
Accepted for publication on MNRAS, 1–26 (2017) Preprint 16 March 2018

Well balanced Arbitrary-Lagrangian-Eulerian finite volume
schemes on moving nonconforming meshes for the Euler
equations of gasdynamics with gravity

Elena Gaburro,1 Manuel J. Castro,2 Michael Dumbser,1?
1Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano, 77 - 38123 Trento, Italy.
2Department of Mathematical Analysis, Statistics and Applied Mathematics, University of Málaga, Campus de Teatinos, 29071 Málaga, Spain.

16 March 2018

ABSTRACT
In this work we present a novel second order accurate well balanced Arbitrary-
Lagrangian-Eulerian (ALE) finite volume scheme on moving nonconforming meshes for
the Euler equations of compressible gasdynamics with gravity in cylindrical coordinates.
The main feature of the proposed algorithm is the capability of preserving many of
the physical properties of the system exactly also on the discrete level: besides being
conservative for mass, momentum and total energy, also any known steady equilibrium
between pressure gradient, centrifugal force and gravity force can be exactly maintained
up to machine precision. Perturbations around such equilibrium solutions are resolved
with high accuracy and with minimal dissipation on moving contact discontinuities
even for very long computational times. This is achieved by the novel combination of
well balanced path-conservative finite volume schemes, that are expressly designed to
deal with source terms written via nonconservative products, with ALE schemes on
moving grids, which exhibit only very little numerical dissipation on moving contact
waves. In particular, we have formulated a new HLL-type and a novel Osher-type flux
that are both able to guarantee the well balancing in a gas cloud rotating around a
central object. Moreover, to maintain a high level of quality of the moving mesh, we
have adopted a nonconforming treatment of the sliding interfaces that appear due to
the differential rotation. A large set of numerical tests has been carried out in order to
check the accuracy of the method close and far away from the equilibrium, both, in
one and two space dimensions.

Key words: methods: numerical, hydrodynamics, instabilities, convection, accretion
discs

1 INTRODUCTION

The main goal of this article is to develop a new family of
numerical methods that allow to study problems in computa-
tional astrophysics connected with the rotation of gas clouds
around a central object for very long computational times
and with high accuracy.

The physical situation we want to study is described by
the Euler equations of compressible gas dynamics with an
externally given gravitational field generated by a central
object. A very important family of stationary solutions of
the governing equations is characterized by the equilibrium
between pressure gradient, centrifugal force and gravity force.
We suppose these equilibrium solutions to be known and

? E-mail: michael.dumbser@unitn.it

want to design numerical methods that are able to preserve
a rather wide class of such equilibria exactly also on the
discrete level (i.e. up to machine precision), so that small
physical perturbations around the equilibrium solution can
be solved with high accuracy and are not hidden by spurious
numerical oscillations. However, at the same time our new
numerical schemes are able to deal with situations far from
the equilibrium, hence they do not fall into the class of
perturbation methods.

To preserve the equilibria in a system of equations with
source terms, following Parés (2006); Castro et al. (2007);
Müller et al. (2013), we decide to rewrite some of them in
terms of non-conservative products obtaining a system that
can be cast in the following general form

∂Q
∂t
+ ∇ · F(Q) + B(Q) · ∇Q = S(Q), x ∈ Ω(t) ⊂ R2. (1)

© 2017 The Authors
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In this system, x is the spatial position vector, t repre-
sents the time, Ω(t) is the computational domain at time
t, Q = (q1, q2, . . . , qν) is the vector of the conserved vari-
ables defined in the space of the admissible states ΩQ ⊂ Rν ,
F(Q) = ( f(Q), g(Q) ) is the non linear flux tensor, B(Q) =
(B1(Q),B2(Q) ) is a matrix collecting the non-conservative
terms, and S(Q) represents a non linear algebraic source
term. The system (1) can also be written in the following
quasi-linear form

∂Q
∂t
+ A(Q) · ∇Q = S(Q), x ∈ Ω(t) ⊂ R2, (2)

with the system matrix A(Q) = ∂F/∂Q + B(Q). The system
is hyperbolic if for any normal direction n , 0 the matrix
A(Q) · n has ν real eigenvalues and a full set of ν linearly
independent eigenvectors for all Q ∈ ΩQ. PDE systems like
(1) include as particular cases systems of conservation laws
(B = 0, S = 0), systems of conservation laws with source terms
or balance laws (B = 0), and even non-conservative hyperbolic
systems (B , 0). They appear in many fluid flow models in
different contexts: shallow water models, multiphase flow
models, compressible gas dynamics, etc.

The main difficulty of systems written in this form, both
from the theoretical and the numerical points of view, comes
from the presence of non-conservative products that do not
make sense in the standard framework of distributions when
the solution Q develops discontinuities. Another difficulty is
related to the numerical computation of stationary solutions:
standard methods that solve correctly systems of conservation
laws can fail in this case when approaching equilibria or when
simulating phenomena close to equilibrium solutions.

From the theoretical point of view, in this paper we
assume the definition of non-conservative products as Borel
measures given in Dal Maso, LeFloch & Murat (1995). This
definition, which depends on the choice of a family of paths
in the phase space ΩQ, allows one to give a rigorous definition
of weak solutions of (1).

We consider here the discretization of system (1) by
means of numerical schemes which are path-conservative in
the sense introduced in Parés (2006). The concept of a path-
conservative method, which is also based on a prescribed fam-
ily of paths, provides a generalization of conservative schemes
introduced by Lax for systems of conservation laws. More-
over, the idea of constructing numerical schemes that preserve
some equilibria, which are called well balanced schemes, has
been studied by many authors. The design of numerical meth-
ods with good properties is a very active front of research: see,
for instance, Bermudez & Vázquez-Cendón (1994); Audusse
et al. (2004); Bouchut (2004); Castro et al. (2001); Rebollo
et al. (2003, 2004); Castro Dı́az et al. (2007); Gosse (2000,
2001); Greenberg & Leroux (1996); Greenberg et al. (1997);
LeVeque (1998); Parés & Castro (2004); Perthame & Simeoni
(2001, 2003); Tang et al. (2004); Toro (2001).

In particular, in the context of the Euler equations with
gravity, in which the pressure forces are balanced by the
gravitational forces, there is a growing interest in the com-
munity to construct new numerical schemes that are able to
achieve this precise balancing exactly even at the discrete
level. At this point it has to be emphasized that conventional
numerical schemes are in general not able to preserve such
stationary solutions, especially on coarse meshes, although
the source term is discretized in a consistent manner, but

consistency alone is not enough to achieve good results on
coarse grids. This leads to erroneous numerical solutions es-
pecially when trying to compute small perturbations around
the steady states necessitating the need for very fine meshes.
Many recent papers have been devoted to this topic, in par-
ticular we refer to Botta et al. (2004); Käppeli & Mishra
(2014, 2016); Chandrashekar & Klingenberg (2015); Schaal
et al. (2015); Desveaux et al. (2014, 2016); Bermúdez et al.
(2016) and the references therein.

An additional problem is usually given by the numeri-
cal dissipation on moving contact discontinuities which, in
another context, is typically addressed by employing either
pure Lagrangian schemes Després & Mazeran (2005); Maire
et al. (2007); Maire & Nkonga (2009); Carré et al. (2009)
or indirect Arbitrary-Lagrangian-Eulerian (ALE) methods,
see Kucharik & Shashkov (2012); Liska et al. (2011); Berndt
et al. (2011); Ortega & Scovazzi (2011); Bochev et al. (2013).

However, all Lagrangian schemes are generally affected
by a common problem that is the severe mesh distortion or
the mesh tangling that happens in the presence of shear flows
and that may even destroy the computation. Hence, to reach
long computational times, all Lagrangian methods must be
in general combined with an algorithm to (locally) rezone the
mesh at least from time to time and to remap the solution
from the old mesh to the new mesh in a conservative manner.
Lagrangian remesh and remap ALE schemes are very popular
and some recent work on that topic can be found in the
references on indirect ALE schemes listed above. In contrast
to indirect ALE schemes (purely Lagrangian phase, remesh
and subsequent remap phase) there are the so-called direct
ALE schemes, where the local rezoning is performed before
the computation of the numerical fluxes, that is, changing
directly the chosen mesh velocity of the ALE approach, see for
example Boscheri & Dumbser (2013, 2014) for recent work
in that direction based on high order Lagrangian ADER-
WENO schemes, as well as Springel (2010) for a powerful
ALE framework on moving polygonal and polyhedral meshes.

Our ALE scheme is based directly on a space-time con-
servation formulation of the governing PDE system, hence
it fits in the framework of direct ALE schemes. Moreover,
in order to avoid the typical mesh distortion caused by the
shear flows, the sliding element interfaces are automatically
detected during the computation, and nodes along such slid-
ing edges are allowed to move in a nonconforming way by
the insertion and deletion of new nodes and new edges. This
strategy allows to maintain the quality of the moving mesh
even for long computational times. The robustness and ef-
ficiency of this approach has been tested in Gaburro et al.
(2017) for the case of sliding interfaces lying over straight
lines. In particular, this method is interesting when the mesh
slides along circumferences and cylindrical coordinates are
used, which is the case here. For further references on the
treatment of slide lines in Lagrangian schemes, the interested
reader is referred to Caramana (2009); Kucharik et al. (2013);
Clair et al. (2013, 2014); Bertoluzza et al. (2016); Gaburro
et al. (2017).

To the very best of our knowledge, this is the first
time that well balanced numerical schemes are coupled with
Arbitrary-Lagrangian-Eulerian schemes on moving noncon-
forming grids for the Euler equations with gravity.

The rest of the paper is organized as follows. First, in
Section 2 we derive, from the standard Euler equations with
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gravity written in Cartesian coordinates, the equations writ-
ten in cylindrical coordinates where new source terms appear.
Then in Section 3 we describe the details of the well balanced
method for the one dimensional case and in Section 4 we
present some 1D numerical results. Later, in Section 5 we
extend the method to two space dimensions and to moving
nonconforming meshes. Section 6 is devoted to check the
efficiency of the method with some nontrivial 2D test prob-
lems in a rotating Keplerian gas disk with variable density.
In particular, the numerical results show that the proposed
method significantly reduces the numerical dissipation on
moving contact discontinuities in comparison with a standard
non-well balanced Eulerian method on a fixed grid.

2 EULER EQUATIONS WITH GRAVITY

The Euler equations with gravity in two space dimensions
represent a strongly hyperbolic system that can be cast in
the form of a system of balance laws by taking in (1)

Q =

©«
ρ

ρux
ρuy
ρE

ª®®®®®¬
, f(Q) =

©«
ρux

ρu2
x + P

ρuxuy
ux(ρE + P)

ª®®®®®¬
, g(Q) =

©«
ρuy
ρuxuy
ρu2

y + P

uy(ρE + P)

ª®®®®®¬
,

B(Q) = 0, S(Q) =

©«

0

− cos ϕ ρ Gms

r2

− sin ϕ ρ Gms

r2

−(ux cos ϕ + uy sin ϕ )ρGms

r2

ª®®®®®®¬
.

(3)

Here ρ is the density, ux and uy are respectively the velocities

along the x and y directions, r =
√

x2 + y2, ϕ = arctan(y/x),
E is the specific total energy (excluding the gravitational
energy), ms is the mass of the central object, G is the gravi-
tational constant and the pressure P is given by

P = (γ − 1)
(
ρE − 1

2
ρ

(
u2
x + u2

y

))
, γ =

cp
cv

> 1, (4)

where γ is the ratio of the specific heats at constant pres-
sure and at constant volume, and which is supposed to be
constant.

Now we are interested in studying rotational phenomena
affected by sheared vortex flows, so we decide to rewrite the
Euler equations in cylindrical coordinates (r, ϕ) according to
the usual relations

x = r cos ϕ, y = r sin ϕ . (5)

Let ur and uϕ be respectively the radial and the angular
component of the velocity, linked to u and v by

ux = cos ϕ ur − sin ϕ uϕ, uy = sin ϕ ur + cos ϕ uϕ , (6)

and consider the map

∂

∂x
= cos ϕ

∂

∂ρ
− sin ϕ

ρ

∂

∂ϕ
,

∂

∂y
= sin ϕ

∂

∂ρ
+

cos ϕ
ρ

∂

∂ϕ
.

(7)

To shorten the notation, from now on, we denote the radial
velocity ur by u, and the angular velocity uϕ by v.

By substituting into (3) the expressions given in (6) and

(7), after some calculations, we derive a new set of hyperbolic
equations that still takes the form (1) with

Q=

©«

rρ

rρu

rρv

rρE

r

ª®®®®®®®¬
, f(Q)=

©«

rρu

rρu2 + rP

rρuv

ru(ρE + P)
0

ª®®®®®®®¬
, g(Q)=

©«

ρv

ρuv

ρv2 + P

v(ρE + P)
0

ª®®®®®®®¬
,

B(Q) = 0, S(Q) =

©«

0

− ρGms
r + P + ρv2

− ρuv

− ρuGms
r

0

ª®®®®®®®®¬
.

(8)

Note that the system is written in terms of conserved vari-
ables, which is made possible by the insertion of an additional
trivial equation

∂r
∂t
= 0, (9)

which implies that the radius r is both a coordinate and a
conserved variable.

The goal of our work is to construct a finite volume
scheme that is second order accurate in general situations,
and, at the same time, can solve exactly (i.e. up to machine
precision) a class of stationary solutions given by

ρ = ρ(r), u = 0,
∂v

∂ϕ
= 0. (10)

Looking at the second equation in (8) and the equilibrium
constraints in (10), we notice that equilibria should balance
the pressure and gravitational forces. More precisely

∂rP
∂r
= −ρ

(
Gms

r
− v2

)
+ P. (11)

This relation has to be achieved also at the discrete
level in order to preserve these stationary solutions. In stan-
dard finite volume schemes, fluxes and sources are typically
discretized in different ways and therefore, the balancing be-
tween them is usually lost. In order to construct a numerical
scheme that exactly preserves those stationary solutions, here
we first rewrite the equations in the following way, where
both, pressure and gravitational forces (11) are treated as non-
conservative terms.Thus, by exploiting some trivial equalities
as

∂rP
∂r
= P + r

∂P
∂r

and
∂r
∂r
= 1, (12)

the forces in (11) can be rearranged as

r
∂P
∂r
+

(
ρ

Gms

r
− ρv2

)
∂r
∂r
= 0, (13)

and finally the Euler equations with gravity in polar coordi-
nates can be cast in form (1) with non trivial non-conservative
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terms and with zero algebraic source term as

Q =

©«

rρ

rρu

rρv

rρE

r

ª®®®®®®®¬
, f(Q) =

©«

rρu

rρu2

rρuv

ru(ρE + P)
0

ª®®®®®®®¬
, g(Q) =

©«

ρv

ρuv

ρv2 + P

v(ρE + P)
0

ª®®®®®®®¬
,

S(Q)=0, B(Q)·∇Q=

©«

0

r ∂P∂r +
(
ρGms

r − ρv2
)
∂r
∂r

(ρuv) ∂r∂r
ρuGms

r
∂r
∂r

0

ª®®®®®®®®®¬
,

(14)

i.e.

B1 =

©«

0 0 0 0 0

r ∂P∂q1
r ∂P∂q2

r ∂P∂q3
r ∂P∂q4

r ∂P∂q5
+ρGms

r −ρv2

0 0 0 0 ρuv

0 0 0 0 ρuGms
r

0 0 0 0 0

ª®®®®®®®®¬
,

B2 = 0,

(15)

where qi , i = 1, · · · , 5 denotes the i-th component of vec-
tor Q. Notice that it is possible to write the source terms
as non-conservative products thanks to the introduction of
the coordinate r also as conserved variables (see the added
equation in (9)), which is the typical strategy adopted in
Greenberg & Leroux (1996); Greenberg et al. (1997); Gosse
(2000, 2001); Castro et al. (2007).

In the following, we first focus on the one dimensional
version of the previous system (where g and B2 are not con-
sidered) achieving an exact balancing in the radial direction
r. Then, we will extend the method to two space dimensions
and moving nonconforming meshes. In both cases the key
point of our new numerical method is the discretization of
the terms in (13).

3 NUMERICAL METHOD IN ONE
DIMENSION

For the numerical approximation of the one dimensional
system, the spatial domain is discretized by N cells (or finite
volumes) Ii = [ri−1/2, ri+1/2] of regular size ∆r = ri+1/2−ri−1/2,
i = 1, . . . , N. After having integrated Eq.(1) over a cell Ii , we
approximate the time derivative of the cell averages Qi(t) at
each time t by a path-conservative scheme:

dQi

dt
(t) = − ∆t

∆r

(
D+

i−1
2

(
q−
i− 1

2
(t), q+

i− 1
2
(t)

)
+D−

i+1
2

(
q−
i+ 1

2
(t), q+

i+ 1
2
(t)

))
− ∆t
∆r

r
i+ 1

2∫
r
i− 1

2

∂

∂r
f (qi(r, t)) dr

− ∆t
∆r

r
i+ 1

2∫
r
i− 1

2

B1 (qi(r, t))
∂

∂r
(qi(r, t)) dr .

(16)

In the scheme, qi(r, t) is the approximation of the conserved
variables inside cell Ii at time t, computed via a reconstruction
operator from the conserved variables Qi(t) in a given stencil,
while q+

i− 1
2
(t) = qi(ri−1/2, t) and q−

i+ 1
2
(t) = qi(ri+1/2, t) denote

the evaluation of qi(r, t) at the left and right boundaries
of cell Ii . According to Parés (2006) and Castro Dı́az &
Fernández-Nieto (2012) D±

i+ 1
2

can be defined as follows:

D±
i+ 1

2

(
q−
i+ 1

2
, q+

i+ 1
2

)
=

1
2

(
f(q+

i+ 1
2
) − f(q−

i+ 1
2
) +

Bi+ 1
2

(
q+
i+ 1

2
− q−

i+ 1
2

)
±Vi+ 1

2

(
q+
i+ 1

2
− q−

i+ 1
2

))
,

(17)

where f(q) is the physical flux, Bi+ 1
2

(
q+
i+ 1

2
− q−

i+ 1
2

)
is

the discretization of the non-conservative terms and

Vi+ 1
2

(
q+
i+ 1

2
− q−

i+ 1
2

)
is the viscosity term, that characterizes

the method. In (17), the dependency on t has been dropped
for simplicity.

Bi+ 1
2

(
q+
i+ 1

2
− q−

i+ 1
2

)
and Vi+ 1

2

(
q+
i+ 1

2
− q−

i+ 1
2

)
are defined

in terms of a family of paths Φ(s, q−
i+ 1

2
, q+

i+ 1
2
), s ∈ [0, 1].

In general, according to the theory of Dal Maso et al.
(1995), the family of paths should be a Lipschitz continuous
family of functions Φ(s,QL,QR), s ∈ [0, 1] satisfying some
regularity and compatibility conditions, in particular,

Φ(0,QL,QR) = QL, Φ(1; QL,QR) = QR, Φ(s,Q,Q) = Q.
(18)

Moreover, according to Parés (2006), D± should satisfy the
following properties:

D±(Q,Q) = 0 ∀Q ∈ ΩQ, (19)

being ΩQ the set of admissible states for the problem, and,
for every QL , QR ∈ ΩQ,

D−(QL,QR)+D+(QL,QR)=
∫ 1

0
A(Φ(s; QL,QR))

∂Φ

∂s
(s; QL,QR)ds,

(20)

where

A(Q) = Jf (Q) + B1(Q), Jf (Q) =
∂f(Q)
∂Q

(21)

with Jf denoting the Jacobian of the flux function f. Note that,
in this particular case equation (20) could also be rewritten
as follows:

D−(QL,QR)+D+(QL,QR)= f(QR) − f(QL) + BLR(QR −QL),
(22)

where

BLR(QR −QL) =
∫ 1

0
B1(Φ(s; QL,QR))

∂Φ

∂s
(s; QL,QR)ds. (23)

The interested reader is referred to Dal Maso et al. (1995)
and Parés (2006) for a rigorous and complete presentation
of this theory.

In this paper, the family of paths will be chosen so that
stationary solutions given by (10)-(11) are preserved.
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The rest of this section is organized as follows: we start
by proposing two different first order well balanced schemes,
the first one is denoted by Osher-Romberg scheme, and the
second one is a well balanced HLL scheme. Next we propose a
second order scheme constructed using the previous first order
schemes in combination with a second order well balanced
reconstruction operator.

3.1 First order well balanced schemes

Let us remark first, that the scheme (16) reduces to

dQi

dt
(t) = − ∆t

∆r

(
D+

i−1
2

(
q−
i− 1

2
(t), q+

i− 1
2
(t)

)
+D−

i+1
2

(
q−
i+ 1

2
(t), q+

i+ 1
2
(t)

))
,

(24)

if qi(r, t) = Qi(t) is constant within each cell, for every time t
and coincides with the cell average Qi(t). The time derivative
is discretized by the first order explicit Euler method. Thus,
the resulting scheme will be first order accurate in space and
time. Moreover, q−

i+ 1
2
= qi = Qi and q+

i+ 1
2
= qi+1 = Qi+1.

Therefore, to determine the numerical scheme,
Bi+1/2 (qi+1 − qi) and Vi+ 1

2
(qi+1 − qi) should be defined. In

order to define Bi+1/2 (qi+1 − qi), a family of paths should
be prescribed, so that the resulting scheme is well balanced.
Note that if the standard segment path is prescribed, that is

Φ(s; qi, qi+1) = qi + s(qi+1 − qi), (25)

then, the resulting scheme is not well balanced for this set of
stationary solutions. Here we propose the following family
of paths. Let ΦE (s,QE

i ,Q
E
i+1) be a reparametrization of a

stationary solution given by (10)-(11) that connects the state
QE
i with QE

i+1, where QE
i is the cell average of the given

stationary solution in the cell Ii . Note that in the case of
first and second order schemes QE

i could be approximated
by the evaluation of the stationary solution at the center of
the cell. Then we define Φ(s, qi, qi+1) as follows

Φ(s, qi, qi+1) = ΦE (s,QE
i ,Q

E
i+1) + Φ

f (s, q f
i
, q f

i+1), (26)

where q f
i
= qi −QE

i and q f
i+1 = qi+1 −QE

i+1 and

Φ
f (s, q f

i
, q f

i+1) = q f
i
+ s(q f

i+1 − q f
i
). (27)

That is, Φ f is a segment path on the fluctuations with respect
to a given stationary solution. With this choice, it is clear that
if qi and qi+1 lie on the same stationary solution satisfying

(10)-(11), then q f
i
= q f

i+1 = 0 and Φ reduces to ΦE . In such
situations we have that f(qi+1) = f(qi) = 0 and

Bi+ 1
2
(qi+1 − qi) =

∫ 1

0
B1(ΦE (s, qi, qi+1))

∂ΦE

∂s
(s; qi, qi+1)ds=0.

(28)

Therefore

f(qi+1) − f(qi) + Bi+1/2(qi+1 − qi) = 0. (29)

For the sake of simplicity, in the following we will use the
notation Φ(s) instead of Φ(s; qi, qi+1) when there is no confu-
sion.

Let us now define Bi+1/2(qi+1 − qi) in the general case,

where qi+1 and qi do not lie on a stationary solution. In this
case we have that

Bi+1/2(qi+1−qi) =
(
bi+1/2

1 bi+1/2
2 bi+1/2

3 bi+1/2
4 bi+1/2

5

)T
. (30)

It is clear from the definition of B1 that

bi+1/2
1 = bi+1/2

5 = 0, (31)

bi+1/2
2 =

∫ 1

0
Φr (s)

∂ΦP

∂s
(s) + Φ(rρ)(s)Φζr (s)

∂Φr
∂s
(s)ds, (32)

where Φr (s) = Φr (s; ri, ri+1) = ri + s(ri+1 − ri), ΦP(s) = ΦEP (s)+
Φ

f
P
(s), Φ(rρ)(s)(s) = ΦE(rρ)(s) + Φ

f

(rρ)(s) and, finally, Φζr (s) =

ΦEζr
(s) + Φ f

ζr
(s) where

ζr (r) =
(

Gms

r2 −
v2

r

)
, with ζ(r) =

∫
ζr (r)dr . (33)

Taking into account that∫ 1

0
Φr (s)

∂ΦEP
∂s
(s) + ΦE(rρ)(s)Φ

E
ζr
(s) ∂Φr

∂s
(s)ds = 0, (34)

bi+1/2
2 can be rewritten as follows:

bi+1/2
2 =

∫ 1

0
Φr (s)

∂Φ
f
P

∂s
(s)ds

+

∫ 1

0

(
Φ
E
(rρ)(s)Φ

f
ζr
(s) + Φ f

(rρ)(s)Φζr(s)
)∂Φr
∂s
(s)ds.

(35)

Note that,
∂Φ

f
P

∂s (s) = P f
i+1−P f

i
and ∂Φr

∂s (s) = ri+1−ri = ∆ri+1/2.
Observe that in uniform meshes ∆ri+1/2 = ∆r. With the

previous notation bi+1/2
2 reduces to

bi+1/2
2 = ri+1/2∆P f

i+1/2

+

(∫ 1

0

(
Φ
E
(rρ)(s)Φ

f
ζr
(s)+Φ f

(rρ)(s)Φζr(s)
)

ds
)
∆ri+1/2,

(36)

where ri+1/2 =
ri+ri+1

2 and ∆P f

i+1/2 = P f
i+1 − P f

i
.

In general, the integral term could be difficult to com-
pute, therefore we propose to use a numerical quadrature
formula. Here the mid-point rule is used. In this case, we

define bi+1/2
2 as follows:

bi+1/2
2 =

(
(rρ)E

i+1/2(ζr )
f

i+1/2+(rρ)
f

i+1/2(ζr )i+1/2
)
∆ri+1/2

+ri+1/2∆P f

i+1/2, (37)

where

(rρ)E
i+1/2 = Φ

E
(rρ)(1/2), (ζr )

f

i+1/2 =
(ζ fr )i + (ζ

f
r )i+1

2
, (38)

(rρ) f
i+1/2 =

(rρ) f
i
+ (rρ) f

i+1
2

, and (ζr )i+1/2 = Φζr (
1
2
). (39)

It is clear from the definition that bi+1/2
2 = 0 if qi and qi+1 lie

on the same stationary solution as ∆P f

i+1/2 = 0, (rρ) f
i+1/2 = 0

and (ζr ) fi+1/2 = 0.
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Finally, terms bi+1/2
3 and bi+1/2

4 could be approximated in
the same way. Nevertheless, as those terms explicitly depend
on u and we are interested in preserving equilibria with u = 0,

a simpler approach can be used. Thus, bi+1/2
3 is defined as

bi+1/2
3 =

(rρu)i+1/2
ri+1/2

vi+1/2∆ri+1/2, (40)

where

(rρu)i+1/2 =
(rρu)i + (rρu)i+1

2
, vi+1/2 =

vi + vi+1
2

, (41)

and bi+1/2
4 as

bi+1/2
4 = (rρu)i+1/2

Gms

r2
i+1/2

∆ri+1/2. (42)

Note that both terms vanish when u = 0.
As pointed out in Parés (2006), a sufficient condition for

a first order path-conservative scheme to be well balanced is
that D±

i+1/2 (qi, qi+1) = 0, if qi and qi+1 lie on the same sta-

tionary solution. Therefore, with the previous choice of paths,
D±

i+1/2 = 0 if Vi+1/2(qi+1 − qi) = 0. In the next paragraph we

are going to present two different schemes defined in terms
of two different viscosity terms, both of them verifying that
Vi+1/2(qi+1 − qi) = 0 for stationary solutions (10)-(11).

3.1.1 Well-balanced Osher-Romberg scheme

A path-conservative Osher-type scheme following Dumbser
& Toro (2011a,b); Castro et al. (2016) can be cast in form
(17) with V(qi+1 − qi) being defined as follows:

Vi+1/2(qi+1 − qi) =
∫ 1

0
|A (Φ(s))| ∂sΦ(s)ds, 0 ≤ s ≤ 1, (43)

with |A| = R|Λ|R−1 being the usual definition of the matrix
absolute value operator given in terms of the right eigenvector
matrix R, its inverse R−1 and the diagonal matrix of the
absolute values of the eigenvalues |Λ| = diag(|λ1 |, |λ2 |, ..., |λν |).
For the numerical approximation of the viscosity matrix, first
we notice that it can be written as

Vi+1/2(qi+1 − qi) =
∫ 1

0
sign (A (Φ(s)))A (Φ(s)) ∂sΦ(s)ds, (44)

with sign(A) = R sign(Λ)R−1 and sign(Λ) the diagonal matrix
containing the signs of all eigenvalues of A. Then, we approx-
imate the previous expression by a quadrature formula as
follows:

Vi+1/2(qi+1 − qi) =
l∑

j=1
ωjsign

(
A(Φ(sj )

)
A(Φ(sj ))∂sΦ(sj ).

(45)

Now, we propose to approximate A(Φ(sj ))∂sΦ(sj ) by the fol-
lowing expression:

A(Φ(sj ))∂sΦ(sj ) ≈
AΦ j

2εj
(
Φ(sj + εj ) − Φ(sj − εj )

)
, (46)

where AΦ j
= A(Φ(sj−εj ),Φ(sj+εj )) is a Roe-matrix associated

to the system (see Parés (2006) for details), that is a matrix
satisfying

AΦ j

(
Φ(sj + εj ) − Φ(sj − εj )

)
= f(Φ(sj + εj )) − f(Φ(sj − εj ))

+BΦ j

(
Φ(sj + εj ) − Φ(sj − εj )

)
,

(47)

where BΦ j

(
Φ(sj + εj ) − Φ(sj − εj )

)
is defined as in the previ-

ous section using the states Φ(sj −ε) and Φ(sj +ε). Therefore,
the viscosity term reads as follows:

Vi+1/2(qi+1 − qi) =
l∑

j=1
ωjsign

(
A(Φ(sj )

) R j

2εj
, (48)

where

R j = f(Φ(sj + εj )) − f(Φ(sj − εj ))
+BΦ j

(
Φ(sj + εj ) − Φ(sj − εj )

)
. (49)

Note that if qi and qi+1 lie on the same stationary solution we
have Φ(s) = ΦE (s) and R j = 0, j = 1, . . . , l and Vi+1/2(qi+1 −
qi) vanishes. Therefore, the numerical scheme (24) with (17),
where Bi+1/2(qi+1−qi) is defined as (30), (31), (37), (40) and
(42) and Vi+1/2(qi+1 − qi) is defined by (48) is exactly well
balacend for stationary solutions given by (10)-(11).

Here we propose the Romberg method with l = 3 and

s1 = 1/4, s2 = 3/4, s3 = 1/2,
ω1 = 2/3, ω2 = 2/3, ω3 = −1/3,
ε1 = 1/4, ε2 = 1/4, ε3 = 1/2.

(50)

With this choice, the viscosity term Vi+1/2(qi+1 − qi) of the
Osher-Romberg method reads as follows:

Vi+ 1
2
(qi+1 − qi) =

4
3 sign(A(Φ( 14 )))

(
f(Φ( 12 )) − f(qi) + Bi+ 1

4

(
Φ( 12 ) − qi

))
+

4
3 sign(A(Φ( 34 )))

(
f(qi+1) − f(Φ( 12 )) + Bi+ 3

4

(
qi+1 − Φ( 12 )

))
− 1

3 sign(A(Φ( 12 )))
(
f(qi+1) − f(qi) + Bi+1/2 (qi+1 − qi))

)
.

(51)

Note that the major drawback in the previous expression
is that the complete eigenstructure of the matrix A (21) is
required since sign(A) = R sign(Λ)R−1. However, on the other
hand, the Osher-Romberg method is very little dissipative
and is stable under the standard CFL condition.

3.1.2 Well-balanced HLL scheme

Following Castro Dı́az & Fernández-Nieto (2012), the stan-
dard HLL scheme can be written in the form (24) with (17),
where the numerical viscosity term is given by

Vi+ 1
2
(qi+1 − qi) = α0

i+ 1
2
Ii+ 1

2
(qi+1 − qi) + α1

i+ 1
2
Ri+ 1

2
, (52)

where Ii+ 1
2

is the identity matrix,

Ri+ 1
2
= f(qi+1) − f(qi) + Bi+ 1

2
(qi+1 − qi) (53)

and

α0
i+ 1

2
=

SR
i+ 1

2
|SL
i+ 1

2
| − SL

i+ 1
2
|SR
i+ 1

2
|

SR
i+ 1

2
− SL

i+ 1
2

, α1
i+ 1

2
=

|SR
i+ 1

2
| − |SL

i+ 1
2
|

SR
i+ 1

2
− SL

i+ 1
2

. (54)

Here, SL
i+ 1

2
≤ 0 and SR

i+ 1
2
≥ 0 denote the minimum and

the maximum of the wave speeds of the Riemann problem
associated with the states qi and qi+1. To compute SL

i+ 1
2

we

take the minimum of zero and the eigenvalues associated to
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qi and
qi+qi+1

2 ; to compute SR
i+ 1

2
we take the maximum of

zero and the eigenvalues associated to
qi+qi+1

2 and qi+1.
It is clear that Vi+ 1

2
(qi+1 − qi) does not vanish if qi+1

and qi lie on a stationary solution: Ri+ 1
2

vanishes, but it is

not the case for the term α0
i+ 1

2
Ii+ 1

2
(qi+1 − qi).

Here, we follow the ideas described in Castro et al. (2010)
and Castro Dı́az & Fernández-Nieto (2012) to modify the
viscosity term such that the resulting scheme is exactly well
balanced for the stationary solutions (10)-(11). In particular
Ii+ 1

2
(qi+1−qi), will be replaced by Ĩi+ 1

2
(qi+1−qi) that vanishes

when a stationary solution is considered. Here we consider
the following expression for Ĩi+ 1

2
(qi+1 − qi):

Ĩi+ 1
2
(qi+1 − qi) =

©«

b
i+ 1

2
2

(
ρ
γP

)
i+ 1

2
∆ (rρu)i+ 1

2

b
i+ 1

2
2

(
ρ
γP

)
i+ 1

2
(v)i+ 1

2

b
i+ 1

2
2

(
ρ
γP

)
i+ 1

2
(z)i+ 1

2

0

ª®®®®®®®®®®®¬
, (55)

where b
i+ 1

2
2 is given in (37),

(
ρ
γP

)
i+ 1

2
=

ρi+1+ρi
γ(Pi+1+Pi ) ,

∆ (rρu)i+ 1
2
= (rρu)i+1 − (rρu)i , (v)i+ 1

2
=

vi+1+vi
2 , (z)i+ 1

2
=

zi+1+zi
2 , being z=∂(ru(ρE+P))∂q2

.

Following Castro et al. (2010) and Castro Dı́az &
Fernández-Nieto (2012) Ĩi+ 1

2
(qi+1 − qi) is obtained as follows:

we start by computing the eigenstructure of the extended
Jacobian matrix A at the equilibrium:

A(Q) =

©«

0 1 0 0 0
r ∂P∂q1

0 r ∂P∂q3
r ∂P∂q4

ρGms
r + ρv2

0 v 0 0 0
0 ∂(ru(ρE+P))

∂q2
0 0 0

0 0 0 0 0

ª®®®®®®¬
. (56)

In this situation the eigenstructure is easy to compute:
let R the matrix of the right-eigenvectors and Λ =

diag(λ1, λ2, . . . , λ5) the diagonal matrix of the eigenvalues
of (56). In particular we have

Λ = diag

(
ρu +

√
γρP

ρ
,
ρu −

√
γρP

ρ
, u, u, 0

)
, with u = 0. (57)

Then Ĩi+ 1
2
(qi+1 − qi) is given by

Ĩi+ 1
2
(qi+1 − qi) = Ri+ 1

2
Λ̃(Ri+ 1

2
)−1(qi+1 − qi), (58)

where

Λ̃ =

©«
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

ª®®®®®¬
. (59)

Note that Λ̃ is a diagonal matrix composed of 0 and 1,
where the 0 elements on the diagonal correspond to the zero
eigenvalues at the stationary solution. The final expression
(55) is obtained considering the following relation that it is

derived from (23):

ri+ 1
2

((
∂P
∂q1

)
i+ 1

2

∆q1,i+ 1
2
+

(
∂P
∂q3

)
i+ 1

2

∆q3,i+ 1
2

+

(
∂P
∂q4

)
i+ 1

2

∆q4,i+ 1
2
+

(
ρ

Gms

r2 −
ρv2

r

)
i+ 1

2

∆ri+ 1
2

)
= b

i+ 1
2

2 .

(60)

Finally, we would like to note that a similar HLL scheme could
also be obtained within the framework of path-conservative
HLLEM methods recently proposed by Dumbser & Balsara
(2016), in which according to Einfeldt et al. (1991) the in-
termediate HLL state is assumed to be linear rather than
constant.

3.2 2nd order well balanced reconstruction

Let us recall the numerical scheme presented in (16) consid-
ering the space-time conservation form of the PDE

Qn+1
i = Qn

i −
∆t
∆r

(
D+

i−1
2

(
qn+,−
i− 1

2
, qn+,+

i− 1
2

)
+D−

i+1
2

(
qn+,−
i+ 1

2
, qn+,+

i+ 1
2

) )
− ∆t
∆r

∫ r
i+ 1

2

r
i− 1

2

∂

∂r
f
(
qn+

i (r)
)

dr

− ∆t
∆r

∫ r
i+ 1

2

r
i− 1

2

B1
(
qn+

i (r)
) ∂

∂r

(
qn+

i (r)
)

dr,

(61)

where qn
i
(r, t) is the approximation of the conserved vari-

ables inside cell Ii at time tn, qn+,+

i− 1
2
(t) = qn

i
(ri−1/2, tn+1/2) and

qn+−
i+ 1

2
(t) = qn

i
(ri+1/2, tn+1/2), that is the evaluation of qn

i
(r, t) at

the two boundaries of cell Ii at the time-midpoint of [tn, tn+1].
We would like to underline that in order to obtain a second
order scheme qn

i
should be a second order reconstruction of

the cell averages Qn
i−1,Q

n
i
,Qn

i+1.
According to Parés (2006) and Castro et al. (2006),

scheme (61) is well balanced if both, the underlying first
order scheme and the reconstruction operator are well bal-
anced, and all the integrals that appear in (61) are computed
exactly. Therefore, in order to define a second order scheme,
a second order well balanced reconstruction operator should
be defined.

The most popular way to define a second order recon-
struction operator is based on the MUSCL method intro-
duced by van Leer in van Leer (1979) joint with the minmod
limiter. He proposed to reconstruct qn

i
using a linear polyno-

mial in space and time as follows

Pn
i (r, t) = Qn

i +
∆Qn

i

∆r
(r − ri) + ∂tQn

i (t − tn), (62)

where

∆Qn
i = minmod

(
∆Qn

i−1/2,∆Qn
i+1/2

)
(63)

with ∆Qn
i−1/2 = Qn

i
−Qn

i−1, ∆Qn
i+1/2 = Qn

i+1 −Qn
i

and

minmod(a, b) =


0, if ab ≤ 0
a, if |a| < |b|
b, if |a| ≥ |b|.

(64)

It is clear that the standard MUSCL method is only well
balanced for linear stationary solutions, which is not the
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case here. In this paper we therefore follow the strategy
proposed in Castro et al. (2008), where the reconstruction
operator is defined as a combination of a smooth stationary
solution together with a standard reconstruction operator
to reconstruct the fluctuations with respect to the given
stationary solution, that is

qn
i (r, t) = QE

i (r) + P
f
i
(r, t), r ∈ Ii, t ∈ [tn, tn+1], (65)

where P f
i
(r, t) is the standard MUSCL reconstruction opera-

tor applied to the fluctuations around the stationary solution
at every cell of the stencil. Thus, if we define

Q f,n
i
= Qn

i −QE
i , Q f,n

i−1= Qn
i−1−QE

i−1, Q f,n
i+1= Qn

i+1−QE
i+1,

(66)

then, P f
i
(r, t) is defined as follows:

P f ,n
i
(r, t) = Q f ,n

i
+
∆Q f ,n

i

∆r
(r − ri) + ∂tQn

i (t − tn), (67)

where

∆Q f ,n
i
= minmod

(
∆Q f ,n

i−1/2,∆Q f ,n
i+1/2

)
(68)

with

∆Q f ,n
i−1/2 = Q f ,n

i
−Q f ,n

i−1, ∆Q f ,n
i+1/2 = Q f ,n

i+1 −Q f ,n
i

. (69)

Note that we have replaced ∂tQ
f ,n
i
(t − tn) by ∂tQn

i
(t − tn) in

(67) as ∂tQE
i = 0. It is clear from its construction that the

reconstruction operator is exactly well balanced, and it is
second order accurate for non-stationary solutions as QE (r)
is a smooth stationary solution. The term ∂tQn

i
indicates the

time derivative of Q and it can be computed using a discrete
version of the governing equation

∂tQn
i = −

f(qn,−
i+1/2) − f(qn,+

i−1/2)
∆r

−
Bi(qn,−

i+1/2 − qn,+
i−1/2)

∆r
,

qn,∓
i±1/2 = qi(x∓i±1/2, t

n),
(70)

where the fluxes have been approximated by a central finite
difference with respect to the cell center ri , and Bi(qn,−

i+1/2 −
qn,+
i−1/2) is obtained in the same way of (30),(37),(40),(42),

where by replacing for example qi and qi+1 by qn,−
i+1/2 and

qn,+
i−1/2 respectively, and using as central value the cell average

one obtains

Bi(qn,−
i+1/2 − qn,+

i−1/2)
∆r

=
(
bi1 bi2 bi3 bi4 bi5

)T
with

bi1 = bi5 = 0, bi3 = ρiuivi, bi4 = ρiui
Gms

ri
,

bi2 = ri
(
P f ,n,−
i+1/2 − P f ,n,+

i−1/2

)
+

(
riρEi (ζr )

f
i
+ riρ

f
i
(ζr )i

)
.

(71)

The last ingredient for a second order scheme is the
computation of the integrals in (61): the first one can be
computed exactly

ri+1/2∫
ri−1/2

∂

∂r
f (qi(r, t)) dr = f(qn+,−

i+1/2) − f(qn+,+
i−1/2). (72)

Note that this first integral vanishes for stationary solutions
with u = 0. The second integral is more sophisticated, and it

is not easy to compute it exactly, except in some particular
situations. Therefore we will use a quadrature formula to
approximate this integral, but this must be done carefully to
maintain the well balanced property of the scheme: effectively,
a wrong choice in the quadrature formula will destroy all
the work we have done up to now in order to define a well
balanced scheme. Here we proceed as follows: first we express
the particular form of the reconstruction operator: qn

i
(x, t) =

QE
i (x) + P

f
i
(x, t) and we use the fact that∫ ri+1/2

ri−1/2
B1(QE

i (r))
∂QE

i (r)
∂r

dr = 0. (73)

Here, we only show the details for the second component of∫ ri+1/2

ri−1/2
B1(qn

i (r))
∂qn

i
(r)

∂r
dr, (74)

∫ ri+1/2

ri−1/2
r
[
∂P
∂r
+ ρ

(
Gms

r2 −
v2

r

)]
dr

=

∫ ri+1/2

ri−1/2
r
[
∂(PE + P f )

∂r
+

(
ρE + ρ f

) (
ζE + ζ f

)
r

]
dr

=

∫ ri+1/2

ri−1/2
r
∂P f

∂r
+ rρE ζ fr + rρ f ζr dr .

(75)

Now, the mid-point quadrature formula is used to ensure
second order accuracy obtaining that∫ ri+1/2

ri−1/2
r
[
∂P
∂r
+ ρ

(
Gms

r2 −
v2

r

)]
dr

≈ ∆r

[
ri

(
∆P f

)
i
+

(
rρE

)
i

(
ζ
f
r

)
i
+

(
rρ f

)
i
(ζr )i

]
,

where
(
∆P f

)
i
=

P f ,−
i+1/2 − P f ,+

i−1/2
∆r

,

(ζr )i =
Gms

r2
i

−
v2
i

ri
, (ζ fr )i =

vE
2

i

ri
−
v2
i

ri
.

(76)

It is clear that this approximation is second order accurate
and, moreover, will vanish for stationary solutions (10)-(11).
For the third and fourth component we could perform the
same procedure, but, again, as both trivially vanish when
u = 0, we could use directly the mid-point rule.

Finally, note that r±
i+1/2 = ri+1/2 and therefore ∆ri+1/2 =

0. Therefore Bi+1/2(qn+,+

i+ 1
2
− qn+,−

i+ 1
2
) reduces to

Bi+1/2(qn+,+

i+ 1
2
− qn+,−

i+ 1
2
) = (0, bi+1/2

2 , 0, 0, 0)T

where

bi+1/2
2 = ri+1/2∆P f

i+1/2 = ri+1/2
(
P f ,+
i+1/2 − P f ,−

i+1/2

)
.

4 NUMERICAL RESULTS IN ONE
DIMENSION

First of all, we show the ability of both schemes to preserve
a wide class of stationary solutions and we also report the
convergence tables for some smooth solutions. Then, we test
both methods with some classical Riemann problems, and
finally we study their behavior in capturing small perturba-
tions around the equilibrium.
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Table 1. Constant pressure equilibrium. The following results
show the capability of the schemes to preserve equilibria both
for a hierarchy of meshes for a fixed time t = 1 (on the left) and

for a fixed mesh (N = 64 cells) and for increasing computational
times. The table on the top refers to the L1-norm error between
the continuous ρ1 profile and the table on the bottom refers to
the discontinuous ρ2 profile. Data have been obtained using either

the Osher or HLL flux (and no significant differences have been
noticed).

tend = 1 N = 64

N Eρ - Osher time Eρ - Osher

64 9.54E-17 1 9.54E-17

128 9.54E-17 2 2.36E-16

256 6.49E-16 5 8.85E-16
512 6.23E-16 10 1.67E-15

1024 1.21E-15 50 6.24E-17

tend = 1 N = 64

N Eρ - HLL time Eρ - HLL

64 8.45E-18 1 8.45E-18

128 1.38E-16 2 1.19E-17
256 5.54E-16 5 6.71E-16

512 2.64E-15 10 2.42E-15

1024 5.05E-16 50 1.13E-13

4.1 Stationary solutions with constant pressure

Simple, but non trivial, stationary solutions of the Euler
equations can be obtained by considering velocities as in (10)
and a constant pressure P. It is easy to verify that under
these conditions for any density profile the velocity in the
angular direction v must satisfy

v =

√
GmS

r
, (77)

while u = 0. For the numerical simulations we consider a
spatial domain r ∈ [1, 2], G = 1, ms = 1, γ = 1.4, P = 1 and
two density profiles:

ρ1 = r, (78)

ρ2 =

{
1, if r < 1.5
0.1, if r ≥ 1.5.

(79)

In Table 1 we report the errors between the exact equilib-
rium and the numerical solution obtained with both schemes
using a hierarchy of meshes and long term time integration.
We can notice that all the errors are of the order of machine
precision and no significant differences can be noticed be-
tween the two fluxes. Moreover the method is perfectly well
balanced both with continuous and discontinuous density
profiles, as expected.

4.2 General equilibrium

Using the equilibrium relation between the pressure and the
gravitational forces in (11) and ζ given by (33), we obtain
another class of stationary solutions of the Euler equations

ρ = ρ0e−ζ (r), P = ρ + P0, v =

√
r
(

Gms

r2 − ζr
)
. (80)

Table 2. General equilibrium. L1-norm error for the density be-
tween the exact and the numerical solution. On the left we have
the error for different meshes at t = 1 and on the right we show the

error for a given mesh (N = 64 cells) for different computational
times.

tend = 1 N = 64

N Eρ - OSHER time Eρ - HLL

64 6.28E-15 1 5.03E-15

128 1.17E-14 2 1.01E-14

256 1.70E-14 5 2.65E-14
512 2.15E-14 10 7.21E-14

1024 3.19E-14 50 3.07E-12

We have applied both schemes to two different choices
of ζ obtaining always a well balanced result. Table 2 shows
the L1-norm error for the density between the equilibrium
and the numerical solution in the case

ζ = kr, k = −1, ρ = ρ0e−kr, ρ0 = 1, P = ρ + P0, P0 = 1. (81)

Again, both methods are able to exactly preserve these non-
trivial equilibria.

4.3 Order of convergence

To study numerically the order of convergence of both
schemes we have considered the following equilibrium situa-
tion

ρ = 1, u = 0, P = 1, v =

√
r
(

Gms

r2 − ζr
)
, (82)

and at the initial time, we have added a small perturbation
(with a Gaussian profile) to the velocity field

ũ = u + 10−5exp

(
−0.5 (r − 1.5)2

0.01

)
,

ṽ = v + 10−5exp

(
−0.5 (r − 1.5)2

0.01

)
.

(83)

We have computed a reference solution using our method
with the Osher-type flux on a fine mesh (N = 213 = 8192 ).
In Table 3 we report the L1 error norms for the density ρ

with respect to our reference solution and both numerical
schemes achieve second order of convergence.

4.4 Riemann Problem

To show that our method is accurate even far away from
an equilibrium, we consider as initial condition a classical
Riemann problem with non-vanishing angular velocity

ρL = 1.0, uL = 0, vL =
√

Gms

r
, PL = 1.0, r = r, 1 ≤ r ≤ 4.5,

ρR = 0.1, uR = 0, vR =
√

Gms

r
, PR = 0.1, r = r, 4.5 < r ≤ 8,

and we compute the solution by employing the schemes set
up to preserve the equilibrium in (79). We report the results
obtained with the first and second order scheme and with
the HLL and Osher-type flux in Figure (1). Note that both
schemes produce quite similar results.
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Figure 1. Riemann problem at final time t f = 1. On the top the density and velocity profiles obtained using the HLL scheme and on the

bottom the profiles obtained with the Osher-type flux. We have employed two meshes: a coarse one with N = 64 elements and a fine one
with N = 512 elements. Moreover, we have compared the first and second order schemes.

Table 3. Perturbation around a stationary solution. The reference
solution has been obtained with the second order Osher-type

scheme over 213 cells. L1-norm errors for ρ at time t = 0.1 are
shown: on the left we report the result obtained using the Osher-
type flux and on the right using the HLL-type flux.

Osher O2 HLL O2

N ε(ρ) O(L1) N ε(ρ) O(L1)

16 1.59E-07 - 16 1.16E-07 -

32 3.82E-08 2.06 32 2.90E-08 2.01

64 9.50E-09 2.00 64 7.22E-09 2.00
128 2.31E-09 2.04 128 1.77E-09 2.03

256 5.72E-10 2.01 256 4.44E-10 1.99
512 1.45E-10 1.97 512 1.14E-10 1.96

4.5 Evolution of perturbations

Following the idea presented in Käppeli & Mishra (2016) we
have tried to study small perturbations around the equilib-
rium. We have considered a density profile as in (78) and
we have imposed a periodic perturbation on the velocity u
through the left boundary conditions, by imposing

u0 = A sin
(
6

2πtn

t f

)
, t f = 1. (84)

Two situations are analyzed. First we consider a big
perturbation, with A = 10−2 and we simulate the evolution
using the second order well balanced HLL scheme and a

standard second order HLL scheme using a hierarchy of
grids with increasing number of cells. A reference solution
computed with the second order well balanced HLL method
is also considered using a fine grid composed of N = 2048 cells.
Figure (2) shows the errors for the different meshes. Note
that in this case no big differences are visible between the well
balanced and not well balanced schemes as the perturbations
are so large so that shocks are quickly generated and the
solution is far away from the stationary profile. The situation
changed significantly when a small perturbation is considered
(A = 10−5). In that case the well balanced method performs
much better than the non well balanced scheme on the finer
grid, as shown in Figure (2).

5 NUMERICAL METHOD IN TWO
DIMENSIONS

Now, we extend our method to the two dimensional ALE
context on moving nonconforming meshes. In particular we
are interested in numerical schemes able to approximate
accurately nontrivial equilibrium solutions along the radial
direction given by (10)-(11). Hence, in general at the equi-
librium v , 0, which implies that g , 0 and makes it difficult
to design well balanced schemes on general meshes.

For this reason we are going to design a numerical scheme
on moving meshes that inherits the well balanced property of
the previous one-dimensional scheme in the radial direction
and we need to impose some conditions on the shape of
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Figure 2. Error in the L1 norm between a reference solution

and the numerical solutions computed with the well balanced
HLL method and a second order non well balanced scheme. Well

balanced and non well balanced methods perform equally well for

large perturbations, while well balanced schemes perform signifi-
cantly better for the small perturbation problem.

the moving cells so that the two components of the flux are
not completely mixed in the computation. We emphasize
that our numerical scheme works for completely general
unstructured and nonconforming moving meshes, but it will
be well balanced only if the mesh satisfies some special
conditions.

The rest of the section is organized as follows: first we
describe the domain discretization and its time evolution
due to the ALE context. Next, we derive the one-step path-
conservative ALE scheme, and we explain where the 1D
well balanced techniques are employed in order to guarantee
the well balancing of the scheme even in a two dimensional
moving mesh framework.

5.1 Arbitrary-Lagrangian-Eulerian scheme

To discretize the moving domain, we consider a noncon-
forming mesh T n

Ω
which covers the computational domain

Ω(x, tn) = Ωn at the time tn with a total number NE = N × M
of quadrilateral elements Tn

i
, i = 1, . . . , NE . We refer to our

mesh as nonconforming because each edge can be shared
between more than two elements and a node can lie on an
edge not only at its extremities, i.e. we explicitly allow so-
called hanging nodes. This gives us more flexibility in the
grid motion and helps to maintain a high quality mesh.

The elements should satisfy the following conditions:

(i) their barycenters should be aligned along straight lines
with r = ri, i=1, . . . N,

(ii) the two bounding edges of each element in radial
direction must be aligned with r = ri±1/2 = const., i=1, . . . N+
1,

(iii) the other two bounding edges must be parallel be-
tween them.

For example a Cartesian grid satisfies these conditions, but
we could accept even something more general (which allows
us to move the computational domain). See Figure 3 for a
general mesh that satisfies the above constraints. In Section
5.2.1 these choices will be justified.

Figure 3. Example of a mesh that allows a well balanced treat-

ment of the fluxes. Each element has two vertical edges and the
other two are parallel between them. Besides the vertical edges
lie on straight lines and the barycenters are aligned along r = ri .

Moreover the domain is periodic so that ϕ = 0 coincides with
ϕ = 2π.

The method we are going to employ to solve (14) belongs
to the family of the Arbitrary-Lagrangian-Eulerian (ALE)
finite volume schemes. This kind of schemes is characterized
by a moving computational mesh: at each time step the new
position of all the nodes has to be recomputed according to
a prescribed mesh velocity, which generally is chosen as close
as possible to the local fluid velocity (as it is in the purely
Lagrangian framework), but it can also be set to zero (to
reproduce the Eulerian case), or it can be chosen arbitrarily.

The aim of these methods is to reduce the numerical
dissipation errors due to the convective terms and to capture
contact discontinuities sharply. For this reason it is partic-
ularly well suited for our situation, where the gas at the
equilibrium is advected with the known equilibrium velocity

field V(x) =
(
uE (x), vE (x)

)
which reads

uE (x) = 0, vE (x) =

√
r
(

Gms

r2 − ζr
)
. (85)

Note that the a priori knowledge of the velocity field
significantly simplifies the application of an ALE scheme:
indeed, we can move the nodes following directly the exact
equilibrium velocity, which is not affected by any physical or
numerical perturbation. In general the coordinates of a node
k are evolved from time tn to time tn+1 according to

xn+1
k = xnk + ∆tVn

k (86)

where Vn
k is obtained using the node solver of Cheng and Shu.

Cheng and Shu introduced in Cheng & Shu (2007) and Liu
et al. (2009) a very simple and general formulation to obtain
the final node velocity, which is chosen to be the arithmetic
average velocity among all the contributions coming from V
evaluated at the barycenter of the Voronoi neighbors of node
k.

This allows us to control the movement of the mesh
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Figure 4. Left. In blue we show the physical space-time control
volume Cn

1 obtained by connecting via straight line segments each

vertex of T n
1 with the corresponding vertex of T n+1

1 , and its space-

time midpoint Mn
1 . In pink we show one of the lateral surfaces of

Cn
2 , ∂Cn

2,1, together with its space-time midpoint Mn
2,1. Right. The

reference system (χ, τ) adopted for the bilinear parametrization of

the lateral surfaces ∂Cn
i j .

avoiding the violation of the above conditions: indeed the
radial component of Vn

k will be always zero, hence nodes will
slide along straight lines with r = const. where the edges lie.
Moreover, since the barycenters are placed on the straight
lines with r = ri , all nodes lying on the same edge will move
with the same velocity maintaining the parallelism constraint
between the edges.

Moreover, the presence of known straight slide lines
makes it possible to apply the algorithm described in Gaburro
et al. (2017) for a nonconforming treatment of the mesh
motion: thanks to this technique we are able to preserve a
high level of grid quality of the moving mesh even in the
case of strong shear flows that originates in Keplerian discs
due to the differential rotation. For all the details about the
nonconforming motion of nodes along sliding lines (insertion
and deletion of nodes and edges, computation of the velocity
of new nodes, and flux computation in the case of more than
two neighbors), we refer to Gaburro et al. (2017), with the
only difference that in our case the sliding interfaces are
prescribed a priori and do not need to be automatically
detected by the algorithm.

For the sake of clarity, we briefly recall here the concept
of space-time control volumes employed in our direct ALE
scheme.

Let Tn
i

and Tn+1
i

denote the space control volumes re-

spectively at time tn and tn+1. A space-time control volume
Cn
i

is obtained by connecting each vertex of the element Tn
i

via straight line segments with the corresponding vertex of
Tn+1
i

. For a graphical interpretation one can refer to Figure 4,
where we have reported an example of a control volume and
the parametrization of one of its the lateral space-time sur-
faces. A lateral space-time surface is denoted by ∂Cn

ij
where

the index i refers to the element Cn
i

and the index j refers
to the neighbor j of Cn

i
.

For each control volume we have to compute the normal
vectors, the areas and the space-time midpoints of all its
sub–surfaces

∂Cn
i =

©«
⋃
j

∂Cn
ij
ª®¬ ∪ Tn

i ∪ Tn+1
i . (87)

The upper space-time sub-surface Tn+1
i

and the lower space-
time sub-surface Tn

i
are the simplest, since they are orthog-

onal to the time coordinate. The space-time unit normal
vectors are respectively ñ = (0, 0, 1) and ñ = (0, 0,−1). Area
and barycenter can be easily computed, since Tn

i
and Tn+1

i
are quadrilaterals. We will denote the area of Tn

i
with |Tn

i
|

and use the notation x̃ = (r, ϕ, t) for the space-time coordinate
vector.

Next, the lateral space-time surfaces of Cn
i

are
parametrized using a set of bilinear basis functions as

∂Cn
ij = x̃ (χ, τ)=

4∑
k=1

βk (χ, τ) X̃n
ij,k, 0 ≤ χ ≤ 1, 0 ≤ τ ≤ 1,

(88)

where X̃n
ij,k

represent the physical space-time coordinates

of the four vertices of ∂Cn
ij

, and the βk (χ, τ) functions are

defined as follows

β1(χ, τ) = (1 − χ)(1 − τ), β2(χ, τ) = χ(1 − τ),
β3(χ, τ) = χτ, β4(χ, τ) = (1 − χ)τ. (89)

The mapping in time is given by the transformation

t = tn + τ ∆t, τ =
t − tn

∆t
, (90)

hence the Jacobian matrix J∂Cn
i j

of the parametrization is

J∂Cn
i j
=

©«
®er ®eϕ ®et
∂r
∂χ

∂ϕ
∂χ

∂t
∂χ

∂r
∂τ

∂ϕ
∂τ

∂t
∂τ

ª®®®¬ =
©«

ẽ
∂x̃
∂χ
∂x̃
∂τ

ª®®®¬ . (91)

The space-time unit normal vector ñi j can be evaluated
computing the normalized cross product between the trans-
formation vectors of the mapping (88), i.e.

|∂Cn
ij | =

���� ∂x̃
∂ χ
× ∂x̃
∂τ

���� , ñi j =
(
∂x̃
∂ χ
× ∂x̃
∂τ

)
/|∂Cn

ij |, (92)

where |∂Cn
ij
| is the determinant of the Jacobian matrix J∂Cn

i j

and represents also the area of the lateral surfaces. Moreover,
exploiting the parametrization in (88)-(90) and choosing
χ = 0.5 and τ = 0.5 we recover the coordinates Mn

i, j
of the

space-time midpoint of the lateral surfaces.

5.2 Well balanced direct ALE scheme

In order to obtain a space-time formulation of a direct
path-conservative ALE scheme, as proposed in Dumbser &
Boscheri (2013), the governing PDE (1) is first reformulated
in a space-time divergence form as

∇̃ · F̃(Q) + B̃(Q) · ∇̃Q = S(Q), ∇̃ =
(
∂r, ∂ϕ, ∂t

)T (93)

with

F̃ = (F, Q)T = (f, g, Q)T , B̃ = (B,0)T = (B1,0,0)T , and S = 0,

and it is then integrated over the space-time control volume
Cn
i∫
Cn

i

(
∇̃ · F̃(Q) + B̃(Q) · ∇̃Q

)
dxdt = 0 . (94)
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Now, the space-time volume integral of ∇̃ · F̃(Q) can be rewrit-
ten using the Gauss theorem as∫
∂Cn

i

F̃ · ñ +
∫
Cn

i

B̃ · ∇̃Q = 0, (95)

where ñ = (ñr, ñϕ, ñt ) is the outward pointing space-time unit
normal vector on the space-time surface ∂Cn

i
.

Taking into account the jump of B̃ at the interfaces, the
final high order ALE one-step finite volume scheme is then
obtained from equation (95) as

|Tn+1
i |Qn+1

i = |Tn
i |Q

n
i −

∑
j

∫ 1

0

∫ 1

0
|∂Cn

ij | D̃i j · ñi jdχdτ

−
∫
Cn

i

B̃(qn
i ) · ∇̃qn

i dxdt

(96)

where qn
i
(x, t) is a well balanced second order reconstruction

of the conserved variables Q inside cell Ti at time tn, and the
discontinuity of the solution at the space-time sub–face ∂Cn

ij
is resolved by a well balanced path-conservative ALE flux
D̃i j · ñi j , which accounts for the jump in the discrete solution
between two neighbors across the intermediate space-time
lateral surface.

In particular when the lateral surface is shared between
more than two control volumes we have to compute the
flux across each sub-piece and sum each contribution (see
Gaburro et al. (2017) for further details).

5.2.1 Well balanced ALE numerical flux function

The core of the well balanced method in (96) is the design of
the well balanced space-time flux function. Its final expression
will be

D̃i j · ñi j =
1
2

(
F̃(q+) + F̃(q−) + Bi j

(
q+ − q−

) )
· ñi j

−1
2
Vi j

(
q+ − q−

)
,

(97)

where q− is the value of the reconstructed numerical solution
inside the element Cn

i
evaluated at the space-time midpoint

Mn
i, j

of the lateral surface ∂Cn
ij

, and q+ is the evaluation

at the same point of the reconstructed numerical solution
inside the neighbor Cn

j
at ∂Cn

ij
. Besides, generalizing the

notation introduced in Section 3, F̃ is the physical flux, the
term Bi j

(
q+ − q−

)
represents a well balanced way to write

the non-conservative products, and Vi+ 1
2

(
q+ − q−

)
is the

viscosity term.
As already pointed out, according to Parés (2006), the

numerical flux should satisfy the following properties

D̃i j (Q,Q) · ñi j = 0 ∀Q ∈ Ω, and (98)

D̃i j (q−, q+) · ñi j =
∫ 1

0
AV

n
(
Φ(s; q−, q+)

) ∂Φ
∂s
(s; q−, q+)ds, (99)

where, due to the ALE framework,

AV
n(Q) =

√
ñ2
r+ñ2

ϕ

((
∂F
∂Q
+ B

)
·n−(V·n) I

)
,

n = (nr, nϕ) =
(ñr, ñϕ)T√

ñ2
r + ñ2

ϕ

,
(100)

with I representing the identity matrix and V · n denoting
the local normal mesh velocity.

We explain now how to discretize Bi j and Vi j in (97) in
a well balanced way. Here we perform our reasoning edge–by–
edge and we distinguish two situations: the first one across
the vertical edges, which evolving in time originate a surface
orthogonal to the radial direction, easier to be treated, and
the second one across the other two parallel edges (see the
constraints stated at the beginning of Section 5.1)). For the
sake of clarity, in Appendix A we present the proof that our
scheme is well balanced taking into account a single element.

First of all, it is easy to see that the flux across the
sub–surfaces evolved from the vertical edges coincides with
the one dimensional flux. Indeed, in this case, n = (nr, 0),
V = (0, v) and so V · n = 0. Hence AV

n(Q) = Jf (Q) + B1(Q)
which coincides with (21). So we can discretize Bi j as stated
in (30)-(37)-(40)-(42), and Vi j by using the Osher-Romberg
method (51) or the modified HLL scheme as described in
Section 3.1.2. Therefore the scheme is well balanced in the
radial direction and second order accurate provided that the
reconstruction qn

i
and the integrals in (96) are computed in

a well balanced manner and with second order of accuracy
(see Section 5.2.2).

For what concerns the flux through the other two sur-
faces (see Point (iii) of Section 5.1) let us first state the
following remark.

Remark 5.1. Given an element Tn
i

consider its two edges
which are parallel between them but not vertical. Their
evolution in time originates two parallel surfaces with the
same areas and opposite normal vectors. Moreover call Tn

j1
and Tn

j2
the two neighbors of Tn

i
through these edges. Since the

barycenters of Tn
i

, Tn
j1

and Tn
j2

are aligned on the same vertical

line, i.e. their r-coordinate is the same, the equilibrium values
QE
i , QE

j1
and QE

j2
coincide.

Now let us rewrite (100) as

AV
n(Q) =

√
ñ2
r+ñ2

ϕ
(
(Jf + B1) nr + Jgnϕ − (V·n) I

)
. (101)

and (99) as

D̃i j (q−, q+)·ñi j =
√

ñ2
r+ñ2

ϕ

∫ 1

0

(
(Jf + B1) nr + Jgnϕ

− (V·n) I
) ∂Φ
∂s
(s)ds.

(102)

Thus, by exploiting the linearity of the integral, we can give
the discretization of D̃i j ·ñi j in (97) as the sum of the following
contributions

D̃i j · ñi j =
1
2

(
f(q+) + f(q−) + Bi j

(
q+ − q−

) )
ñr

+
1
2

(
g(q+) + g(q−)

)
ñϕ

+
1
2

(
q+ + q−

)
ñt −

1
2
Vi j

(
q+ − q−

)
.

(103)

Note that, whereas the discretization of F̃ and of Bi j can
be splitted, the same cannot be done automatically for the
viscosityVi j , whose expression depends on the chosen method
(Osher-Romberg, HLL or others).

The expression in (103) results to be well balanced,
provided that a well balanced expression for Vi j is given.
Indeed the first row coincides with the one dimensional flux
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along the radial direction for which Bi j is given by (30)-(37)-
(40)-(42) that are well balanced. With regards to the second
line we know that in general it is not zero evaluated at the
equilibrium because, as already pointed out at the beginning
of the section, g is not zero evaluated at the equilibrium. But,
if we consider, together with the flux between Tn

i
and Tn

j1
,

also the flux between Tn
1 and Tn

j2
and we sum them up, we

can see that all the values at the equilibrium cancel exactly,
thanks to the properties stated in Remark 5.1, that follows
from the geometrical constraints we have imposed on our
mesh. Finally, the same argument shows that also the third
line goes to zero when q− = QE

i and q+ = QE
j1, j2

.

Viscosity term
To end with the formulation of the well balanced ALE flux
(97) across this second kind of surfaces, we have to provide
an expression for the viscosity Vi j (q+ − q−) which vanishes
on stationary solutions (10)-(11).

First of all, it is easy to generalize the Osher-Romberg
scheme introduced in Section 3.1.1. Indeed in the two dimen-
sional ALE context the viscosity matrix introduced in (43)
can be written as

Vi j (q+ − q−) =
∫ 1

0

��� AV
n(Q) (Φ(s))

��� ∂sΦ(s), 0 ≤ s ≤ 1. (104)

Following the same reasoning of Section 3.1.1 we get the
following expression

Vi j (q+ − q−) =
l∑

j=1
ωjsign

(
AV

n(Φ(sj )
) R j

2εj
, (105)

where

R j = F̃(Φ(sj + εj )) − F̃(Φ(sj − εj ))
+B̃Φ j

(
Φ(sj + εj ) − Φ(sj − εj )

) (106)

is discretized as explained in the 1D case above and the
Romberg quadrature formula with l = 3 is still used. Hence,
if qn

i
and qn

i+1 lie on the same stationary solution Φ(s) = ΦE (s)
and R j = 0, j = 1, . . . , l.

Thus, the extension to two dimensions of the Osher-
Romberg scheme results to be straightforward. The only
drawback is that the complete eigenstructure of the extended
Jacobian matrix AV

n should be computed, which could be
costly in particular when edges are not parallel to the axis
(we underline that AV

n does not enjoy the property of rota-
tional invariance that characterizes the Euler equations in
Cartesian coordinates). As counter part, the method is very
little dissipative and allows us to obtain very good results in
convective transport problems.

The generalization of the HLL scheme is simpler. Equa-
tion (52) can be rewritten in two dimensions as

Vi j (q+ − q−) = α0
i jIi j (q

+ − q−) + α1
i jRi j, (107)

where Ii j is the identity matrix,

Ri j = F(qi+1) − F(qi) + Bi j (q+ − q−) (108)

(which can be discretized as described in Section 5.2.1 to

maintain the well balanced properties), and α0,1
i j

can be

computed as in (54) being SL and SR the minimum and the
maximum eigenvalues of AV

n(qn
i,i+1).

For the same reasons stated in Section 3.1.2, Ii j must
be replaced by a matrix that vanishes when a stationary

solution is considered. In particular we choose the following
identity modification

Ĩi j = Ĩi+1/2 nr + Inϕ, (109)

where Ĩi+1/2 is given by (55), which we already know to be
well balanced for stationary solutions. Moreover it follows
from Remark 5.1 that when nϕ , 0 the term Inϕ cancels at
the equilibrium (by considering the two contributions of the
neighbors Tn

j1
and Tn

j2
of Tn

i
).

5.2.2 2nd order well balanced reconstruction

The missing ingredient for (96) to be well balanced up to
second order is the definition of a second order well balanced
reconstruction operator. As in the one dimensional case we
are going to employ a combination of a smooth stationary
solution together with the standard MUSCL method, hence
our reconstruction will be of the form

qn
i (x, t) = QE

i (x, t) + P
f
i
(x, t), x ∈ Cn

i , (110)

where, as in Section 3.2, P f
i
(x, t) is the standard MUSCL

method applied in order to reconstruct the fluctuations with
respect to the given stationary solution computed for all the
neighbors Tn

j
of Tn

i
as

Q f,n
j
= Qn

j −QE,n
j
. (111)

The expression of the reconstruction operator is

P f ,n
i
(x, t) = Q f ,n

i
+ Φi∇Q f ,n

i
(x − xi) + ∂tQn

i (t − tn), (112)

where xi is the barycenter of cell Tn
i

.

To compute ∇Q f,n
i

we use the standard MUSCL method
(see van Leer (1979)) together with the Barth and Jespersen
limiter (see Barth & Jespersen (1989)). We would like to
remark that the employed methods are standard, the novelty
is in the fact that both are applied only to the fluctuations.

Finally, the term ∂tQn
i

indicates the time derivative of
Q and it can be computed using a discrete version of the
governing equation

∂tQn
i = (Jf + B1)|xi ∂rQ(xi) + Jg |xi ∂ϕQ(xi), (113)

evaluated at the barycenter xi of Tn
i

. In particular the gra-
dient of the conserved variables must be expressed as the
gradient of the equilibrium plus the previously computed
gradient of the fluctuation, i.e.

∇Q = ∇QE
i + ∇Q f

i
= ∇QE

i + ∇Q f ,n
i
, (114)

in order to preserve the well balancing. The same idea of
(114) can be exploited in order to rewrite∫

Cn
i

B̃(qn
i ) · ∇̃qn

i dxdt, (115)

where, as in Section 3.2, the equilibrium terms cancel and the
remaining terms all contain fluctuations. So the integral can
be computed through the mid-point quadrature rule which is
second order accurate on the fluctuations without affecting
the equilibrium.
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Figure 5. Discontinous density profile for the equilibrium solution
considered in the test case of Section 6.1.

6 NUMERICAL RESULTS IN TWO
DIMENSIONS

6.1 Equilibrium preservation

First of all we want to show the accuracy of our scheme
in preserving some equilibrium of interest. We consider a
discontinuous equilibrium

ρ = 1, if r < rm, ρ = 0.1, if r ≥ rm,

u = 0, v =

√
Gms

r
, P = 1,

(116)

with rm = 1.5, G = 1, ms = 1, over the computational domain
[r, ϕ] ∈ [1, 2]×[0, 2π]. In Figure 5 we depict the density profile
at the equilibrium and in Table 4 we report the maximum
error, committed using the HLL flux, with respect to the
exact solution after long computational times over a coarse
mesh, both for order 1 and 2. The equilibrium results to be
perfectly preserved.

Then we consider a hydrostatic equilibrium without
tangential velocity, so that the gravity force is perfectly
balanced with the pressure gradient. The initial data reads

ρ = 1, u = (u, v) = 0, P = 1/r, G = ms = 1. (117)

We consider a computational domain [r, ϕ] ∈ [1, 2] × [0, 2π]
covered by a coarse mesh of 20 × 40 elements. In Table 5
we show the error between the analytical solution and our
numerical solution obtained with the second order Osher-
Romberg scheme. Since the scheme is exactly well balanced
the errors are maintained at the order of machine precision
for very long computational times. Similar results are also
achieved with our well balanced HLL-type flux.

6.2 Order of convergence

To study numerically the order of convergence of our method
we consider a smooth isentropic vortex, similar to the one
proposed in Hu & Shu (1999). The initial condition in polar
coordinates is given by

ρ = 1 + δρ, u = 0, v = δv, P = 1 + δP,

δv = r
ε

2π
e

1−r2
2 , δT = −(γ − 1)ε2

8γπ
e1−r2

,

δP = (1 + δT)
1
γ−1 − 1, δρ = (1 + δT)

γ
γ−1 − 1,

(118)

Table 4. Maximum error between the exact and the numerical
density obtained with the first and the second order well balanced
methods (using the HLL flux). We underline that similar results

have been obtained using the Osher-Romberg flux and that the
same precision is achieved for the velocities.

points 20 × 40

time O1 O2

10 7.32E-13 4.20E-13

40 2.83E-12 8.18E-12

80 3.92E-12 1.72E-11
100 2.25E-12 1.99E-11

Table 5. Hydrostatic equilibrium. Maximum error in L∞ norm

between the exact solution and the numerical results for density,

velocity and pressure at different times. The values refer to the
second order Osher-Romberg ALE scheme, but similar results

have been obtained at first order and with the HLL-type flux.

time Eρ Eu Ev EP

1 7.77E-15 3.29E-16 3.95E-16 3.33E-16
10 1.60E-14 3.16E-16 1.05E-15 3.33E-16

40 2.66E-14 3.58E-16 1.37E-15 3.33E-16

80 3.02E-13 1.30E-13 4.98E-14 3.87E-14

with ε = 5, G = 0, ms = 0 and γ = 1.4 and the computational
domain defined as [r, ϕ] = [1, 2] × [0, 2π]. The final time is
t f = 1. Our new scheme is able to preserve this equilibrium
up to machine precision if we impose the above initial data
(118) also as the equilibrium profile to be preserved. However,
it is also possible to impose a different equilibrium profile
to be maintained, e.g. the one given by (116). In this way,
equilibrium and initial condition are not close one to the
other so the method comes back to its standard order of
convergence, i.e. second order. Refer to Table 6 and Figure
6 for the numerical results, which confirm that our scheme
is indeed second order accurate away from the prescribed
equilibrium profile. Finally, we would like to remark that we
are working with a moving nonconforming grid. In Figure 7
we report an example of the final mesh configuration obtained
with our Osher-Romberg scheme.

6.3 Riemann problem

To show the correctness of our method also in the presence
of shock waves we solve a classical Riemann problem with
non-vanishing angular velocity using both the well balanced
HLL and Osher-Romberg ALE schemes.

We consider the computational domain [r, ϕ] = [1, 4] ×
[0, 2π] and we impose the following initial conditions

ρ = 1, if r < rm, ρ = 0.1, if r ≥ rm,

u = 0, v =
√

G ms/r,
P = 1, if r < rm, P = 0.1, if r ≥ rm,

(119)

with rm = 2.5. The results at the final computational time t f =
0.5 are shown in Figure 8 where we report a cut along ϕ = π/2
and a comparison with a one-dimensional reference solution
computed on a fine grid using 1024 elements. We note a good
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Table 6. Order of convergence, isentropic vortex. We report the
results obtained with our second order accurate well-balanced
Osher-Romberg ALE scheme. The mesh size h is computed as the

maximum incircle diameter of the elements of the final mesh. The
errors refer to the L1 norm of the difference between our numerical
solution and the exact one. The last column refers to the setting
where the initial data (118) are also imposed as the smooth known

equilibrium to be maintained, hence in this case the scheme is
accurate up to machine precision. The other results are for the
setting where the code is used to evolve a different equilibrium

profile (116) that does not coincide with the initial data (118), so
that we can show its formal order of accuracy.

mesh size h Eρ , eq. (116) O(L1) Eρ , eq. (118)

5.59E-2 1.48E-4 - 1.86E-14

2.80E-2 3.60E-5 2.04 1.45E-13

1.86E-2 1.58E-5 2.03 4.78E-13
1.40E-2 8.85E-6 2.02 5.36E-13

Figure 6. Order of convergence, isentropic vortex for imposed

equilibrium (eq.) given by (116), i.e. different from the initial data
of the isentropic vortex (118). We report the L1 error norm of the
density obtained with our well-balanced Osher-Romberg and HLL

ALE schemes. The dashed lines represent the theoretical slopes of
order one and two, respectively.

agreement between the numerical solution obtained with
the well balanced ALE scheme on moving non-conforming
meshes and the reference solution also in this case where
the solution is far from any equilibrium. Moreover we show
the order of convergence of our method with respect to the
reference solution in Figure 9: obviously it cannot reach order
two because of the presence of shocks. However, the observed
convergence order is higher than one.

6.4 Noh shock test

The Noh shock test consists of a circular infinite strength
shock propagating out from the origin. We have chosen this
test case to prove that our method can deal also with highly
supersonic flows, low pressure atmospheres and shocks of
infinite strength. Consider a gas with γ = 5/3 initialized with
density ρ = 1, radial velocity u = −1, tangential velocity

Figure 7. Isentropic vortex, final mesh. We report the final mesh

configuration at time t f = 1 obtained with our Osher-Romberg
scheme in the case of a very coarse mesh of 10 × 20 elements so

that the nonconforming motion is clearly visible.

v = 0, and pressure P = 10−6 as an approximation to zero
pressure. The shock wave propagates with speed 1/3. The
exact solution inside the shock region, i.e. r ≤ t

3 , is given by
the following relations

ρ = 16, P = 16/3, u = 0, v = 0, (120)

and outside the shock region, i.e. r > t
3 , by

ρ = 1 +
t
r
, P = 0, u = −1, v = 0. (121)

We consider an initial domain [r, ϕ] ∈ [0, 1] × [0, π/2]. We
impose periodic boundary conditions on ϕ = 0 = π/2, and we
exploit the exact solution to impose the boundary conditions
at r = 0 and on the moving outer boundary.

The presented results have been obtained with the HLL-
type scheme. First we have considered the Eulerian case,
hence we have imposed a zero mesh velocity. The results
at time t f = 1.2 obtained with the second order scheme
are shown in Figure 10. Then we have employed the ALE
framework moving the mesh with the local fluid velocity. Due
to the absence of shear flow, the mesh remains conforming.
The results obtained with the moving mesh are shown in
Figure 11, where the well-known wall heating problem is
visible. Apart from the wall heating, in both the cases the
method shows a good agreement with the exact solution. For
what concerns the observed convergence rate of our code in
this test we refer to Figure 9.

6.5 Comparison with the PLUTO code

For the following test cases that concern Keplerian discs,
we compare the results obtained with our new second or-
der well balanced Osher-Romberg scheme with the results
one can obtain with the PLUTO code. PLUTO is a freely-
distributed software for the numerical solution of mixed
hyperbolic/parabolic systems of partial differential equations
(conservation laws) targeting high Mach number flows in
astrophysical fluid dynamics. The code has been systemat-
ically checked against several benchmarks available in the
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Figure 8. Riemann problem in a 2D domain. The test heave been carried out over two meshes: the first one, M1, with 64 × 20 control

volumes and the second one, M2, with 256 × 40 control volumes. The reported results have been obtained using the well balanced HLL
scheme with first and second order of accuracy. On the left we report the results for the density and on the right for the velocity at the

final time t f = 0.5. The graphs have been obtained as a 1D cut along ϕ = π/2. One can observe that the second order scheme captures the

discontinuities sharply. The results are compared against a reference solution obtained with our second order well balanced HLL scheme
in one space dimension with N = 1024.

Figure 9. Convergence results. Left: we refer to the Riemann problem (119) and compare the results obtained with our WB ALE HLL
code with a fine grid reference solution. Right: we refer to the Noh shock test of Section 6.4 and we compare our results with the exact

solution. Note that the L1 norm of our numerical errors are depicted with squares and is compared with the theoretical slopes of order

one and two (dotted lines), respectively. It is evident that the method is better than first order accurate even in presence of shocks.

literature in the papers Mignone et al. (2007) and Mignone
et al. (2011), using fixed uniform and AMR grids. It provides
a multi-physics and multi-algorithm modular environment,
where one can choose the Newtonian description for the fluid
motion (HD option) and add a potential Φ = −Gm

r to the
right hand side by setting the option BODY_FORCE equal to
POTENTIAL. In this way one can study (3) within this code.
Then we select POLAR GEOMETRY and we do not activate any
other options.

The modular structure allows to choose between differ-
ent numerical fluxes, limiters, spatial reconstructions and
time integrators. In particular, we have selected a little dis-
sipative setting by imposing LIMITER equal to MC_LIM (the
monotonized central difference limiter), or sometimes equal
to MINMOD_LIM (the classical minmod limiter), and using the
Roe solver as numerical flux. Then we have compared our
second order scheme with both a second order configuration

of PLUTO (with LINEAR reconstruction in space and RK2 in
time) and a third order configuration (with WENO3 reconstruc-
tion in space and RK3 in time). Finally, for the comparison
we set the number of elements in PLUTO either equal to the
number of elements used for our scheme, or we double it in
each dimension.

We remark that within PLUTO special care is taken
for the treatment of source and pressure terms when a polar
(cylindrical or spherical) geometry is chosen, because in those
cases the equations are discretized in angular momentum
conserving form and pressure terms are treated separately.
For this reason the results are more accurate than those
obtained with standard finite volume techniques.
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Figure 10. Noh shock test. We show the numerical results ob-

tained with our second order HLL-type flux at time t f = 1.2 on
three fixed grids with respectively 50 × 10, 100 × 10 and 200 × 20
elements. In the figure the density profile ρ has been depicted
along the radial direction r , compared with the exact solution.

6.6 Mass transport in a Keplerian disc

Let us consider a steady state solution of the Euler equations
with gravity which satisfies the constraints in (10)-(11) and
with a constant density profile,

ρE = 1, uE = 0, vE =

√
Gms

r
, P = 1, (122)

over the computational domain [r, ϕ] ∈ [1, 2] × [0, 2π]. At the
initial time, we perturb this equilibrium solution by imposing
a higher density ρ = 2 within the disc defined in Cartesian
coordinates as (x + 1.5)2 + y2 ≤ (0.15)2.

The expected result is the transport of this density fluc-
tuation (contact discontinuity) at different velocities which
are bigger at the interior and smaller at the exterior, without
any dissipation. The velocity and the pressure field should re-
main constant in time, according to the equilibrium solution.
In Figure 12 we compare the results obtained with different
numerical methods with the exact solution: Eulerian and
ALE schemes coupled or not with the well balanced Osher
Romberg scheme. As expected, the Eulerian scheme is very
dissipative, even when coupled with our new well balanced
technique. The dissipation is evident in the angular direction,
since the radial velocity in this problem is zero and the Osher
scheme is a complete Riemann solver that is able to resolve
steady contact waves exactly. The ALE scheme, without
well balancing does not dissipate too much in the angular
direction, but if it is not coupled with a proper well balanced
technique, some spurious velocity oscillations appear which
lead to unphysical dissipation in the radial direction and
which also produce some oscillations on the density profiles,
which are evident even for short computational times.

The coupling between the two techniques reduces the
dissipation both in the radial and in the angular directions. In
the computations performed with our well-balanced schemes
we have observed that for this test problem the error in
the pressure and in the velocity field was always of the
order of machine precision, since the advection of a contact
discontinuity does not affect the equilibrium of pressure and
velocity. We emphasize that this property of conserving even
non stationary equilibria (density is not constant in time
here) is anything else than trivial to achieve and to the best

knowledge of the authors, the scheme presented in this paper
is the first finite volume method to achieve it. Referring to
Table 7, one can notice that indeed the precision achieved by
our code on angular velocity and pressure is of the order of
machine precision (even at time t = 30), where instead this
is not the case for various PLUTO configurations.

Finally, we report the results obtained with PLUTO by
selecting the configuration setting described in Section 6.5
with the MC_LIM. First, in Figure 13 we use the described
second order method and 30 × 350 elements. Then, in Figure
14 we use the third order method and 60 × 700 elements. In
both the cases the density is dissipated faster than with our
method: this shows that it is not a finer grid or a higher
order of accuracy that can solve this type of problem, but a
very specific treatment of the equilibrium together with the
Lagrangian framework proposed in this paper.

6.7 Keplerian disc with density perturbations

For this test we have considered the equilibrium profile

ρE = r, uE = 0, vE =

√
Gms

r
, P = 1, (123)

and we have added a periodic perturbation to the density
profile as follows

ρ = ρE + A sin(k1ϕ)(0.25 − |rm − r |), r ∈ [r1, r2] (124)

with A = 0.5, k1 = 12, r1 = 1.25, r2 = 1.75, rm = 1.5. The goal
of the this test is to show that our well balanced ALE scheme
is able to maintain the equilibrium pressure and velocity
exactly and that the numerical method does not generate
any spurious numerical perturbations of pressure and veloc-
ity that would usually lead to Kelvin-Helmholtz type flow
instabilities for density fluctuations combined with shear flow
as in the above setup. In Figure 15 we show the evolution
of the perturbations at different times. They are properly
transported with different velocities with only very little
numerical dissipation. As in the previous case we stress that
the velocity and pressure remain at the equilibrium solution
up to machine accuracy throughout the entire simulation. No
spurious Kelvin-Helmhotz instabilities are generated, since
the equilibrium pressure and velocity are exactly maintained
for arbitrary long simulation times.

Finally, we compare our result at time t = 15 with the
results obtained with PLUTO, refer to Figure 16. For the
visualization we have always used the software Tecplot and
the same colormap; even if the results look similar, one can
notice that to obtain the same resolution of our code (left
image of the panel) we need the third order version of PLUTO
and a finer mesh (last image of the panel). We stress that
our code maintains u and P up to machine precision, whereas
PLUTO produces standard numerical errors, see Table 7

6.8 Keplerian disc with Kelvin-Helmholtz
instabilities I

Let us consider an equilibrium solution which satisfies the
equilibrium constraints in (10)-(11) so that

ρE = ρ0 + ρ1tanh
( r − rm

σ

)
, uE = 0, vE =

√
Gms

r
, PE = 1,
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Figure 11. Noh shock test. We show the density profile (left) and the final mesh (center) obtained with the second order ALE HLL-type

scheme at time t f = 0.6, using a moving grid of 100 × 10 elements. On the right we compare the density profile along the radial direction r

with the exact solution for three different meshes with respectively 50 × 10, 100 × 10 and 200 × 20 elements.

Table 7. The results shown in this table testify that our code is able to maintain up to machine precision even non stationary equilibria.
Indeed for the test cases presented both in Section 6.6 and Section 6.7 the L1 norm of the difference between the numerical solution
computed with our WB ALE Osher Romberg scheme and the exact stationary profiles of angular velocity v and pressure P, at the

respective final times (t = 30 and t = 15), is of the order of machine precision. The other two lines refer to the results obtained with
PLUTO both with second and third order of accuracy.

Test Section 6.6 Test Section 6.7

Method Elements | |v − vE | |L1 | |P − PE | |L1 | |v − vE | |L1 | |P − PE | |L1

WB ALE Osher-Romberg 100 × 200 2.17E-12 7.19E-14 2.13E-12 6.36E-14
PLUTO O2 minmod 100 × 200 5.56E-7 2.36E-6 5.44E-7 9.89E-6

PLUTO O3 mc lim 200 × 400 1.30E-7 5.28E-7 1.49E-7 2.44E-6

with G = 1, ms = 1, ρ0 = 1, ρ1 = 0.25, rm = 1.5 and σ = 0.01.
It shows a steep gradient in the density for r → 1.5. We
consider as computational domain a ring sector with radius
r ∈ [1, 2] and ϕ ∈ [0, π/2]. For the boundary conditions we
exploit the exact solution when r = 1, 2, and we impose
periodic boundary conditions for ϕ = 0, π/2.

As confirmed by the previous tests, our well balanced
ALE scheme is able to maintain the equilibrium up to ma-
chine precision for very long computational times. So we
can study with high accuracy the evolution of perturbations
added to the density, the radial velocities and the pressure
prescribed by the following initial condition
ρ = ρE + Aρ0 sin(kϕ)exp

(
− (r−rm)

2

s

)
,

u = uE + A sin(kϕ)exp
(
− (r−rm)

2

s

)
, v = vE,

P = PE + A sin(kϕ)exp
(
− (r−rm)

2

s

)
,

(125)

with A = 0.1, k = 8, s = 0.005. The computational results are
depicted in Figure 17. In particular, for this flow configuration
with physical perturbations in all flow quantities we observe
the appearance of Kelvin-Helmholtz instabilities and a very
good resolution of the developing vortices, which is achieved
thanks to the ALE technique and despite the rather coarse
mesh of 100 × 200 elements used here.

Moreover we have compared our well balanced ALE
scheme with a well balanced Eulerian method on a fixed grid,
which appears to be quite diffusive, and a not well balanced
ALE scheme, which produces visible spurious oscillations in
the density profile. The results are presented in Figure 18
and, once again, they show that it is indeed the coupling
between the well balanced techniques and the moving mesh

framework that allows to achieve a high resolution on small
perturbations around an equilibrium solution for very long
computational times.

We also compare our numerical results at time t = 37.5
with those obtained by PLUTO, see Figure 19. In order
to obtain the same accuracy of our new second order well
balanced Osher Romberg ALE scheme (left image of the
panel) one needs the third order version of PLUTO on a
finer mesh (last image of the panel).

6.9 Keplerian disc with Kelvin-Helmholtz
instabilities II

We finally consider another equilibrium solution which satis-
fies the equilibrium constraints in (10)-(11) and which reads

ρE = r, uE = 0, vE =

√
Gms

r
, PE = 1, (126)

with G = 1, ms = 1 and rm = 1.5. With respect to the previous
example, here the density profile is linear. However, also in
this example we expect the Kelvin-Helmholtz instabilities to
arise if some perturbations are added to the stationary profile.
The computational domain and the boundary conditions
are chosen as before. The initial condition used in this test
problem reads
ρ = ρE + A sin(kϕ)exp

(
− (r−rm)

2

s

)
,

u = uE + A sin(kϕ)exp
(
− (r−rm)

2

s

)
, v = vE,

P = PE + A sin(kϕ)exp
(
− (r−rm)

2

s

)
,

(127)
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Figure 12. We compare the exact solution with the numerical solutions obtained with different methods at times t = 2.5 (top-left),
t = 5 (top-right), t = 10 (bottom-left), t = 30 (bottom-right). For all the cases the employed numerical flux is an Osher-type flux. The

Lagrangian algorithms show their ability in reducing the viscosity along the angular direction. The well balanced methods do not diffuse

the quantities in the radial direction. When coupled together (top-right of each square) we obtain a result very close to the exact solution
(top-left of each square). We want to remark that in the well balanced ALE case (top-right of each square), the quantity with higher

density remains in the same cells in which it is confined at the initial time since the method is very little diffusive in any direction and

the differential rotation is treated in a nonconforming way. So, after long times, the cells containing the higher density gas are no more
close to each others, and this explains the figure at time t = 30. Moreover, only the well balanced ALE scheme is able to maintain the

concentration of the higher density gas.

with A = 0.1, k = 8, s = 0.005, i.e. we are again solving a
problem that is close to an equilibrium and therefore difficult
to solve with standard numerical techniques that are not
well balanced. The computational results are depicted in Fig-
ure 20. Again we observe the appearance of Kelvin-Helmholtz
instabilities that are well resolved also on a rather coarse
mesh, without any visible spurious numerical oscillations.

Finally, we compare once again our code with results ob-
tained with PLUTO, refer to Figure 21. A similar resolution

of the vortices is obtained with our second order code and
the third order version of PLUTO with a finer mesh (refer to
Section 6.5 for the details on the PLUTO configuration we
have chosen). In this case we want to underline also that our
code avoids other oscillations that instead can be noticed in
the images obtained with PLUTO.
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Figure 13. Results obtained with PLUTO, using the Roe solver combined with the mc lim limiter, linear reconstruction in space and

RK2 in time on a grid of 30 × 350 elements. One can observe that the results are more dissipative compared to those shown in Fig. 12.

Figure 14. Results obtained with PLUTO, using the Roe solver, a third order WENO reconstruction in space combined with the mc lim
limiter and a third order RK3 time integrator on a grid of 60 × 700 elements.

Figure 15. Evolution of periodic density perturbations in an equilibrium disc obtained with the well balanced ALE scheme with

Osher-Romberg flux. The perturbations are perfectly convected (with an inner velocity bigger than the outer one), and no spurious

Kelvin-Helmholtz instabilities are generated, even after long computational times.

7 CONCLUSIONS

In this work we have developed a new and highly accurate well
balanced path-conservative finite volume scheme for the Euler
equations with gravity by proposing two specifically designed
numerical fluxes and a quite general reconstruction procedure.
We underline that the novelties introduced in the algorithm
are based on the following key idea: the construction of a path
which directly exploits the known stationary solution (and

so the scheme is exact on it), and treats in a approximate
way only the fluctuations around the equilibrium.

The proposed method is innovative already in one space
dimension, since to the knowledge of the authors, it is the
first time that the little dissipative path-conservative Osher
scheme proposed by Dumbser & Toro (2011b) is modified
in order to be well balanced for non-trivial equilibria of the
Euler equations of gas dynamics with gravity. In particular,
the way in which the absolute value of the Jacobian matrix
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Figure 16. Method comparison at time t = 15. The first image is obtained with our code and 50x500 elements. The second and the third
one with PLUTO using 50 × 500 elements and respectively a second order scheme with mc lim limiter and a third order scheme with

minmod lim limiter. The last image is obtained with the third order version of PLUTO using mc lim and 100 × 1000 elements. All images
are drawn with the same color map. Even if the results are similar, one can notice that to obtain the same resolution of our code we need

the third order version of PLUTO and a finer mesh.

Figure 17. Kelvin-Helmholtz instabilities I. In the panel we show the evolution of the imposed periodic perturbations at different times.

The results have been obtained with our second order well balanced ALE Osher-Romberg scheme over a grid with 100 × 200 control
volumes.

is rewritten in order to exploit even in the viscosity part of
the scheme the same well balanced strategy that was already
established for the non-dissipative part is original. Moreover,
it is the use of the Romberg quadrature formula (instead
of the Gaussian one) that provides the good properties to
maintain both the desired order of accuracy and the well
balancing.

Furthermore, the method has been carefully extended in
a non trivial way to the two dimensional framework preserv-
ing the well balancing even for moving domains (with only few
constraints on the mesh construction). In particular the cou-
pling with modern nonconforming ALE techniques enables
the resolution even of complex shear flows with differential
rotation in an effective way. At this point it is noteworthy to
stress again that standard conforming Lagrangian schemes
will crash after finite times for any vortex flow with differ-
ential rotation due to mesh tangling. Indeed the reduced
dissipation characterizing the Lagrangian methods, together
with the high mesh quality provided by the nonconforming
treatment of sliding lines, and the increased accuracy near

the equilibria given by the well balanced techniques, allow us
to obtain significant improvements compared to the existing
state of the art. The major benefits are achieved with our
new class of schemes when studying physical phenomena that
arise close to a stationary equilibrium solution, where stan-
dard discretizations would hide the flow physics by spurious
oscillations and excessive numerical dissipation.

We furthermore have provided a thorough comparison
of our new numerical method with the results that can be
obtained with the PLUTO code, which is based on finite
volumes and therefore is rather close to the scheme proposed
in this paper.

While the moving nonconforming mesh treatment pro-
posed here is rather invasive and probably quite difficult
to introduce in existing astrophysical codes, our new path-
conservative finite volume scheme that achieves the well
balancing of the method at the level of the Riemann solver
is instead straightforward to implement in existing schemes
and computer codes based on Riemann solvers, i.e. those
using classical first or second order Godunov-type finite vol-
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ALE-WB EUL-WB ALE - noWB

Figure 18. Kelvin-Helmholtz instabilities I. In the panel we show the obtained solution for the density profile at time t = 17.5 (first

row) and time t = 25 (second row). The results presented in the first column have been obtained using the Osher-Romberg well balanced
ALE scheme. The ones in the second column have been obtained using a zero velocity mesh (Eulerian case) and the well balanced
Osher-Romberg scheme. The third column is obtained with a standard nonconforming ALE scheme (i.e. using the ALE Osher type flux

without well balancing). One can apreciate that it is really the coupling between the ALE and the well balancing that allows to achieve
this high resolution.

Figure 19. Kelvin-Helmholtz instabilities I. Method comparison at time t = 37.5. The first image is obtained with our code and 100x200
elements. The second and the third one with PLUTO, 100 × 200 elements and respectively a second order scheme with mc lim limiter
and a third order scheme and minmod lim limiter. The last image is obtained with the third order version of PLUTO using mc lim and

200 × 400 elements. All images are drawn with the same color map.

ume and finite difference methods. All that is needed is to
replace the conventional algebraic source term by our new
well balanced path-conservative approximate Riemann solver,
which interprets the gravity source term as a nonconservative
product. Nevertheless, using the novel ideas on well balanced
SPH methods very recently presented in Rossi et al. (2017),
it seems also possible to extend the new well balanced ap-
proach for the Euler equations with gravity presented here to
Smooth Particle Hydrodynamics. However, this is beyond the
scope of the present paper and its feasibility will be subject
to further investigations.

Future research will consider the application to more

complex systems of hyperbolic PDE, such as the unified
model of continuum mechanics presented in Peshkov &
Romenski (2016); Dumbser et al. (2016, 2017), an exten-
sion to three space dimensions as well as to more general
classes of stationary solutions and an automatic detector of
the equilibrium profiles in order to extend our method to
situations in which the equilibrium is not known exactly a
priori. Based on the high order path-conservative methods
introduced in Fambri et al. (2018) we also plan to use the
algorithms developed in this paper in order to design exactly
well balanced schemes for gravity driven equilibrium flows
in general relativity, where the use of well balanced meth-
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Figure 20. Kelvin-Helmholtz instabilities II. In the panel we show the evolution of the imposed periodic perturbations at different times.

The results have been obtained with our second order Osher-Romberg scheme over a grid with 100 × 200 control volumes.

Figure 21. Kelvin-Helmholtz instabilities II. Method comparison at time t = 25 (first row) and at time t = 40 (second row). The first
images are obtained with our code and 100x200 elements. The second and the third ones with PLUTO, 100 × 200 elements and using

respectively a second order (mc lim) and a third order (minmod lim) scheme. The last images are obtained with PLUTO using a third
order scheme (mc lim) and 200 × 400 elements. All images are drawn with the same color map. The vortices have a similar resolution in

the leftmost and rightmost images.

ods appears to be still rather unknown. We also plan to
extend the presented method to better than second order of
accuracy by extending the Lagrangian ADER-WENO and
ADER-DG schemes proposed in Boscheri & Dumbser (2014);
Boscheri et al. (2015); Boscheri & Dumbser (2017) to mov-
ing nonconforming unstructured meshes in a well balanced
manner. Finally, we envisage to remove the mesh constraints
and design a well balanced scheme for completely general
moving nonconforming unstructured meshes.
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Käppeli R., Mishra S., 2014, Journal of Computational Physics,
259, 199
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APPENDIX A: PROOF OF WELL BALANCING
FOR A GENERAL ELEMENT IN 2D

In this section we recall the first order ALE one-step finite
volume scheme in two space dimensions and we show that our
formulation is well balanced for each element of a mesh that
satisfies the constraints stated at the beginning of Section 5.1.
Consider a generic element I and its neighbors Ji, i = 1, . . . 6,
respectively through the edges Γj, i = 1, . . . , 6, as depicted in
Figure A1.

As derived in Section 5.2 our first order ALE scheme
can be written as

|Tn+1
I |Qn+1

I = |Tn
I |Q

n
I −

∑
Ji

∫ 1

0

∫ 1

0
|∂Cn

I,Ji
| D̃I,Ji · ñI,Ji dχdτ(A1)

and a sufficient condition to be well balanced is that∑
Ji

∫ 1

0

∫ 1

0
|∂Cn

I,Ji
| D̃I,Ji · ñI,Ji dχdτ = 0 (A2)

when evaluated on equilibrium states.
Note that Γ3,4,5,6 are parallel to the radial direction so

the normal vectors are ñ = (nr, 0, 0), hence the flux across
these edges is exactly the 1D flux, which has already been
proven to be zero when evaluated on stationary solutions.

Therefore (A2) reduces to∫ 1

0

∫ 1

0

(
|∂Cn

I,J1
| D̃I,J1·ñI,J1 + |∂Cn

I,J2
| D̃I,J2·ñI,J2 dχdτ

)
(A3)

where, since Γ1,2 are parallel and have the same length,

ñI,J2 = −ñI,J1 = (ñr, ñϕ, ñt ) and |∂Cn
I,J2
| = |∂Cn

I,J1
|, (A4)

so we can rewrite∫ 1

0

∫ 1

0
|∂Cn

I,J1
|
(
D̃I,J1·ñI,J1 − D̃I,J2·ñI,J1 dχdτ

)
. (A5)

Now, by exploiting (103) the integrand can be rewritten as���∂Cn
I,J1

��� ( 1
2

(
f(qE

J1
) + f(qE

I ) + BI,J1

(
qE
J1
− qE

I

))
ñr

+
1
2

(
g(qE

J1
)+g(qE

I )
)
ñϕ +

1
2

(
qE
J1
+qE

I

)
ñt −

1
2
VI,J1

(
qE
J1
−qE

I

)
−1

2

(
f(qE

J2
) + f(qE

I ) + BI,J2

(
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I
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ñr
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2
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I

)
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(
qE
J2
−qE

I

))
.

(A6)

Figure A1. Portion of a general nonconforming mesh that satisfies

the constraints in Section 5.1. We consider an element I , and
its neighbors Ji, i = 1, . . . 6, respectively through the edges Γj, i =

1, . . . , 6. In particular Γ1,2 are parallel, Γ3,4,5,6 lie on vertical straight
lines and the barycenter of I, J1 and J2 have the same r coordinate.

We already know that the component multiplied by ñr van-
ishes at the equilibrium. Moreover, since the barycenters of
I, J1, J2 are aligned along the same straight line r = ri ,

qE
J2
= qE

J1
, (A7)

and so the terms multiplied by ñϕ and ñt cancel between
them. For what concerns the viscosity, in the case of the
Osher-Romberg scheme we refer to (105)-(106) that proves

VI,Ji

(
qE
Ji
−qE

I

)
= 0 (A8)

provided that the rest of the scheme is well balanced (as we
have just proven). For the HLL-type flux we have

−α0
I,J1

(
Ĩ I+J1

2
nr + Inϕ

) (
qE
J1
−qE

I

)
− α1

I,J1
RI,J1

+α0
I,J2

(
Ĩ I+J2

2
nr + Inϕ

) (
qE
J2
−qE

I

)
+ α1

I,J2
RI,J2

(A9)

where Ĩ I+Ji
2

vanishes as in the one dimensional case, RI,Ji
vanishes because we have already proven that the rest of
the scheme vanishes, and the term multiplied by nϕ cancels
because of (A7).

This paper has been typeset from a TEX/LATEX file prepared by

the author.
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