;

Bertasius et al., 2021), and human pose estimation (Zheng et al.,

2021), to name a few. Vision Transformer (ViT) (Dosovitskiy

et al., 2021) is the first pure-transformer model deployed for

image classification that was trained on large-scale datasets such

as Imagenet-21K (Ridnik et al., 2021) and JFT-300M, achieving

remarkable results. On the other hand, ACTOR (Petrovich et al.,

2021) is a transformer-based conditional VAE, which can generate

action-conditioned human motions by sampling from a sequence-

level latent vector. The success of transformers mainly relies on

their property to establish long-range connections among time-

series data, w.r.t. shorter connections could occur in RNNs or

LSTMs. In this study, we inherit ViT (Dosovitskiy et al., 2021)

and ACTOR (Petrovich et al., 2021) in our encoder and decoder
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architecture such that we learn the skeleton-data representations

by processing them in spatial and temporal dimensions. We define

a spatial transformer, which considers the temporal dimension of

the data in terms of temporal position embeddings. This encoder–

decoder structure is trained with MSE loss between the input

representations and the reconstructed skeletons. The hierarchical

transformer by Cheng et al. (2021) fuses part-based skeletal features

to higher-level representations using self-attention mechanisms

from transformers.

Although the common final task of U-HAR, this model

formulates the unsupervised representation learning as a

classification problem, predicting the motion direction of masked

poses. However, it does not aim to perform data denoising. At

the same time, to the best of our knowledge, our approach is the

first transformer-based solution, specifically designed to tackle data

denoising for the U-HAR.

3. Methodology

First, we introduce a description of applicability scenarios for

HAR in Section 3.1, followed by our proposed perturbations and

alterations in Section 3.2, and then our method, SKELTER, in

Section 3.3. The two additional losses devised to obtain robustness

toward skeletal rotations and temporal consistencies w.r.t. time-

frames alterations, injected into the SKELTER pipeline, are given

at the end. For action inference, we use the common protocol of

unsupervised feature learning, i.e., linear evaluation (Zheng et al.,

2018), such that the latent features learned without supervision

are given to a linear classifier to perform HAR. Notably, the

inference stage is the same with all SOTA we compare with

SKELTER. All these stages are presented in Figure 1. To prove

their coherence w.r.t. a practical application, Section 5.1 reports a

comparison between the perturbed datasets and a test case of the

aforementioned real-world scenario.

3.1. Application scenarios for
skeleton-based HAR

Concerning skeleton-based HAR experimental pipelines,

several steps are involved, which can be summarized into two

main components: (1) obtaining 3D-keypoints from RGB videos,

usually as sequences of image frames using specific equipment or

using pose estimator algorithms and (2) deploying state-of-the-art

model capable of correctly classify the correspondent action. The

predominant choice bends on benchmark datasets obtained within

staged scenarios. For example, NTU-60 (Shahroudy et al., 2016)

and NTU-120 (Liu et al., 2019) are recorded using depth sensors

(i.e., Microsoft Kinect v2) inside a constrained and well-controlled

setup to achieve the best quality of data.

On the other hand, these conditions could not always be

guaranteed in realistic scenarios. For this less common setup, e.g., a

surveillance online video feed, a continuous stream of RGB frames

represents the input where pose estimator software infers the initial

2D-keypoints from the RGB frames (Cao et al., 2017) and lifts

them into the 3D space (Pavllo et al., 2019). Starting from the

nature of the scenario itself (online frame-wise 3D pose estimation),

depending on the conditions of the scene itself (e.g., overcrowded

frames, bad camera recording quality, errors in camera calibration,

and missing frames from recording), and accounting abrupt and

unforeseen events (such as noisy estimation, severe occlusions, mis-

detected keypoints), the quality of keypoints estimation could be

severely affected in this type of scenario.

Due to its unpredictable nature, the quantity, and variability of

these unexpected events, action classification from severely affected

3D key points could represent a challenging task for U-HAR SOTA

models, which often overlook the particular conditions of this

real-world scenario. Therefore, we propose SKELTER as a needed

and robust model capable of correctly classifying those actions,

regardless of the conditions of given skeletal samples.

3.2. Data perturbation and alteration for
HAR

Existing skeleton-based U-HAR methods were evaluated on

commonly-used datasets, e.g., NTU-60 (Shahroudy et al., 2016),

and NTU-120 (Liu et al., 2019), by applying pre-processing steps

(normalization and camera pre-registration). Although such pre-

processing represent undoubtedly a common practice to obtain

robust features from the skeletal action sequences, the ingredients

to apply it might not always be available in real-world processing.

In addition, the methods trained on optimum conditions (such as

without considering the noise, missing joints) might result in poor

performance in their unconstrained real-world processing.

Since the main scope of this study is to evaluate the SOTA

and SKELTER in the presence of perturbed and altered data, the

first step is, therefore, to define a wide range of perturbations

(i.e., Gaussian Noise, Joint Outlier, Joint Removal, Limbs Removal,

Axis Removal, Shear, and Subtract) and alterations (i.e., Rotation

and ReverseMotion). Figure 2 illustrates that the blue skeletal poses

represent the original data, whereas the red poses represent the

transformation applied.

3.2.1. Data perturbation
Gaussian noise (GN): Additive Gaussian noise is applied over the

joints (with a mean equal to zero and standard deviation equal

to 0.05) to simulate noisy positions caused by the pose estimator

model.

Joint outlier (JO): For each skeletal sample, a random joint is

selected and its 3D coordinates altered by adding, for each axis, a

fixed value within a range of [−1, 1] to simulate an outlier joint

that severe incorrect estimations in the camera feed can cause.

Joint removal (JR): For each sample action sequence, a subsection

of temporal frames is selected, i.e., a random amount of frames,

up to 25% of the entire length, and within these selected frames,

a subsection of joints is chosen and set to zero. This random-

conditioned selection ensures the simulation of a plausible real-

world scenario in which some joints could not be detected.

Limbs removal (LR): For each sample action sequence, the

occlusion of an entire limb is simulated by randomly selecting one

of the four groups of joints (i.e., left and right arms, left and right

legs) and setting their coordinates to zero to simulate e.g., common
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FIGURE 2

The proposed data perturbation and alteration strategies. Starting from the clean “Throw” skeleton action sequences picked from the NTU-60

(Shahroudy et al., 2016) Cross-View split (blue poses), data perturbations or alterations are applied (red poses). Each blue-and-red couple is a sample

of a di�erent perturbation (GN, JO, JR, LR, AR, SHR, and SUB, see Section 3.2.1 for definitions) or alteration (ROT and RM, see Section 3.2.2

for definitions).

severe occlusions such as “legs occluded due to the subject being sat

at a desk.”

Axis removal (AR): This refers to setting an entire axis that

is selected randomly to zero. This simulates a failure of a pose

estimator to infer 3D poses and as a general-purpose 2D-to-3D

hallucination capability of models that are not natively designed for

this kind of task.

Shear (SHR): Shear simulates the variations in the camera

orientation. Each skeletal joint is displaced in a fixed direction

(e.g., slant joints with a random angle S ∈ [−1, 1]), using a linear

mapping matrix:

�s =







1 SYX SZX
SXY 1 SZY
SXZ SYZ 1






(1)

Subtract (SUB): The entire skeleton in shifts 3D space by selecting

a random joint and setting it as the new root joint. This is a

simulation of the situations arising when, e.g., a pose estimator fails

to correctly detect a skeletal pose, resulting in an abrupt shift of

spatial coordinates.

3.2.2. Data alteration
Rotation (ROT): 3D-skeletal data are rotated along XYZ axes,

using the respective rotation matrices given in Equation (2).

Rotation is involved in testing the strength of a method under

view-point variations, e.g., in scenarios such as camera surveillance

where a skeleton pose of a person is captured throughmulti-camera

settings. To simulate plausible contexts, a randomly-sampled Z-

axis rotation along all 360 degrees is applied, whereas on X and Y

axes, the rotation angles’ range spans in-between [−30, 30] degrees.

�x =







1 0 0

0 cosα − sinα

0 sinα cosα






,�y =







cosβ 0 sinβ

0 1 0

− sinβ 0 cosβ






,

�z =







cos γ − sin γ 0

sin γ cos γ 0

0 0 1






(2)

Reversed motion (RM): The order of the time frames of a given

sample is randomly reversed (with a 50% chance), to ensure a

model learns human motion when a reversed perspective is shown.

This is useful especially when SKELTER is trained on datasets that

contain ambiguous or subtle actions, e.g., actions such as “wear

a shoe” or “take off a shoe,” which are theoretically similar but

different w.r.t. motion execution and action label.

3.3. Proposed method

Our method, SKELTER, was designed by following the

general direction endowed by ViT (Dosovitskiy et al., 2021)

for embedding the input data and ACTOR (Petrovich et al.,

2021) for the overall encoder/decoder structure. The training

paradigm fosters the model to learn robust features for HAR,

describing below its components in detail. Following that,

additional modules and losses of themethod were defined to pursue

robustness toward skeletal rotations (Section 3.3.5) and temporal

consistencies (Section 3.3.6), to disambiguate between specular

actions w.r.t. time-frames alterations.
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3.3.1. Transformer-based encoder and decoder
On our frame-wise skeleton encoder, the temporal frames of the

given sample represent the input tokens for the transformermodule

to capture their global dependencies.

The input sequence is defined as X ∈ R
f×(3J), where f is the

number of time-frames of the action sequence, and J represents the

number of joints for each 3D pose.

Skeleton data, which can be (in general) clean or (in this

case) perturbed denoted as
{

Xclean,Xpert

}

respectively, are fed

into the transformer-based encoder and decoder sharing the same

architecture (described below). Each 3D-skeletal pose is defined as

Xi
pert ∈ R

1×(3J), i = 1, 2, . . . , f of each time-frame f as a patch

token.

Subsequently, the patch embedding P ∈ R
f×d is the linear

projection of joints into a high-dimensional feature, where d is the

embedding dimension, using a trainable linear layer E ∈ R
(3J)×d:

P = [x1E, x2E, . . . , xf E]+ PE (3)

The positional embedding PE ∈ R
f×d, inherited from

Vaswani et al. (2017), come in aid to the transformer module

to maintain positional information about the skeletal sequence

(i.e., the temporal frame order) as:

PE(f ,2d) = sin(f /100002i/d), (4)

PE(f ,2d+1) = cos(f /100002i/d) (5)

where i is the dimension of the embedding.

3.3.2. Attention in transformers
The core principle of transformers is the scaled dot-

product attention, where information coming from different data

representations and positions are encoded in a parallel way given

by:

Attention(Q,K,V) = Softmax(QKT/
√
d)V , (6)

where Attention is a mapping function using Q,K,V ∈ R
N×d

(a query, key, and value matrix, respectively). N is the number

of sequence vectors, and d represents its dimension scaled for

normalization.

These matrices are computed from P, by the linear

transformationsWQ,WK , andWV ∈ R
d×d as:

Q = PWQ,K = PWK ,V = PWV . (7)

3.3.3. Transformer multiple self-attention heads
To encode attention, multiple h self-attention heads are

concatenated together as:

MSA(Q,K,V) = Concat(H1, H2, . . . , Hh)Wout , (8)

Hi = Attention(Qi,Ki,Vi), i ∈ [1, . . . , h]. (9)

The general structure of a transformer stack L identical layers

given the embedded space P ∈ R
f×d. Each layer contains a

multi-head attention block in conjunction with an MLP layer.

These blocks are placed in-between a Layer Norm LN(·) and a

residual connection such that:

Y ′
l = MSA(LN(Yl−1))+ Yl−1, (10)

Yl = MLP(LN(Yl))+ Y ′
l , (11)

Z = LN(Yl), (12)

where the transformer output Z ∈ R
f×d has the same size of its

input P ∈ R
f×d, and it is averaged in frame dimension to get a

vector z ∈ R
1×d.

3.3.4. Denoising property
The transformer-based decoder reconstructs each skeletal

action sequence, starting from the unsupervised latent

features Z, into X̂pert ∈ R
f×(3J). The MSE reconstruction

loss ensures the model correctly encodes and rebuilds each

data sample free of any noise or corruptions injected during

training:

LMSE = 1
2EX∼B

[

‖Xclean − X̂pert‖2F
]

, (13)

where ‖ · ‖F denotes the Frobenius norm, i.e., the

Euclidean norm of the vector obtained after flattening

the tensor. The MSE loss is minimized over mini-batches

B.

3.3.5. Rotation invariance
Granting the flexibility of the transformer-based approach to

combine reconstruction loss with other complementary losses,

this section introduces an additional loss to ensure learning

consistencies w.r.t. rotation invariance. This is visualized in

Figure 1.

First, each skeletal action sequence was altered by applying

ROT (3D rotations, see Section 3.2) to obtain Xrot . Rotation labels

were defined as yx, yy, and yz , corresponding to the rotation angles

applied to the rotated action sequence Xrot . These rotation labels

are only used for the skeletal rotation prediction task, but not for

U-HAR i.e., not used for the classification task.

During training, for each 3D axis, an additional patch

token Pr and relative positional embeddings PEr were stacked

(concatenated) on top of the existing ones, thus obtaining:

Prot = concat(Pr , P)+ concat(PEr , PE) (14)

After the encoding stage, the first three vectors were selected

from Z (the latent features extracted from Pr) and fed into three

different linear layers, representing the axes’ rotation heads. The

overall goal is to classify the correct rotation angles (as predicted
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rotation labels ŷx, ŷy, and ŷz) using cross entropy losses, defined as:

ŷx = softmax(RotHeadx(Rot(xi_clean,α))) (15)

Lrot_x(θ) = − 1

N

N
∑

i

log ŷα
x (16)

ŷy = softmax(RotHeady(Rot(xi_clean,β))) (17)

Lrot_y(θ) = − 1

N

N
∑

i

log ŷβ
y (18)

ŷz = softmax(RotHeadz(Rot(xi_clean, γ ))) (19)

Lrot_z(θ) = − 1

N

N
∑

i

log ŷ
γ
z , (20)

where Rot(·, ·) is the rotation function (as shown in Equation 2),

RotHead(·) is the output of each rotation heads, and θ denotes the

encoder parameters. The final loss for this task is:

L = 1
2EX∼B

[

‖Xrot − X̂rot‖2F
]

+ Lrot_x + Lrot_y + Lrot_z. (21)

3.3.6. Temporal motion consistency with triplet
loss

The motion information of a skeletal action sequence can be

easily obtained from joints data as it can be represented as the

temporal displacement of each joint (Li et al., 2021), i.e., xt+1 − xt .

Herein, the goal of this paper is to better regularize the model by

checking consistencies between the reconstructed skeleton and its

data byproduct (i.e., the motion data) using a Triplet Margin Loss

(Balntas et al., 2016):

Lcontr(a, p, n) = max{‖ai − pi‖2 − ‖ai − ni‖2 +margin, 0}, (22)

where a is the anchor samples, joints data coming from Xpert , p

represents the positive samples obtained from forwardmotion data

(unaltered motion data), n is the negative samples consisting of

reversedmotion data and left the default value of 1 formargin. This

ensures that the latent features learn to reconstruct action samples

into the correct temporal motion despite the presence of altered

data (RM, see Section 3.2) by attracting the positive samples of the

correct motion and pushing afar the inverted motion data which

can perturb the model performance. The final loss for this task is

given by:

L = LMSE + Lcontr. (23)

4. Experimental analysis

Each skeletal action sequence is normalized in terms of bone

length in the range of [−1, 1]. As for their temporal sequence

length, every missing time-frames were discarded (applying

methods introduced in Su et al., 2020a) and regularized the frame

numbers to match a fixed size (fixing each sequence length up to

100 time-frames by applying a regularization in which frames of

longer samples were cut or replicate frames for shorter samples).

Both encoder and decoder modules are made of two transformer

layers with four attention heads each. Patch embedding and latent

space sizes are set to 256. The positional embedding length is set

to 100, matching the temporal length of the given action sequences.

Themodel is trained for 100 epochs using AdamWoptimizer with a

batch size of 64 and a learning rate of 0.001 (with a decay scheduling

at epochs 20 and 70).

The experimental analysis was performed on two large-scale

skeletal action datasets: NTU-60 (Shahroudy et al., 2016) andNTU-

120 (Liu et al., 2019) using all available data splits, i.e., Cross-

Subject, Cross-View, and Cross-Setup. For action inference, the

common protocol of unsupervised feature learning was used,

i.e., linear evaluation (Zheng et al., 2018), such that the latent

features (learned without supervision) are given to a linear classifier

to performHAR. Notice that the inference stage is the same with all

SOTA competitors. The performance of our method (SKELTER)

was compared against 9 SOTA skeleton-based U-HAR methods:

LongTGAN (Zheng et al., 2018), MS2L (Lin et al., 2020), P&C

(Su et al., 2020a), PCRP (Xu et al., 2023), AS_CAL (Rao et al.,

2021), AE-L (Paoletti et al., 2021b), CrosSCLR (Li et al., 2021),

ISC (Thoker et al., 2021), and AimCLR (Guo et al., 2022). In

Supplementary material, a comprehensive analysis of the inference

time and space complexity for our model, as well as other methods,

is presented.

4.1. Comparison with SOTA for data
perturbation

By first verifying if the initial claim of this paper is valid (i.e., U-

HAR methods are not resilient to data perturbations), all SOTA

were evaluated by supplying their code publicly in two distinct

evaluation phases:

• Investigate SOTAU-HAR and SKELTER’s accuracy results and

performance drop when data perturbation is applied only on

the test set, where the SOTA models are pre-trained using

the original and unaltered data. Table 1 reports quantitative

results, whereas Figure 3 represents the graphical counterpart

in terms of bar plots (lower the bars, better the results).

We provide in Supplementary material the extended tables for

all experiments and complete bar plots for better readability.

• Investigate the accuracy results and performance drop of

SOTA U-HAR and SKELTER when data perturbation is

applied on both the train and test set, de-facto re-training from

scratch all SOTA models providing perturbed data.

We provide in Supplementary material (due to space

constraints) the extended tables for all experiments, along with

complete bar plots for better readability.

Overall, the extensive quantitative and qualitative results

confirm and demonstrate the sensible weakness in performance

(i.e., classification accuracy) of these approaches w.r.t. such

perturbations, showing that all the methods’ performance decrease

when the testing data is corrupted, in some cases up to 70%.

However, it is important to notice that even for the cases in which
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TABLE 1 Performance comparisons in terms of accuracy (%) between the SOTA U-HAR and SKELTER when only the testing splits of NTU-60 (Shahroudy et al., 2016) (top) and NTU-120 (Liu et al., 2019) (bottom) are

perturbed by: SUB, AR, JR, SHR, GN, LR, and JO (see Section 3.2 for definitions).

NTU-60 C-subject NTU-60 C-view

CLN SUB AR JR SHR GN LR JO AVG Drop ↓ CLN SUB AR JR SHR GN LR JO AVG Drop ↓
ACC (%) (%) ACC (%) (%)

Performance Accuracy (ACC %) – Perturbations on Test set only

LongTGAN 52.1 4.9 12.9 32.3 10.7 32.7 30.9 29.1 23.0 29.1 56.4 8.7 14.6 38.3 11.2 39.2 19.6 12.0 21.8 34.6

MS2L 52.6 16.6 15.2 21.2 15.7 19.8 20.7 34.0 23.9 28.7 46.4 10.1 15.9 11.0 14.4 22.2 12.2 30.7 20.5 25.9

P&C FS 50.6 5.9 18.1 37.9 14.4 39.2 35.9 34.9 27.9 22.7 76.3 8.5 23.5 60.8 19.7 63.1 50.7 29.5 38.9 37.4

P&C FW 50.7 18.3 14.2 41.7 13.2 42.4 35.2 35.2 29.9 20.8 76.1 5.9 15.8 59.1 12.5 61.2 39.2 29.1 34.4 41.7

PCRP 53.9 6.2 12.2 39.6 15.8 40.2 32.7 42.8 28.7 25.2 63.5 15.3 14.1 45.5 17.4 46.8 40.7 32.2 32.2 31.3

AS_CAL 58.5 39.7 36.8 46.1 37.9 46.5 41.3 38.9 40.5 18.0 64.6 37.7 33.9 46.7 34.7 46.1 35.4 40.2 39.1 25.5

AE-L 69.9 30.3 31.6 65.4 23.0 66.7 59.7 50.1 48.7 21.2 85.4 11.4 35.4 76.4 24.7 75.5 66.0 58.2 51.6 33.8

CrosSCLR 77.8 51.2 40.1 50.5 40.4 22.4 49.4 57.4 47.8 30.0 83.4 58.0 44.6 56.5 53.0 28.6 52.7 57.4 54.1 29.3

ISC 76.3 54.2 50.1 63.8 50.8 63.0 56.9 62.1 58.2 18.1 85.2 60.1 49.2 74.0 62.4 72.1 68.8 70.1 66.0 19.2

AimCLR 74.3 55.7 50.0 66.3 58.2 65.0 60.1 63.3 60.5 13.8 79.7 60.9 54.9 76.5 65.8 73.8 70.4 74.1 68.8 10.2

SKELTER 69.2 57.2 60.0 69.0 63.7 67.9 63.9 68.9 64.4 4.8 78.5 62.1 66.4 77.5 70.5 76.8 71.9 77.5 71.8 6.7

NTU-60 C-subject NTU-60 C-view

CLN SUB AR JR SHR GN LR JO AVG Drop ↓ CLN SUB AR JR SHR GN LR JO AVG Drop ↓
ACC (%) (%) ACC (%) (%)

Performance Accuracy (ACC %) – Perturbations on Test set only

LongTGAN 35.6 4.8 7.3 26.7 5.2 26.7 20.8 18.8 17.7 17.9 39.7 3.9 8.7 27.2 6.4 28.1 17.4 12.6 16.5 23.2

MS2L 24.3 8.5 10.2 7.7 8.4 9.4 9.1 12.7 10.5 13.8 23.8 8.3 10.0 8.4 9.5 8.4 9.9 8.3 10.3 13.5

P&C FS 40.5 2.1 6.0 29.9 6.5 30.2 28.8 24.5 19.8 20.7 42.4 12.7 9.7 25.1 7.3 25.1 20.8 22.0 18.4 24.0

P&C FW 40.3 14.3 9.4 30.4 7.6 31.5 28.3 24.2 21,5 18.8 42.9 2.1 4.7 32.6 6.9 33.0 23.0 22.1 20.1 22.8

PCRP 41.7 3.7 6.5 27.8 8.5 28.2 22.4 22.8 19.5 22.2 45.1 13.5 8.7 30.7 9.7 31.2 27.1 20.7 21.7 23.4

AS_CAL 48.6 27.6 23.9 34.1 25.0 34.7 26.1 30.1 28.3 20.3 49.2 26.5 22.6 35.7 23.5 36.2 32.9 35.8 29.9 19.3

AE_L 59.1 7.6 19.3 47.3 11.7 51.3 40.9 47.2 34.9 24.2 62.4 7.7 22.6 48.1 12.9 42.8 40.3 32.6 32.9 29.5

CrosSCLR 67.9 40.7 26.4 40.8 35.9 13.5 39.2 47.0 37.7 30.2 66.7 41.7 29.0 42.1 36.1 18.0 43.0 50.1 40.8 25.9

ISC 67.1 44.0 37.2 50.8 44.4 52.8 49.3 50.3 47.5 19.6 67.9 40.5 34.8 50.8 38.4 43.9 48.1 53.2 46.4 21.5

AimCLR 68.2 44.9 42.0 53.2 46.9 54.9 50.1 55.9 50.2 18.0 68.8 41.1 37.0 57.1 41.1 44.2 50.9 54.4 48.4 20.4

SKELTER 52.9 46.5 48.7 58.2 51.7 59.1 53.9 58.9 53.9 0.0 56.0 42.9 40.6 60.9 44.1 45.7 56.5 60.5 50.2 5.8

The average (AVG) accuracy and the Drop, ↓ w.r.t. clean data (CLN), are given (the lower, the better). CLN stands for clean data, i.e., usage of original data as supplied by the datasets. The best results of each column are given in bold.
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FIGURE 3

Performance drop ↓ % (related to the decrease of accuracy points) of SOTA U-HAR and SKELTER when only the testing splits of NTU-60 (Shahroudy

et al., 2016) (top half) and NTU-120 (Liu et al., 2019) (bottom half) are perturbed by: SUB, AR, JR, SHR, GN, LR, and JO (see Section 3.2 for definitions).

The lowest bars represent the best results.

the set of data perturbations are introduced to the models in their

training, remarkable drops in the performance still exist, up to 45%.

The reader can observe that for the perturbed data, the accuracy

of SKELTER is better than the others in all datasets: such strong

drops are not observed for SKELTER, proving its better denoising

capabilities compared to SOTA. In other words, the performance

drop of SKELTER is lower than others, and its performance is more

accurate than others with the perturbed data.

It is also important to highlight that some methods, such

as AS-CAL (Rao et al., 2021), CrosSCLR, ISC, and AimCLR, all

perform contrastive learning while they augment the data in terms

of e.g., Shear, Gaussian noise, and Rotation. Therefore, they would

be more resistant to the corresponding perturbations. However,

compared to SKELTER, their performance decrease is relevant.

4.2. Comparison with SOTA for data
alteration

This section reports the performance of SOTA U-HAR

when rotation (ROT) and reversed motion (RM) are applied

to the datasets, with the same experimental pipeline described

in the previous section (Table 2 and Figure 4). These results

also include SKELTER’s performance in four settings to

examine the importance of using our rotation-invariance and

triplet losses:

• Pure SKELTER: using only the LMSE loss (Equation 13).

• SKELTER with the rotation invariance loss (Equation 21).

• SKELTER with the triplet loss Lcontr (Equation 22).
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TABLE 2 Performance comparisons in terms of accuracy (%) between the SOTA U-HAR and SKELTER when only the testing splits of NTU-60 (Shahroudy et al., 2016) (top) and NTU-120 (Liu et al., 2019) (bottom) are

altered by: ROT and RM (see Section 3.2 for definitions) in terms of the average (AVG) accuracy and the Drop ↓ w.r.t. clean data (CLN) (the lower, the better).

NTU-60 C-subject NTU-60 C-view NTU-120 C-subject NTU-120 C-setup

CLN ROT RM AVG Drop ↓ CLN ROT RM AVG Drop ↓ CLN ROT RM AVG Drop ↓ CLN ROT RM AVG Drop ↓
ACC (%) (%) ACC (%) (%) ACC (%) (%) ACC (%) (%)

Performance Accuracy (ACC %) – Alterations on Test set only

LongTGAN 52.1 23.4 30.1 26.7 25.4 56.4 32.0 20.4 26.2 30.2 35.6 18.2 30.9 24.5 11.1 39.7 24.2 20.0 22.1 17.6

MS2L 52.6 38.2 33.4 35.8 16.8 46.4 33.8 34.2 34.0 12.4 24.3 13.3 14.9 14.1 10.2 23.8 12.8 17.5 15.1 8.8

P&C FS 50.6 31.0 33.8 32.4 18.2 76.3 46.2 47.8 47.0 29.3 40.5 22.6 27.8 25.2 15.3 42.4 20.8 22.4 21.6 20.8

P&C FW 50.7 32.6 36.2 34.4 16.3 76.1 37.7 48.7 43.2 32.9 40.3 20.4 27.4 23.9 16.4 42.9 21.4 34.9 28.1 14.8

PCRP 53.9 29.9 38.8 34.3 19.6 63.5 37.5 40.0 38.7 24.8 41.7 24.9 30.5 27.7 14.0 45.1 23.3 30.5 26.9 18.2

AS_CAL 58.5 33.3 43.7 38.5 20.0 64.6 33.0 43.9 38.4 26.2 48.6 20.0 32.8 26.4 22.2 49.2 21.9 34.2 28.1 21.1

AE-L 69.9 57.0 54.1 55.5 14.4 85.4 58.8 58.2 58.5 26.6 59.1 42.4 46.2 44.3 14.8 62.4 40.7 48.8 44.7 17.7

CrosSCLR 77.8 60.1 58.8 59.4 18.4 83.4 66.9 68.8 67.8 15.6 67.9 45.9 50.1 48.0 19.9 66.7 52.8 54.2 53.5 13.2

ISC 76.3 60.3 62.9 61.6 14.7 85.2 67.2 70.1 68.6 16.6 67.1 50.7 48.1 49.4 17.7 67.9 53.0 54.7 53.8 14.1

AimCLR 74.3 62.7 63.4 63.1 11.2 79.7 69.4 73.0 71.2 8.5 68.2 51.2 52.9 52.1 16.1 68.8 54.1 56.0 55.1 13.7

SKELTER

(Pure)

69.2 63.8 65.2 64.5 4.7 78.5 70.1 76.1 73.1 5.4 52.9 54.1 54.6 54.3 0.0 56.0 55.3 57.7 56.5 0.0

SKELTER (w/

RotHeads)

69.2 66.2 61.1 63.6 5.6 78.5 75.2 73.4 74.3 4.2 52.9 56.6 53.8 55.2 0.0 56.0 58.8 56.1 57.4 0.0

SKELTER (w/

Lcontr)

69.2 62.0 68.7 65.3 3.9 78.5 69.8 78.0 73.9 2.8 52.9 53.0 59.0 56.0 0.0 56.0 54.9 61.0 57.9 0.0

SKELTER (w/

RotHeads +

Lcontr)

69.2 62.7 64.1 63.4 5.8 78.5 68.2 75.9 72.1 6.4 52.9 53.8 54.0 53.9 0.0 56.0 55.2 56.9 56.1 0.0

CLN stands for clean data, i.e., usage of original data as supplied by the datasets. The results of SKELTER are given in three settings: (a) pure SKELTER, (b) SKELTER with the rotation head (RotHeads), (c) SKELTER with Lcontr and (d) SKELTER with the rotation

head (RotHeads) andLcontr . The best results of each column are given in bold while the second best result is underlined.
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FIGURE 4

Kiviat plots in terms of Accuracy (%) between the SOTA U-HAR and SKELTER when only the testing splits of NTU-60 (Shahroudy et al., 2016) and

NTU-120 (Liu et al., 2019) are altered by: ROT and RM (see Section 3.2 for definitions). Each ray line represents the accuracy results of each method

(where the center is the zero), and colored lines and areas represent the Accuracy values w.r.t. the CLN (gray), ROT (blue), and RM (orange) applied.

CLN stands for clean data, i.e., usage of original data as supplied by the datasets.

• SKELTER with the rotation invariance loss (Equation 21) and

the triplet loss Lcontr (Equation 22).

The reader can observe the same trends in the previous

section, such that when Rotation and Reversed Motion are

applied, the performance of SKELTER drops less than SOTA

methods while performing better than all SOTA in terms

of accuracy. Additionally, the proposed rotation invariance

head and the inclusion of triplet loss for temporal motion

consistency always improve the performance, achieving the best out

of all.

5. Qualitative results

Figure 5 shows the visualizations of a skeletal action sequence

“Throw” picked from the NTU-60 (Shahroudy et al., 2016) Cross-

View split, demonstrating how SKELTER reconstructs and denoise

Frontiers inComputer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1203901
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Paoletti et al. 10.3389/fcomp.2023.1203901

FIGURE 5

Original (blue), perturbed (red), and SKELTER-reconstructed (green) skeletal pose. As the data perturbation Gaussian additive noise is applied, each

column represents one particular frame of the overall sequence. Left to right: frame #25, frame #50, frame #75, frame #100.

each sample accordingly as the sequence unfolds w.r.t. its temporal

dimension. As a reference, the original unaltered skeletons are

represented in blue color, their perturbed counterpart (by applying

one of the perturbations from Section 3.2) in red color, and the

denoised skeletons obtained from our SKELTER model in green

color. In addition, we report in Supplementary material some of the

proposed perturbations, which potentially could negatively affect

our method’s performances and the state-of-the-art: starting on a

variety of perturbed data, the effectiveness of SKELTER can be seen

through the smoothed denoised skeleton reconstruction of it even in

case of heavy data perturbation.

5.1. Real-life scenario—A case study

Section 3.1 sets the foundations of the overall claim of this

paper: devise an unsupervised model, U-HAR oriented, capable

of handling data corruption of skeleton poses in any conditions

which can be found in more practical scenarios. Subsequent

sections proved the usefulness of SKELTER for this particular

task. Still, an important question remained unanswered: if the

proposed skeleton poses perturbations or alterations (described in

Section 3.2) plausibly reflect data corruption that could be found

in real-world scenarios. This section describes a case study about a

simulated scenario, comparing a perturbed dataset (i.e., perturbed

NTU-60 Shahroudy et al., 2016) and real-world 2D-skeleton poses.

The goal is to demonstrate that both data distributions can overlap,

confirming the plausibility of proposed perturbation w.r.t. real

data.

A set of 2D skeleton poses were captured from a CCTV

video stream using OpenPose (Cao et al., 2017) to achieve this.

Recordings were made in an office scenario, where the original

video stream was deleted later to maintain the privacy of people

detected. This can be seen in Figure 6, where a clean office

background is left only for visualization purposes: the left pose

represents a sample frame from the real-world poses captured,

and the right pose represents a sample frame from the perturbed

dataset. In addition, camera parameters and a reference origin point

were recorded and estimated to ensure an equal comparison for

both data distributions. As for the perturbed dataset, a world-to-

camera projection had to be performed to convert its 3D poses into

2D poses, compatible in terms of the number of joints (keeping

only a subset of 17 skeleton joints common to each other), their

order and their pixel position w.r.t. camera parameters estimated

beforehand. The reference origin point was necessary to align all

poses from both datasets. In addition, for the perturbed dataset,

to add variety and add realism, each pose was rotated along its Z-

axis before performing the camera projection to ensure a similar

behavior naturally occurring in real-life scenarios (i.e., rotations of
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FIGURE 6

Graphical comparison between perturbed and real-life sample poses. Left: 2D skeleton pose estimated using OpenPose (Cao et al., 2017), from a

sample captured from a CCTV video stream (red skeleton). Camera calibration and reference origin point estimated beforehand for the 3D-to-2D

conversion of the perturbed dataset. All 2D poses were normalized and centered w.r.t. the reference point, which is set identically to the perturbed

poses. Right: a sample from NTU-60 (Shahroudy et al., 2016) (blue skeleton) after applying the world-to-camera projection, using camera

parameters obtained earlier, making sure that both distributions of poses are compatible with each other. Axis values correspond to the pixel values

of the recorded frame (i.e., 640 × 480). In both cases, the RGB background is left for illustration purposes.

TABLE 3 Statistics between perturbed NTU-60 (Shahroudy et al., 2016)

and real-world 2D poses.

Missing joints Missing limbs MMD

(AVG %) (AVG %) (p < 0.05)

P
er
tu
rb
ed

N
T
U
-6
0

CLN 0.32 0.49 0.0095

SUB 5.89 0.01 0.0078

AR 0.21 0.30 0.0313

JR 2.11 0.57 0.0157

SHR 0.89 1.32 0.0191

GN 0.24 0.45 0.0294

LR 20.87 25.38 0.0009

JO 0.64 0.49 0.0103

Real-world 13.45 22.76 -

Values of missing joints and limbs are reported as the average percentage w.r.t. all joints of 2D

poses. MMD refers to the Maximum Mean Discrepancy (Tolstikhin et al., 2016) between the

real-world 2D poses and each distinct proposed perturbation of NTU-60 (Shahroudy et al.,

2016).

people detected). As the last step, pose normalization in unit-norm

was applied for both datasets.

Table 3 reports some statistics related to the number of missing

joints, missing limbs (i.e., a group of joints), and the Maximum

Mean Discrepancy (MMD). Missing joints and limbs refer to the

averaged percentage value of each distinct joint that is missing

(i.e., zero-valued) for the former and the missing values of groups

of joints that form one of the four limbs (i.e., arms and legs). Results

show that the Limbs Removal perturbation is the closest w.r.t. real-

world 2D poses, simulating the high occurrence of missing entire

body parts due to heavy occlusions instead of milder occlusions

like single Joints Removal. Maximum mean discrepancy (MMD)

(Tolstikhin et al., 2016) is a kernel-based statistical test used to

determine whether two given data distributions are identical. In

addition to being used as a statistical test (as an integral probability

metric), MMD can also be used as a loss or cost function in

various machine learning algorithms (as a distance, or difference,

between feature means). It is often used as a simpler discriminator

because of its easy implementation and the rich kernel-based theory

that underlies its principles. The kernel trick was used to estimate

this measure, and a lower value denotes a statistically-significative

overlap between the two data distributions. It was performed by

comparing the real-world 2D poses with each and distinct NTU-60

(Shahroudy et al., 2016) dataset perturbation proposed in Section

3.2. In all cases, its value was below the null hypothesis p <

0.05, denoting the plausibility of such proposed data perturbation

strategies, despite the semantic differences and type of motion

involved.

6. Conclusions

Robust human action recognition is a fundamental capability

in artificial intelligence systems, and it becomes rather crucial to

assess the resilience of a human action recognition system before

its implementation in practical contexts, especially in biomedical

applications where robustness and denoising capabilities are

imperative. In this paper, we have shown that data perturbations

and alterations can severely reduce the performance of existing

approaches. We first introduced several perturbations and

alterations commonly found when extracting skeletal data in

realistic environments (e.g., occlusions, geometrical distortions,

noise, etc.). Then, we presented a novel framework based on
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a transformer encoder-decoder, accepting 3D-skeletal data as

the input. We also presented additional losses to have robust

representations against rotation variances and provide consistent

temporal motion. Indeed, we showed that the currentmethods have

a relevant drop in performance while our approach is less affected

by such data perturbations and alterations. This confirms that our

approachmight be prone to better resistance to challenging realistic

operational scenarios.
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Supplementary Material for SKELTER: Unsupervised
Skeleton Action Denoising and Recognition using
Transformers

This supplementary material includes the extended tables and figures from the main paper (i.e., the
experimental analysis in section 4) when data perturbation and alteration are applied in the test set only
(section 1), or when also applied in the training set (section 2). In section 3 we illustrate examples of those
aforementioned data perturbation and alteration strategies, and in section 4, a comprehensive analysis of
the inference time and space complexity for our model, as well as alternative methods, is presented.

1 DATA PERTURBATION AND ALTERATION APPLIED ON TEST SET ONLY

We report in this section the extended tables from sections 4.1 and 4.2 of the main paper, providing the
quantitative values as also summarised in figures 2 and 3 of the same manuscript. Herein we investigate
SOTA U-HAR and SKELTER’s accuracy results and performance drop when data perturbation (table S1
and fig. S1 for NTU-60 (Shahroudy et al., 2016), and table S2 and fig. S2 for NTU-120 (Liu et al., 2019))
and alteration (table S3 and fig. S3) are applied only on the test set, where the SOTA models are pre-trained
using the original and unaltered data.

Performance Accuracy (ACC %) – Perturbations on Test set only
NTU-60 (Shahroudy et al., 2016) C-Subject

CLN SUB AR JR SHR GN LR JO AVG Drop ↓
ACC (%) (%)

LongTGAN (Zheng et al., 2018) 52.1 4.9 12.9 32.3 10.7 32.7 30.9 29.1 23.0 29.1
MS2L (Lin et al., 2020) 52.6 16.6 15.2 21.2 15.7 19.8 20.7 34.0 23.9 28.7
P&C FS (Su et al., 2020) 50.6 5.9 18.1 37.9 14.4 39.2 35.9 34.9 27.9 22.7
P&C FW (Su et al., 2020) 50.7 18.3 14.2 41.7 13.2 42.4 35.2 35.2 29.9 20.8
PCRP (Xu et al., 2021) 53.9 6.2 12.2 39.6 15.8 40.2 32.7 42.8 28.7 25.2
AS CAL (Rao et al., 2021) 58.5 39.7 36.8 46.1 37.9 46.5 41.3 38.9 40.5 18.0
AE-L (Paoletti et al., 2021) 69.9 30.3 31.6 65.4 23.0 66.7 59.7 50.1 48.7 21.2
CrosSCLR (Li et al., 2021) 77.8 51.2 40.1 50.5 40.4 22.4 49.4 57.4 47.8 30.0
ISC (Thoker et al., 2021) 76.3 54.2 50.1 63.8 50.8 63.0 56.9 62.1 58.2 18.1
AimCLR (Guo et al., 2022) 74.3 55.7 50.0 66.3 58.2 65.0 60.1 63.3 60.5 13.8
SKELTER 69.2 57.2 60.0 69.0 63.7 67.9 63.9 68.9 64.4 4.8

NTU-60 (Shahroudy et al., 2016) C-View

CLN SUB AR JR SHR GN LR JO AVG Drop ↓
ACC (%) (%)

LongTGAN (Zheng et al., 2018) 56.4 8.7 14.6 38.3 11.2 39.2 19.6 12.0 21.8 34.6
MS2L (Lin et al., 2020) 46.4 10.1 15.9 11.0 14.4 22.2 12.2 30.7 20.5 25.9
P&C FS (Su et al., 2020) 76.3 8.5 23.5 60.8 19.7 63.1 50.7 29.5 38.9 37.4
P&C FW (Su et al., 2020) 76.1 5.9 15.8 59.1 12.5 61.2 39.2 29.1 34.4 41.7
PCRP (Xu et al., 2021) 63.5 15.3 14.1 45.5 17.4 46.8 40.7 32.2 32.2 31.3
AS CAL (Rao et al., 2021) 64.6 37.7 33.9 46.7 34.7 46.1 35.4 40.2 39.1 25.5
AE-L (Paoletti et al., 2021) 85.4 11.4 35.4 76.4 24.7 75.5 66.0 58.2 51.6 33.8
CrosSCLR (Li et al., 2021) 83.4 58.0 44.6 56.5 53.0 28.6 52.7 57.4 54.1 29.3
ISC (Thoker et al., 2021) 85.2 60.1 49.2 74.0 62.4 72.1 68.8 70.1 66.0 19.2
AimCLR (Guo et al., 2022) 79.7 60.9 54.9 76.5 65.8 73.8 70.4 74.1 68.8 10.2
SKELTER 78.5 62.1 66.4 77.5 70.5 76.8 71.9 77.5 71.8 6.7

Table S1. Performance comparisons in terms of accuracy (%) between the SOTA U-HAR and SKELTER when only the testing splits of NTU-60 (Shahroudy
et al., 2016) are perturbed by: SUB, AR, JR, SHR, GN, LR and JO (see section 3.2 of the main paper for definitions). The average (AVG) accuracy and the
Drop, ↓ w.r.t. clean data (CLN), are given (the lower, the better). CLN stands for clean data, i.e., usage of original data as supplied by the datasets. The best
results of each column are given in bold.
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Figure S1. Performance drop ↓ % (related to the decrease of accuracy points) of SOTA U-HAR and
SKELTER when only the testing splits of NTU-60 (Shahroudy et al., 2016) are perturbed by: SUB, AR,
JR, SHR, GN, LR and JO (see section 3.2 of the main paper for definitions). The lowest bars represent the
best results.

Performance Accuracy (ACC %) – Perturbations on Test set only
NTU-120 (Liu et al., 2019) C-Subject

CLN SUB AR JR SHR GN LR JO AVG Drop ↓
ACC (%) (%)

LongTGAN (Zheng et al., 2018) 35.6 4.8 7.3 26.7 5.2 26.7 20.8 18.8 17.7 17.9
MS2L (Lin et al., 2020) 24.3 8.5 10.2 7.7 8.4 9.4 9.1 12.7 10.5 13.8
P&C FS (Su et al., 2020) 40.5 2.1 6.0 29.9 6.5 30.2 28.8 24.5 19.8 20.7
P&C FW (Su et al., 2020) 40.3 14.3 9.4 30.4 7.6 31.5 28.3 24.2 21,5 18.8
PCRP (Xu et al., 2021) 41.7 3.7 6.5 27.8 8.5 28.2 22.4 22.8 19.5 22.2
AS CAL (Rao et al., 2021) 48.6 27.6 23.9 34.1 25.0 34.7 26.1 30.1 28.3 20.3
AE L (Paoletti et al., 2021) 59.1 7.6 19.3 47.3 11.7 51.3 40.9 47.2 34.9 24.2
CrosSCLR (Li et al., 2021) 67.9 40.7 26.4 40.8 35.9 13.5 39.2 47.0 37.7 30.2
ISC (Thoker et al., 2021) 67.1 44.0 37.2 50.8 44.4 52.8 49.3 50.3 47.5 19.6
AimCLR (Guo et al., 2022) 68.2 44.9 42.0 53.2 46.9 54.9 50.1 55.9 50.2 18.0
SKELTER 52.9 46.5 48.7 58.2 51.7 59.1 53.9 58.9 53.9 0.0

NTU-120 (Liu et al., 2019) C-Setup

CLN SUB AR JR SHR GN LR JO AVG Drop ↓
ACC (%) (%)

LongTGAN (Zheng et al., 2018) 39.7 3.9 8.7 27.2 6.4 28.1 17.4 12.6 16.5 23.2
MS2L (Lin et al., 2020) 23.8 8.3 10.0 8.4 9.5 8.4 9.9 8.3 10.3 13.5
P&C FS (Su et al., 2020) 42.4 12.7 9.7 25.1 7.3 25.1 20.8 22.0 18.4 24.0
P&C FW (Su et al., 2020) 42.9 2.1 4.7 32.6 6.9 33.0 23.0 22.1 20.1 22.8
PCRP (Xu et al., 2021) 45.1 13.5 8.7 30.7 9.7 31.2 27.1 20.7 21.7 23.4
AS CAL (Rao et al., 2021) 49.2 26.5 22.6 35.7 23.5 36.2 32.9 35.8 29.9 19.3
AE-L (Paoletti et al., 2021) 62.4 7.7 22.6 48.1 12.9 42.8 40.3 32.6 32.9 29.5
CrosSCLR (Li et al., 2021) 66.7 41.7 29.0 42.1 36.1 18.0 43.0 50.1 40.8 25.9
ISC (Thoker et al., 2021) 67.9 40.5 34.8 50.8 38.4 43.9 48.1 53.2 46.4 21.5
AimCLR (Guo et al., 2022) 68.8 41.1 37.0 57.1 41.1 44.2 50.9 54.4 48.4 20.4
SKELTER 56.0 42.9 40.6 60.9 44.1 45.7 56.5 60.5 50.2 5.8

Table S2. Performance comparisons in terms of accuracy (%) between the SOTA U-HAR and SKELTER when only the testing splits of NTU-120 (Liu et al.,
2019) are perturbed by: SUB, AR, JR, SHR, GN, LR and JO (see section 3.2 of the main paper for definitions). The average (AVG) accuracy and the Drop, ↓
w.r.t. clean data (CLN), are given (the lower, the better). CLN stands for clean data, i.e., usage of original data as supplied by the datasets. The best results of
each column are given in bold.
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Figure S2. Performance drop ↓ % (related to the decrease of accuracy points) of SOTA U-HAR and
SKELTER when only the testing splits of NTU-120 (Liu et al., 2019) are perturbed by: SUB, AR, JR,
SHR, GN, LR and JO (see section 3.2 of the main paper for definitions). The lowest bars represent the
best results.

Performance Accuracy (ACC %) – Alterations on Test set only
NTU-60 (Shahroudy et al., 2016) C-Subject NTU-60 (Shahroudy et al., 2016) C-View

CLN ROT RM AVG Drop ↓ CLN ROT RM AVG Drop ↓
ACC (%) (%) ACC (%) (%)

LongTGAN (Zheng et al., 2018) 52.1 23.4 30.1 26.7 25.4 56.4 32.0 20.4 26.2 30.2
MS2L (Lin et al., 2020) 52.6 38.2 33.4 35.8 16.8 46.4 33.8 34.2 34.0 12.4
P&C FS (Su et al., 2020) 50.6 31.0 33.8 32.4 18.2 76.3 46.2 47.8 47.0 29.3
P&C FW (Su et al., 2020) 50.7 32.6 36.2 34.4 16.3 76.1 37.7 48.7 43.2 32.9
PCRP (Xu et al., 2021) 53.9 29.9 38.8 34.3 19.6 63.5 37.5 40.0 38.7 24.8
AS CAL (Rao et al., 2021) 58.5 33.3 43.7 38.5 20.0 64.6 33.0 43.9 38.4 26.2
AE-L (Paoletti et al., 2021) 69.9 57.0 54.1 55.5 14.4 85.4 58.8 58.2 58.5 26.6
CrosSCLR (Li et al., 2021) 77.8 60.1 58.8 59.4 18.4 83.4 66.9 68.8 67.8 15.6
ISC (Thoker et al., 2021) 76.3 60.3 62.9 61.6 14.7 85.2 67.2 70.1 68.6 16.6
AimCLR (Guo et al., 2022) 74.3 62.7 63.4 63.1 11.2 79.7 69.4 73.0 71.2 8.5
SKELTER (Pure) 69.2 63.8 65.2 64.5 4.7 78.5 70.1 76.1 73.1 5.4
SKELTER (w/ RotHeads) 69.2 66.2 61.1 63.6 5.6 78.5 75.2 73.4 74.3 4.2
SKELTER (w/ Lcontr) 69.2 62.0 68.7 65.3 3.9 78.5 69.8 78.0 73.9 2.8
SKELTER (w/ RotHeads + Lcontr) 69.2 62.7 64.1 63.4 5.8 78.5 68.2 75.9 72.1 6.4

NTU-120 (Liu et al., 2019) C-Subject NTU-120 (Liu et al., 2019) C-Setup
LongTGAN (Zheng et al., 2018) 35.6 18.2 30.9 24.5 11.1 39.7 24.2 20.0 22.1 17.6
MS2L (Lin et al., 2020) 24.3 13.3 14.9 14.1 10.2 23.8 12.8 17.5 15.1 8.8
P&C FS (Su et al., 2020) 40.5 22.6 27.8 25.2 15.3 42.4 20.8 22.4 21.6 20.8
P&C FW (Su et al., 2020) 40.3 20.4 27.4 23.9 16.4 42.9 21.4 34.9 28.1 14.8
PCRP (Xu et al., 2021) 41.7 24.9 30.5 27.7 14.0 45.1 23.3 30.5 26.9 18.2
AS CAL (Rao et al., 2021) 48.6 20.0 32.8 26.4 22.2 49.2 21.9 34.2 28.1 21.1
AE L (Paoletti et al., 2021) 59.1 42.4 46.2 44.3 14.8 62.4 40.7 48.8 44.7 17.7
CrosSCLR (Li et al., 2021) 67.9 45.9 50.1 48.0 19.9 66.7 52.8 54.2 53.5 13.2
ISC (Thoker et al., 2021) 67.1 50.7 48.1 49.4 17.7 67.9 53.0 54.7 53.8 14.1
AimCLR (Guo et al., 2022) 68.2 51.2 52.9 52.1 16.1 68.8 54.1 56.0 55.1 13.7
SKELTER (Pure) 52.9 54.1 54.6 54.3 0.0 56.0 55.3 57.7 56.5 0.0
SKELTER (w/ RotHeads) 52.9 56.6 53.8 55.2 0.0 56.0 58.8 56.1 57.4 0.0
SKELTER (w/ Lcontr) 52.9 53.0 59.0 56.0 0.0 56.0 54.9 61.0 57.9 0.0
SKELTER (w/ RotHeads + Lcontr) 52.9 53.8 54.0 53.9 0.0 56.0 55.2 56.9 56.1 0.0

Table S3. Performance comparisons in terms of accuracy (%) between the SOTA U-HAR and SKELTER when only the testing splits of NTU-60 (Shahroudy
et al., 2016) and NTU-120 (Liu et al., 2019) are altered by: ROT and RM (see section 3.2 of the main paper for definitions) in terms of the average (AVG)
accuracy and the Drop ↓ w.r.t. clean data (CLN) (the lower, the better). CLN stands for clean data, i.e., usage of original data as supplied by the datasets. The
results of SKELTER are given in three settings: (a) pure SKELTER, (b) SKELTER with the rotation head (RotHeads), (c) SKELTER with Lcontr and (d)
SKELTER with the rotation head (RotHeads) and Lcontr. The best results of each column are given in bold while the second best result is underlined.
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Figure S3. Kiviat plots in terms of Accuracy (%) between the SOTA U-HAR and SKELTER when only
the testing splits of NTU-60 (Shahroudy et al., 2016) and NTU-120 (Liu et al., 2019) are altered by: ROT
and RM (see section 3.2 of the main paper for definitions). Each ray line represents the accuracy results
of each method (where the centre is the zero), and coloured lines and areas represent the Accuracy values
w.r.t. the CLN (grey), ROT (blue) and RM (orange) applied. CLN stands for clean data, i.e., usage of
original data as supplied by the datasets.
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2 DATA PERTURBATION AND ALTERATION APPLIED ON TRAIN AND TEST SET
ONLY

We include in this section all extended tables and figures of the experimental section regarding the
investigation of the accuracy results and performance drop of SOTA U-HAR and SKELTER when data
perturbation (table S4 and fig. S4 for NTU-60 (Shahroudy et al., 2016), and table S5 and fig. S5 for
NTU-120 (Liu et al., 2019)) and alteration (table S6 and fig. S6) are applied on both the train and test set,
de-facto re-training from scratch all SOTA models providing perturbed data.

Performance Accuracy (ACC %) – Perturbations on Train & Test set
NTU-60 (Shahroudy et al., 2016) C-Subject

CLN SUB AR JR SHR GN LR JO AVG Drop ↓
ACC (%) (%)

LongTGAN (Zheng et al., 2018) 52.1 11.6 32.8 34.7 20.1 35.3 30.9 32.2 28.5 23.6
MS2L (Lin et al., 2020) 52.6 32.8 25.4 36.0 22.1 40.0 33.1 42.7 34.3 18.3
P&C FS (Su et al., 2020) 50.6 18.9 28.4 45.2 24.9 43.0 29.2 38.8 33.1 17.5
P&C FW (Su et al., 2020) 50.7 24.5 27.0 48.3 21.7 44.8 32.7 38.6 34.5 16.2
PCRP (Xu et al., 2021) 53.9 15.2 18.7 46.7 22.8 51.9 40.7 51.1 35.4 18.5
AS CAL (Rao et al., 2021) 58.5 41.9 33.9 45.3 34.4 46.5 40.1 50.0 41.6 16.9
AE-L (Paoletti et al., 2021) 69.9 52.8 58.8 66.2 59.1 66.2 63.4 57.2 59.8 10.1
CrosSCLR (Li et al., 2021) 77.8 54.3 45.2 58.8 45.0 32.9 57.2 63.4 53.1 24.7
ISC (Thoker et al., 2021) 76.3 55.8 52.2 65.2 52.2 65.8 59.0 65.6 60.1 16.2
AimCLR (Guo et al., 2022) 74.3 56.4 48.9 68.0 60.9 67.2 62.7 66.8 62.1 12.2
SKELTER 69.2 57.2 60.0 69.0 63.7 67.9 63.9 68.9 64.4 4.8

NTU-60 (Shahroudy et al., 2016) C-View

CLN SUB AR JR SHR GN LR JO AVG Drop ↓
ACC (%) (%)

LongTGAN (Zheng et al., 2018) 56.4 20.1 40.7 36.9 28.4 36.2 41.1 29.2 32.3 21.5
MS2L (Lin et al., 2020) 46.4 30.7 41.6 40.8 24.2 29.9 32.8 42.1 36.1 18.2
P&C FS (Su et al., 2020) 76.3 15.4 27.1 63.4 24.7 65.6 55.2 39.7 43.2 15.7
P&C FW (Su et al., 2020) 76.1 14.2 26.8 61.7 16.2 64.1 58.3 39.9 41.3 14.9
PCRP (Xu et al., 2021) 63.5 21.4 22.2 54.2 24.0 54.3 50.8 44.2 39.3 15.9
AS CAL (Rao et al., 2021) 64.6 41.5 33.2 45.0 33.8 46.2 44.2 49.5 41.6 17.0
AE-L (Paoletti et al., 2021) 85.4 57.4 44.8 74.9 55.1 75.8 69.9 68.4 63.7 9.2
CrosSCLR (Li et al., 2021) 83.4 60.9 48.1 75.9 60.7 49.1 70.0 70.2 63.3 24.8
ISC (Thoker et al., 2021) 85.2 60.8 50.9 76.1 63.8 74.4 70.1 72.8 67.7 15.7
AimCLR (Guo et al., 2022) 79.7 61.7 57.2 77.0 68.0 76.0 71.2 75.9 70.1 11.5
SKELTER 78.5 62.1 66.4 77.5 70.5 76.8 71.9 77.5 71.8 6.7

Table S4. Performance comparisons in terms of accuracy (%) between the SOTA U-HAR and SKELTER when both training and testing splits of NTU-60
(Shahroudy et al., 2016) are perturbed by: SUB, AR, JR, SHR, GN, LR and JO (see section 3.2 of the main paper for definitions). The average (AVG) accuracy
and the Drop, ↓ w.r.t. clean data (CLN), are given (the lower, the better). CLN stands for clean data, i.e., usage of original data as supplied by the datasets. The
best results of each column are given in bold.
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Figure S4. Performance drop ↓ % (related to the decrease of accuracy points) of SOTA U-HAR and
SKELTER when both training and testing splits of NTU-60 (Shahroudy et al., 2016) are perturbed by:
SUB, AR, JR, SHR, GN, LR and JO (see section 3.2 of the main paper for definitions). The lowest bars
represent the best results.

Performance Accuracy (ACC %) – Perturbations on Train & Test set
NTU-120 (Liu et al., 2019) C-Subject

CLN SUB AR JR SHR GN LR JO AVG Drop ↓
ACC (%) (%)

LongTGAN (Zheng et al., 2018) 35.6 2.5 28.5 33.8 18.7 32.5 32.9 29.9 25.8 9.8
MS2L (Lin et al., 2020) 24.3 10.5 20.4 17.6 20.1 16.2 22.5 19.2 18.0 6.3
P&C FS (Su et al., 2020) 40.5 12.6 22.7 32.7 12.8 35.4 30.8 33.6 26.3 14.2
P&C FW (Su et al., 2020) 40.3 18.3 26.0 36.7 13.8 33.9 32.4 34.0 27.7 12.6
PCRP (Xu et al., 2021) 41.7 10.2 13.4 35.1 12.4 33.7 31.7 33.3 25.4 16.3
AS CAL (Rao et al., 2021) 48.6 32.5 21.8 32.4 23.3 21.0 47.2 42.2 31.0 17.6
AE L(Paoletti et al., 2021) 59.1 44.0 32.7 51.9 36.3 53.4 49.9 50.6 45.9 13.2
CrosSCLR (Li et al., 2021) 67.9 44.2 35.9 50.1 47.1 36.9 52.4 53.3 46.9 21.0
ISC (Thoker et al., 2021) 67.1 45.1 38.6 51.8 46.5 55.5 50.1 52.9 49.4 17.7
AimCLR (Guo et al., 2022) 68.2 45.9 44.3 54.2 49.9 56.1 52.2 57.4 51.9 16.3
SKELTER 52.9 46.5 48.7 58.2 51.7 59.1 53.9 58.9 53.9 0.0

NTU-120 (Liu et al., 2019) C-Setup

CLN SUB AR JR SHR GN LR JO AVG Drop ↓
ACC (%) (%)

LongTGAN (Zheng et al., 2018) 39.7 5.7 27.8 35.5 10.8 33.4 29.9 21.9 23.8 15.9
MS2L (Lin et al., 2020) 23.8 17.6 10.1 10.7 20.4 20.0 10.4 12.4 21.9 1.9
P&C FS (Su et al., 2020) 42.4 25.9 23.8 36.9 20.0 31.2 30.7 30.7 27.5 14.9
P&C FW (Su et al., 2020) 42.9 12.4 20.5 40.1 21.5 36.0 32.7 30.8 28.4 14.5
PCRP (Xu et al., 2021) 45.1 20.4 18.0 44.0 15.9 38.3 25.9 37.4 28.8 16.3
AS CAL (Rao et al., 2021) 49.2 30.7 24.4 33.6 25.0 25.6 30.0 49.0 31.0 18.2
AE-L (Paoletti et al., 2021) 62.4 40.0 33.8 47.3 37.2 43.9 42.1 48.2 42.7 19.7
CrosSCLR (Li et al., 2021) 66.7 42.4 34.7 45.9 39.9 39.7 43.2 54.4 45.6 21.1
ISC (Thoker et al., 2021) 67.9 42.0 36.3 52.2 40.0 44.0 50.8 55.2 47.9 20.0
AimCLR (Guo et al., 2022) 68.8 42.6 38.8 59.4 43.1 44.9 53.9 58.7 50.3 18.5
SKELTER 56.0 42.9 40.6 60.9 44.1 45.7 56.5 60.5 50.2 5.8

Table S5. Performance comparisons in terms of accuracy (%) between the SOTA U-HAR and SKELTER when both training and testing splits of NTU-120
(Liu et al., 2019) are perturbed by: SUB, AR, JR, SHR, GN, LR and JO (see section 3.2 of the main paper for definitions). The average (AVG) accuracy and
the Drop, ↓ w.r.t. clean data (CLN), are given (the lower, the better). CLN stands for clean data, i.e., usage of original data as supplied by the datasets. The best
results of each column are given in bold.
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Figure S5. Performance drop ↓ % (related to the decrease of accuracy points) of SOTA U-HAR and
SKELTER when both training and testing splits of NTU-120 (Liu et al., 2019) are perturbed by: SUB,
AR, JR, SHR, GN, LR and JO (see section 3.2 of the main paper for definitions). The lowest bars represent
the best results.

Performance Accuracy (ACC %) – Alterations on Train & Test set
NTU-60 (Shahroudy et al., 2016) C-Subject NTU-60 (Shahroudy et al., 2016) C-View

CLN ROT RM AVG Drop ↓ CLN ROT RM AVG Drop ↓
ACC (%) (%) ACC (%) (%)

LongTGAN (Zheng et al., 2018) 52.1 24.9 33.6 29.2 22.9 56.4 34.0 24.3 29.1 Z 27.3
MS2L (Lin et al., 2020) 52.6 41.0 35.2 38.1 14.5 46.4 35.9 37.0 36.4 10.0
P&C FS (Su et al., 2020) 50.6 34.1 35.7 34.9 15.7 76.3 48.5 49.5 49.0 27.3
P&C FW (Su et al., 2020) 50.7 35.0 38.1 36.5 14.2 76.1 40.2 50.0 45.1 31.0
PCRP (Xu et al., 2021) 53.9 31.7 40.1 35.9 18.0 63.5 40.1 42.3 41.2 22.3
AS CAL (Rao et al., 2021) 58.5 35.5 46.5 41.0 17.5 64.6 35.2 46.2 40.7 23.9
AE-L (Paoletti et al., 2021) 69.9 59.4 55.2 57.3 12.6 85.4 62.9 60.4 61.6 23.8
CrosSCLR (Li et al., 2021) 77.8 61.4 59.9 60.6 17.2 83.4 68.2 70.3 69.2 14.2
ISC (Thoker et al., 2021) 76.3 61.8 63.2 62.5 13.8 85.2 68.4 72.8 70.6 14.6
AimCLR (Guo et al., 2022) 74.3 63.2 64.9 64.1 10.2 79.7 69.9 74.2 72.1 7.6
SKELTER (Pure) 69.2 63.8 65.2 64.5 4.7 78.5 70.1 76.1 73.1 5.4
SKELTER (w/ RotHeads) 69.2 66.2 61.1 63.6 5.6 78.5 75.2 73.4 74.3 4.2
SKELTER (w/ Lcontr) 69.2 62.0 68.7 65.3 3.9 78.5 69.8 78.0 73.9 2.8
SKELTER (w/ RotHeads + Lcontr) 69.2 62.7 64.1 63.4 5.8 78.5 68.2 75.9 72.1 6.4

NTU-120 (Liu et al., 2019) C-Subject NTU-120 (Liu et al., 2019) C-Setup
LongTGAN (Zheng et al., 2018) 35.6 20.2 33.0 26.6 9.0 39.7 26.8 22.4 24.6 15.1
MS2L (Lin et al., 2020) 24.3 16.2 19.7 17.9 6.4 23.8 15.4 19.9 17.6 6.2
P&C FS (Su et al., 2020) 40.5 25.0 30.7 27.8 12.7 42.4 23.8 24.9 24.3 18.1
P&C FW (Su et al., 2020) 40.3 24.2 30.4 27.3 13.0 42.9 24.7 37.0 30.8 12.1
PCRP (Xu et al., 2021) 41.7 26.8 32.0 29.4 12.3 45.1 25.8 33.5 29.6 15.5
AS CAL (Rao et al., 2021) 48.6 23.9 34.8 29.3 19.3 49.2 24.5 36.2 30.3 18.9
AE L(Paoletti et al., 2021) 59.1 46.7 48.0 47.3 11.8 62.4 42.1 50.1 46.1 16.3
CrosSCLR (Li et al., 2021) 67.9 49.4 52.8 51.1 16.8 66.7 53.4 56.7 55.1 11.6
ISC (Thoker et al., 2021) 67.1 53.0 50.8 51.9 15.2 67.9 53.9 56.9 55.4 12.5
AimCLR (Guo et al., 2022) 68.2 53.9 53.1 53.5 14.7 68.8 54.2 57.2 55.7 13.1
SKELTER (Pure) 52.9 54.1 54.6 54.3 0.0 56.0 55.3 57.7 56.5 0.0
SKELTER (w/ RotHeads) 52.9 56.6 53.8 55.2 0.0 56.0 58.8 56.1 57.4 0.0
SKELTER (w/ Lcontr) 52.9 53.0 59.0 56.0 0.0 56.0 54.9 61.0 57.9 0.0
SKELTER (w/ RotHeads + Lcontr) 52.9 53.8 54.0 53.9 0.0 56.0 55.2 56.9 56.1 0.0

Table S6. Performance comparisons in terms of accuracy (%) between the SOTA U-HAR and SKELTER when both training and testing splits of NTU-60
(Shahroudy et al., 2016) and NTU-120 (Liu et al., 2019) are altered by: ROT and RM (see section 3.2 of the main paper for definitions) in terms of the average
(AVG) accuracy and the Drop ↓ w.r.t. clean data (CLN) (the lower, the better). CLN stands for clean data, i.e., usage of original data as supplied by the datasets.
The results of SKELTER are given in three settings: (a) pure SKELTER, (b) SKELTER with the rotation head (RotHeads), (c) SKELTER with Lcontr and (d)
SKELTER with the rotation head (RotHeads) and Lcontr. The best results of each column are given in bold while the second best result is underlined.
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NTU-60 (Shahroudy et al., 2016) C-Subject - Train & Test set
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P&C FW
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AE-L
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SKELTER

NTU-60 (Shahroudy et al., 2016) C-View - Train & Test set

LongTGAN

MS2L

P&C FS

P&C FW

PCRP

AS CAL

AE-L

CrosSCLR

ISC

AimCLR

SKELTER

NTU-120 (Liu et al., 2019) C-Subject - Train & Test set

LongTGAN

MS2L

P&C FS

P&C FW

PCRP

AS CAL

AE-L

CrosSCLR

ISC

AimCLR

SKELTER

NTU-120 (Liu et al., 2019) C-Setup - Train & Test set

LongTGAN

MS2L
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PCRP
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ISC
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SKELTER

Figure S6. Kiviat plots in terms of Accuracy (%) between the SOTA U-HAR and SKELTER when both
training and testing splits of NTU-60 (Shahroudy et al., 2016) and NTU-120 (Liu et al., 2019) are altered
by: ROT and RM (see section 3.2 of the main paper for definitions). Each ray line represents the accuracy
results of each method (where the centre is the zero), and coloured lines and areas represent the Accuracy
values w.r.t. the CLN (grey), ROT (blue) and RM (orange) applied. CLN stands for clean data, i.e., usage
of original data as supplied by the datasets.
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3 QUALITATIVE RESULTS

In this section we report some of the proposed perturbations in fig. S7, which potentially could negatively
affect our method’s performances and the state-of-the-art: starting on a variety of perturbed data, the
effectiveness of SKELTER can be seen through the smoothed denoised skeleton reconstruction of it
even in case of heavy data perturbation.

Clean

i) ’Rotation’ ii) ’Shear’ iii) ’Axis Removal’ iv) ’Joint Removal’ v) ’Limbs Removal’

Perturbed

Reconstructed

Figure S7. SKELTER reconstruction. Starting from the clean ”Throw” skeleton action sequences picked
from the NTU-60 (Shahroudy et al., 2016) Cross-View split (first column, blue), a perturbation is applied
(middle column, red) and gives the obtained sequence as the input, which is then reconstructed (last
column, green). Each row is a sample of different perturbations. From first to the last row: ’i)’ rotated
skeleton (along X , Y , and Z axes), ’ii)’ sheared skeleton, ’iii)’ 2D skeleton (all coordinated of X axis set
to zero), ’iv)’ joint-corrupted skeleton (random joints coordinates set to zero), ’v)’ no-limb skeleton (the
joints set coordinates of the left arm set to zero).

4 TIME AND SPACE COMPLEXITY

In table S7, we report the time complexity of our proposed SKELTER and the most prominent
unsupervised competitors in terms of the inference time of one epoch using all testing splits of both
NTU-60 (Shahroudy et al., 2016) and NTU-120 Liu et al. (2019) datasets. All analyses were performed
with the machine equipped with an Intel(R) Core(TM) i7-9700K CPU @ 3.60GHz, 64GB of RAM, and
a single NVIDIA RTX2080 GPU. In the same table, we also declare the space complexity of our model
and our counterparts in terms of the number of parameters. All experiments were performed using the
clean version of the datasets, without any perturbation or alteration. Our proposed method, SKELTER,
in addition of being more robust towards data perturbation and alteration, also shows comparable results
in terms of time complexity (per-epoch inference time) and space complexity (model’s the number of
parameters) w.r.t. to some other unsupervised architectures, proving the effectiveness of using transformer
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layers instead of relying on contrastive-based approaches, GANs, gated networks, or recurrent networks,
to name a few.

Space Complexity Time Complexity

# of Parameters NTU-60 NTU-120
xsub xview xsub xsetup

LongTGAN (Zheng et al., 2018) 10.2M 15.84 s 18.85 s 64.56 s 80.32 s
MS2L (Lin et al., 2020) 11.2M 24.66 s 29.81 s 64.63 s 69.59 s
P&C FS (Su et al., 2020) 57.7M 35.06 s 43.06 s 104.57 s 123.58 s
P&C FW (Su et al., 2020) 57.7M 35.35 s 40.58 s 104.10 s 123.74 s
PCRP (Xu et al., 2021) 19.4M 14.30 s 16.44 s 41.97 s 48.97 s
AS CAL (Rao et al., 2021) 340K 9.42 s 10.37 s 28.45 s 33.54 s
AE-L (Paoletti et al., 2021) 38.5M 3.41 s 3.91 s 9.91 s 11.91 s
CrosSCLR (Li et al., 2021) 3.6M 16.96 s 19.36 s 51.53 s 58.99 s
ISC (Thoker et al., 2021) 14.0M 10.77 s 13.71 s 35.77 s 39.24 s
AimCLR (Guo et al., 2022) 1.8M 12.90 s 15.98 s 34.20 s 36.81 s

SKELTER 3.9M 8.22 s 10.08 s 29.80 s 30.98 s
Table S7. The space complexity, measured in terms of the number of parameters, and the time complexity, measured in terms of the inference time of
one epoch in seconds, of our proposed SKELTER method and its unsupervised counterparts. All experiments were conducted on a system equipped with an
Intel(R) Core(TM) i7-9700K CPU @ 3.60GHz, 64GB RAM, and a single NVIDIA RTX2080 GPU. The lower space and time complexity, the better (the best
out of all shown in bold).
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