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Deciphering the state of immune silence in fatal
COVID-19 patients
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Since the beginning of the SARS-CoV-2 pandemic, COVID-19 appeared as a unique disease

with unconventional tissue and systemic immune features. Here we show a COVID-19

immune signature associated with severity by integrating single-cell RNA-seq analysis from

blood samples and broncho-alveolar lavage fluids with clinical, immunological and functional

ex vivo data. This signature is characterized by lung accumulation of naïve lymphoid cells

associated with a systemic expansion and activation of myeloid cells. Myeloid-driven immune

suppression is a hallmark of COVID-19 evolution, highlighting arginase-1 expression with

immune regulatory features of monocytes. Monocyte-dependent and neutrophil-dependent

immune suppression loss is associated with fatal clinical outcome in severe patients.

Additionally, our analysis shows a lung CXCR6+ effector memory T cell subset is associated

with better prognosis in patients with severe COVID-19. In summary, COVID-19-induced

myeloid dysregulation and lymphoid impairment establish a condition of ‘immune silence’ in

patients with critical COVID-19.
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Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) is the etiological agent of the coronavirus
disease (COVID-19) outbreak1 that is currently threatening

worldwide health. Italy was the first European nation to be
severely affected by COVID-19: the first death was reported on 21
February 20202; and as of 21 July 2020 more than 35,000 and
607,781 COVID-19-related deaths were registered in Italy and
worldwide, respectively.

Many studies highlight different, stepwise patterns of disease
progression, characterized by mild-to-moderate features in most
of the patients, with some of them who unfortunately progress to
a more-severe disease stage, which can lead to acute respiratory
distress syndrome (ARDS), respiratory failure, and eventually
death3,4. The contribution of host immune system in establishing
the worse prognosis has been already confirmed by several clin-
ical observations on SARS-CoV-2 and other SARSs-dependent
diseases. Indeed, lymphopenia and release of pro-inflammatory
cytokines such as CXCL10 (IP-10), interleukin (IL)-6, IL-8, IL-10,
tumor necrosis factor (TNF) and C-C motif chemokine ligand
(CCL)2 are enlisted as hallmark of severe SARS-CoV2 infection
and correlate with adverse clinical outcome4–6. Accordingly,
multicenter analysis on hospitalized COVID-19 patients estab-
lished among clinical parameters associated to critical outcome
not only age, co-morbidities and pre-existing diseases but also
immune alterations such as an increased neutrophil to lympho-
cyte ratio7, hinting that pathogenic disease characteristics are
worsened in sub-optimally efficient and immune dysfunctional
patients.

Whether a dysregulated host immune system, characterized by
the coexistence between pro-inflammatory and anti-inflammatory
mediators, represents a key feature of COVID-19 severe pro-
gression, as well as the molecular mechanisms driving this
imbalance, are not elucidated yet. Indeed, ARDS experienced by
COVID-19 patients has a unique signature that differs from ARDS
caused by any other infective or traumatic insults8. More speci-
fically, the increase in cytokine release in peripheral blood,
often associated with disease severity9 and commonly defined
as “cytokine storm”, is only partially involved in COVID-19
patients. Indeed, IL-6 plasma levels in COVID-19 severe patients
are 10- to 40-fold lower than previously reported ARDS patients,
and 1000-fold lower compared with patients facing cytokine
release syndrome following treatment with chimeric antigen
receptor T cells10,11. Thus, it is conceivable that SARS-CoV-2
infection may hijack host immune system in order to impair
antiviral immunity and trigger a chronic inflammation char-
acterized, but not limited, by the accumulation of inflammatory
cytokines that participate in acute lung injury in severe COVID-19
patients. Recent literature explored the ability of CoVs to skew
cytokine release by affecting IFN-dependent, antiviral response
towards other inflammatory pathways sustaining the activation
of inflammasome12. Noteworthy, delayed type I IFN signaling
impairs antigen-specific T-cell responses and promotes high
cytokine secretion in lung by incoming monocytes, resulting in
vascular leakage and fatal disease in SARS-CoV-infected mice13;
furthermore, type I IFN, T cells, and signal transducer and acti-
vator of transcription 1 are required for virus clearance and dis-
ease resolution in a mouse model of SARS-Cov2 infection14 and
impaired type I IFN activity results in worse outcome in human
COVID-19-infected patients15,16.

Severe COVID-19 patients display some shared features of sepsis,
including secretion of inflammatory cytokines, neutrophil activa-
tion, reduced function of natural killer cells (NK), and dendritic
cells (DC), altered monocyte activation, and lymphopenia6,17.
Several high-dimensional phenotypic and molecular approaches
were deployed in order to dissect the biology of virus–immune
system interaction during COVID-19 pathogenesis6,15,18–22. These

analyses were performed on peripheral blood and peripheral blood
mononuclear cells (PBMCs) isolated from patients with different
disease severity. This strategy streamlines sample accessibility,
identification of new peripheral predictive biomarkers, and allows
comparison within different studies with the caveat of not con-
sidering the local microenvironment in which the virus is acting.
Taking together, all these studies highlight the presence of an IFN
signature in mild-to-moderate patients and evidence a sustained
emergency myelopoiesis associated with an increase in immature
neutrophils and monocytes with immunesuppressive features in
critically ill patients. Unfortunately, none of the published studies
analyzed the immune regulatory properties of myeloid cells at the
functional level. A specific genetic locus including immune-related
genes (such as C-X-C motif chemokine receptor 6—CXCR6), was
found to be associated with worse prognosis in COVID-19
patients23. Studies exclusively performed on bronchoalveolar
lavage fluids (BAL), elucidated the sustained interplay between
macrophages releasing inflammatory cytokines and lung epithelial
cells in more-severe COVID-19 disease stages21, whereas others
pointed to clonally expanded CD8+ T cells in moderate patients22.

Here we provide an atlas of the immune landscape of COVID-
19 patients, integrating molecular (single-cell RNA sequencing,
scRNA-seq), functional and clinical data from local (lung) and
systemic (blood) tissues in order to define the complex interplay
between SARS-CoV-2 and the host immune system. In patients
with severe COVID-19, we show innate and adaptive immune
dysfunction, including loss of immunesuppression by blood
myeloid cells and the replacement of lung memory CD8+ T cells
by naive T cells, suggesting a state of “immune silence” that
correlates with a severe clinical manifestation and fatal outcome.

Results
Establishment of BAL and blood immune cell atlas of COVID-
19 patients. To gain insights into the immune deviation induced
by SARS-CoV-2 virus in COVID-19 patients, we performed
scRNA-seq analysis on BAL and matched peripheral blood
samples obtained from 21 severe patients admitted to Intensive
Care Units (ICU) and on peripheral blood of six mild SARS-
CoV-2-positive patients and five healthy donors (Fig. 1a).
Immunological features were assessed on the same cohorts,
integrating four more mild SARS-CoV-2 patients, by multiplex
enzyme-linked immunosorbent assay (ELISA), multiparametric
flow cytometry, and functional assay (see Methods). All the
patients were hospitalized at the University Hospital Integrated
Trust of Verona. Anagraphic information and clinical char-
acteristics of enrolled patients and healthy donors are summar-
ized in Tables 1 and 2, respectively.

Following strict quality controls (Supplementary Figure 1a–c),
cells were analyzed using the Pagoda2 pipeline24 and clustered
using Leiden community detection method25. The number of
analyzed high-quality cells was comparable between groups
(Supplementary Figure 1d). Fourteen significant cell clusters
(>1% of the cells) were identified, and gathered into four major
cellular subsets based on their mean expression profiles (Fig. 1b, c,
Supplementary Figure 1e): epithelial cells, lymphocytes,
monocytes–macrophages, and neutrophils. The epithelial cell
compartment contained only one cell cluster, which was
characterized by the expression of WFDC2, SPLI, and keratin
genes, e.g., KRT8 and KRT19. 5. Different lymphocyte clusters
were identified, namely B cells (CD79A, CD74), NK cells (CD247,
GZMB, GNLY), CD8+ T cells (GZMA, CD8A), CD4+ T cells
(LTB), and gamma-delta (γδ)-T cells (GZMH). Absolute cell
number of those subsets, for each patient and tissue origin, are
shown in supplementary table 1. Three main clusters of the
monocyte–macrophage compartment were depicted in our data

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21702-6

2 NATURE COMMUNICATIONS |         (2021) 12:1428 | https://doi.org/10.1038/s41467-021-21702-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


set, monocytes (LYZ, VCAN, FCN1), and two different macro-
phages clusters, the first one expressing high levels of cathepsin
genes such as CTSB and CTSL (Macrophage (1)), and the
second expressing metabolic-related genes (ACP5, FBP1, ALDH2)
and named macrophage (2). At last, diversity of the
neutrophil compartment was observed with five main subsets

(Supplementary Data 1). Those clusters could be further
differentiated based on the expression of key markers such as
CD16B (FCGR3B) mostly expressed in neutrophil clusters (1), (2),
and (3), interferon response genes and Fc receptor (IFITM3,
IFIT3, and FCGR3B) in cluster (1), S100 calcium-binding proteins
(S100A8, S100A9, and S100A12) in clusters (3) and (5), CXCL8 in

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21702-6 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:1428 | https://doi.org/10.1038/s41467-021-21702-6 |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


cluster (4) and inflammatory response genes (NFKBIA, IL1RN,
and SOD2) in cluster (5).

We observed a strong tissue specificity in the cell clusters
distribution (Fig. 1c, d). For instance, neutrophil clusters (4) and (5)
were BAL specific, whereas clusters (2) and (3) were blood specific,
and cluster (1) could be found in both tissues. As expected, M1-like
and M2-like macrophages could only be identified in BAL samples
while monocytes were mostly blood specific. Epithelial cells were
limited to the BAL samples with low representation of the total cell
population (1.1% of total cells).

We next analyzed possible associations between the proportion
of cell clusters and the clinical status of the patient. We observed
that severe patients exhibited a significantly higher proportion of
neutrophils in their blood samples compared with mild patients
and healthy controls (Fig. 1e, left panel). In contrast, the
lymphocyte proportion was decreased in severe patients com-
pared with mild patients and healthy controls (Fig. 1e, middle
panel), whereas the monocyte/macrophage compartment was not
affected by disease severity (Fig. 1e, right panel). As scRNA-seq is
prone to biases for population proportion estimation, we
validated our findings by performing blood cell counting and
systemically looking for differences between the three groups of
patients. Consistently with our scRNA-seq analysis, we observed
significant differences in the neutrophil and lymphocyte popula-
tion, but also a decreased erythrocyte number in severe patients
(Supplementary Figure 1f, g). No other cell population was
significantly affected by the disease (Supplementary Figure 1f).

COVID-19 is characterized by an excessive inflammatory
response that is sometimes referred to “cytokine storm” and is
deemed to drive the disease pathogenesis. As inflammatory
macrophages are suspected to be the main producer of inflamma-
tory cytokines such as IL-6 and IL-1β, we looked for possible
enrichment of inflammatory macrophages in the BAL from patients
who died owing to COVID-19. We found that the macrophage (1)
cluster had a signature recalling M1-like alveolar macrophages, as
previously described22, characterized by the expression of SPP1
(osteopontin, Fig. 1f, left panel). Surprisingly, these macrophages
were associated with a better prognosis of severe patients (Fig. 1f,
right panel), suggesting that this population can be a biomarker of
positive outcome. At last, we investigated the concentration of
cytokines in the plasma and systemically looked for differential
concentration between the classes of patients. Following multiple-
testing correction, we observed that only three cytokines were
significantly affected by the patient status: vascular endothelium
growth factor–alpha, IL-6 and Interleukin -1 receptor antagonist
(IL-1RA, encoded by the IL1RN gene). All three exhibited higher
concentrations in severe and mild patients’ plasma compared with
healthy controls, whose levels were close to the detection limit
(Supplementary Figure 1h–i).

Altogether, we comprehensively profiled >150,000 immune
cells from blood and BAL sampled from COVID-19 patients.
Coarse-grained clustering allowed us to detect a severity
associated neutrophilia and lymphopenia, but also a SPP1+

macrophage population associated with severe patients’ survival.
Interestingly, only the concentration of three cytokines was
associated with disease severity, suggesting that massive cytokine
release in blood is not present in COVID-19 patients. However,
the restricted size of our cohort limits the statistical power of our
analysis and might hinder the detection of other disease-
associated variables.

COVID-19 is associated with neutrophil activation. Neutrophils
are the most common white blood cells and are the first cells to
migrate to the site of infection. Our data set contains 42,238 high-
quality blood neutrophils, therefore allowing an in-depth analysis
of the association of neutrophil activity and SARS-Cov2 patho-
genesis. We performed a refined clustering of neutrophils, which
identified 10 different clusters (Fig. 2a, b), including a distinct and
rare subtype expressing CEACAM8, LTF, and DEFA3 genes
corresponding to immature neutrophils19,20,26. Among the other
clusters, we observed both a resting neutrophil state (ICAM1,
CXCL8) and an array of activated neutrophil clusters. Among
them we identified an interferon-stimulated genes (ISGs: RSAD2,
OAS2, IFIT1), a serine protease inhibitor (PI3 and SLPI), and a
chemokine (CCL4, CCL3L3) expressing clusters, suggesting of
a strong heterogeneity of the neutrophil polarization across
patients.

Fig. 1 Establishment of a BAL and blood-derived immune cell atlas from patients with COVID-19. a Description of the cohort highlighting the source of
BAL (only from severe patients, in red) and blood samples (from severe and mild patients and healthy donors, in red, orange and blue, respectively). b Two-
dimensional UMAP embedding of the scRNA-seq data. Dots (cells) are colored according to their respective metacluster (Epithelial cells, lymphocytes,
neutrophils, and monocytes/macrophages). c Expression heatmap of the 14 significant clusters detected in our scRNA-seq dataset. The top five best
markers were selected for each cluster. d Two-dimensional density plot of the UMAP embedding of the BAL (upper panel) or the blood (lower panel) cells.
e Proportion of neutrophils, lymphocytes, and monocytes/macrophages in blood samples across patient status. For each of the cell types, an ANOVA test
was performed and corrected for multiple-testing by Bonferroni correction (one-sided Fisher test). Median and 5–95% theoretical quantiles are shown.
N= 32 independent clinical samples were used, including 5 derived from healthy patients, 6 from mild patients, and 21 from severe patients. f Expression of
the SPP1 (osteopontin) gene across cell types (left panel) and distribution of Macrophages (1) among total BAL cells based on severe patient clinical
outcome (right panel). A two-sided Welch’s t test was performed to compare proportion between the two groups of patients (t= 2.2 with a degree of
freedom equal to 16.5). Median and 5–95% theoretical quantiles are shown. Normality was tested using a one-sided Shapiro–Wilk test for each individual
group (p= 0.064 and p= 0.32 respectively). N= 21 independent clinical samples were used, including 13 derived from patients who survived and 8 from
deceased patients.

Table 1 Anagraphic and coexisting disorders of enrolled
patients and healthy donors.

Characteristics Healthy
controls
N= 5

Mild
patients
N = 10

Severe
patients (ICU)
N= 21

Anagraphic
Age, yr: median (IQR)* 66 (64–73) 69 (56–80) 67 (58–70)
Male, no. (%) 4 (80) 6 (60) 17 (81)
Coexisting disorder, no.
(%)
Any 2 (40) 10 (100) 17 (81)
Obesity 0 (0) 2 (22) 3 (14)
Hypertension 2 (40) 10 (100) 11 (52)
Diabetes 0 (0) 3 (30) 7 (33)
Chronic obstructive
pulmonary disease

0 (0) 2 (20) 1 (5)

Cardiovascular disease 0 (0) 5 (50) 3 (14)
Chronic kidney disease 0 (0) 2 (20) 1 (5)
Active malignancies 0 (0) 0 (0) 2 (10)

IQR denotes interquartile range.
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To define neutrophil compartment composition in an un-
supervised fashion, we used the correspondence analysis (CA), a
method similar to principal component analysis but adapted to
categorical data (see Methods). CA second component was able
to stratify healthy controls, mild, and severe patients (Fig. 2c,
Supplementary Figure 2a, b). We observed that severe, and to a
lesser extent mild patients, were associated to a replacement of
resting neutrophils by multiple clusters including the ISGs,
CD177, and PI3-expressing neutrophils (Fig. 2d, Supplementary
Figure 2c). Interestingly, immature neutrophils were only
detected in both mild and severe patients, albeit at a low level
(<5% of neutrophils)—except in four severe patients (Fig. 2D
right panel). We systemically computed Pearson’s correlation
between CA dimension 2 and each measured biological and
clinical variables and identified IL-6 and IL-1RA concentration as
the most positively correlated variables, with erythrocyte and
partial CO2 concentration (pCO2) negatively correlating with CA
dimension 2 (Supplementary Figure 2d). Altogether, our refined
analysis of blood neutrophils revealed that resting neutrophils are
replaced by various neutrophil clusters endowed with inflamma-
tory and immature signatures in both mild and severe patients.

Myeloid immunesuppression predicts COVID-19 patient survival.
As highlighted by our scRNA-seq analysis, the complexity of the
blood neutrophil compartment often characterizes both mild and
severe COVID-19 patients, limiting the number of cells other
than neutrophils that can be solved by scRNA-seq. Recent evi-
dence suggested the presence of monocyte alteration in SARS-
CoV-2-infected patients, mostly associated with the expansion
and accumulation of immunosuppressive monocytes27. Owing to

the low number of blood monocytes sequenced in our data set
(9103 cells, corresponding to <300 cells per patient) and the
limited ability of scRNA-seq to provide functional information at
this resolution, we purified circulating CD14+ monocytes from
blood and used them to perform T-cell immunosuppression
assays. Both cellular and supernatant-associated immunesup-
pressions were assessed. In addition, immunosuppressive activ-
ities of both normal density (NDN) and low density (LDN)
neutrophil supernatants were also measured.

All samples caused some degree of T-cell suppression, with
monocytes and monocyte supernatants exhibiting similar activity,
whereas LDN and NDN exhibited the highest and lowest
suppression activity, respectively (Supplementary Figure 2e).
Suppression rate by monocytes was significantly lower in healthy
controls compared with both mild and severe patients but severe
patients displayed a higher variance than mild patients, with the
suppression rate ranging from 10% to ~80% (Fig. 2e left panel).
Surprisingly, this heterogeneity could be partly explained by the
clinical outcome of the severe patients: while severe patients who
survived displayed high T-cell immunosuppression by monocyte
supernatants, monocyte supernatants of deceased patients were
unable to dampen T-cell proliferation (Fig. 2e, right panel). This
inverse association between immunosuppression and patient
survival was not limited to monocyte supernatant as it could
be observed, albeit less significantly, with LDN supernatants
(Supplementary Figure 2f).

Myeloid cells suppress T-cell activation through multiple
strategies including anti-inflammatory cytokine secretion, nutri-
ent depletion, or immune checkpoint engagement28. To gain
further insight in COVID-19-induced immunesuppression, we

Table 2 Clinical characteristics of enrolled patients and healthy donors.

Characteristics Healthy controls N= 5 Mild patients N= 10 Severe patients (ICU) N= 21

Median (IQR) interval from symptoms onset (S.O.) and outcome
Days from S.O. to Hospitalization - 5 (2–6) 6 (4–7)
Days from S.O. to ICU admission - - 7 (6–10)
Days from S.O. to dismission from ICU - - 38 (23–45)
Days from S.O. to dismission from Verona Hospital - 21 (13–24) 43 (32–66)
Outcome, no. deaths (%) - 1 (10) 8 (38)
Clinical features at sampling
APACHE score, median (IQR) - - 23.5 (15–28.5)
SOFA score, median (IQR) - 2 (0.8–3.3) 6 (4–7)
pCO2 [35–40mmHg], median (IQR) - 34 (31–41) 48 (41–52)
pO2 [80–100mmHg], median (IQR) - 59 (55–64) 77 (69–97)
FiO2 %, median (IQR) - 26 (21–31) 60 (50–90)
P/F ratio mmHg, Median (IQR) - 213 (194–267) 146 (71–177)
Score on ordinal scale (1–8), Median (IQR) - 4 (3–4) 7 (7–7)
Laboratory findings at sampling, Median (IQR)
Hemoglobin (135-160 g/L) 151 (145–153) 120 (98-137) 104 (89–112)
Leukocytes (4.3-10 109/L) 6.7 (6.2–8.8) 5.6 (5.2–6.4) 12.8 (9.6–15.8)
Neutrophils (1.8-8 109/L) 3.8 (3.4–4.9) 3.8 (3.1–4.6) 10.3 (7.7–13.4)
Lymphocytes (1.2–4 109/L) 2.2 (1.7–2.8) 1.3 (1–1.8) 1.2 (0.7–1.4)
Monocytes (0.2–1 109/L) 0.7 (0.4–0.8) 0.5 (0.4–0.8) 0.7 (0.4–1.1)
Eosinophils (<0.45 109/L) 0.3 (0.3–0.4) 0.1 (0–0.1) 0.2 (0.1–0.4)
Basophils (<0.2 109/L) 0.05 (0.04–0.08) 0.02 (0.01–0.04) 0.04 (0.02–0.07)
Platelets (150–400 109/L) 233 (216–234) 248 (160–311) 285 (217–368)
C-reactive protein [inf. a 5 mg/L] - 24 (22–56) 131 (75–158)
P-Ferritin [30–300 μg/L] - 947 (342–1368) 1262 (735–1647)
P-D-Dimer [inf. a 500 μg/L] - 1600(690–2501) 2250 (1319–3684)
Thrombin clotting time (pt) 0.82-1.17 INR - 1.06 (0.98–1.1) 1.14 (1.09–1.25)
P-fibrinogen [2.00–4.00 g/L] - 4.2 (3.3–5) 6.8 (5.4–7.8)
Microbiology analysis on BAL at sampling
Lung infection (CFU > 104), no. (%) - - 10 (48)
Pseudomonas lung infection (CFU > 104), no. (%) - - 7 (33)

IQR denotes interquartile range, PCO2 carbon dioxide partial pressure, PO2 oxygen partial pressure, FiO2 fraction of inspired oxygen, P/F PO2/FiO2, CFU denotes colony-forming units.
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profiled monocyte expression of PD-L1 (CD274), ARG1, and
HLA-DR by flow cytometry (Supplementary Figure 2g). We
observed a clear relation between mean ARG1 expression by
monocytes and monocyte immunosuppressive function (Spear-
man ρ= 0.95; Fig. 2f), which could be fitted using a modified
Hill function (see Methods), revealing a strong Hill coefficient

(n= 40.2). HLA-DR expression was also associated with
immunesuppression, but in a different manner compared with
ARG1 (Fig. 2g). HLA-DR mean expression and immunesuppres-
sive activity clustered three groups of patients: healthy controls
with a high HLA-DR expression and low immunosuppression;
mild patients and severe patients who survived with both high
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suppression and high HLA-DR expression; a third group of
severe patients with low suppression and HLA-DR expression. As
more than half (7/12) of the patients from the last groups died, we
hypothesize that this cluster corresponds to patients suffering
from terminal immune dysfunctions and therefore at higher risk
of fatal outcome. At last, we observed a limited association
between PD-L1 and immunosuppression (Spearman ρ= 0.57)
(Supplementary Figure 2h). Furthermore, the concentration of 20
different cytokines, including both pro-inflammatory (IL-6, TNF)
and anti-inflammatory ones (IL-10) was assessed in monocyte
supernatant; however, none of the cytokines analyzed correlated
with immunesuppression (absolute Spearman ρ lower than 0.4;
Supplementary Figure 2i). In summary, the immunosuppressive
activity of monocytes and neutrophils is a strong predictor of
severe patient survival and is primarily associated with ARG1
expression, and to a lesser extent with PD-L1 but not with any
specific cytokine secretion.

COVID-19 progressively affects blood and lung lymphocyte
compartments. The lymphocyte compartment is extremely
heterogeneous and dynamic as it contains various cell types
with properties and functions that can evolve upon inflamma-
tion and infection. By re-clustering cells identified as lympho-
cytes, we were able to obtain a finer picture of their
heterogeneity. We identified 14 clusters, including several
effector and memory T cells, naive T cells, and activated γδ-T
cells (Fig. 3a and Supplementary Figure 3a). Interestingly we
were able to identify a cluster of B cells expressing high level of
TCF4 that was specific to the blood of patient 8, a patient
suffering from chronic lymphocytic leukemia (CLL). We
assumed that those cells were neoplastic and were thus removed
from the analysis. As expected, significant differences could be
observed between blood and BAL lymphocytes, with memory,
effector, and dividing T cells mostly found in the BAL and NK
cells in the blood (Fig. 3a, right panel).

To identify trends in the lymphoid compartment composition
in an un-supervised manner, we used CA, as described above.
The first CA dimension of the lymphoid population perfectly
separated the blood and BAL samples (Fig. 3b and Supplementary
Figure 3b) and captured a major trend in the BAL lymphocyte
population. We therefore computed the correlation between this
dimension and the various clinical features measured and noticed
a striking negative correlation with the Sequential Organ Failure
Assessment (SOFA) score (Fig. 3c) but not with other variables
(Supplementary Figure 3c). In opposition, a parallel analysis
performed on the blood of severe patients identified no clinical
parameters associated with CA dimension 2 (Supplementary

Figure 3d), strengthening the importance to analyze the main
constituency affected by the disease. Among the six major BAL
lymphocytes clusters (>5% of total BAL lymphoid cells clusters),
CD8+ T resident memory (CD8+ Trm, expressing ZNF683 and
ITGA1) had the strongest positive correlation with CA dimension
1 (R= 0.79), followed by CD4+ T resident memory (CD4+ Trm)
(R= 0.17). Interestingly, CD4+ Trm expressed several immune
checkpoints such as CTLA-4 and PD-1 (encoded by PDCD1),
suggesting that they may participate in the immune regulatory
landscape (Fig. 3d). The naive T-cell cluster (IL7R, LEF1) had the
strongest negative correlation with the CA dimension 1, and
therefore the strongest positive association with the SOFA score
(R=−0.66). Three clusters were negatively associated with CA
dimension 1: effector CD8+ T cells (R=−0.30, LAG3 and CD27),
dividing T cells (R=−0.16, MCM10, E2F8) and activated γδ-T
cells (R=−0.13, XCL1/2 and TRDC).

To test whether CA was also able to capture meaningful
variations in blood lymphocyte population, we analyzed the
potential association between patient status and CA dimension 2
as it captured an important trend in blood samples (Fig. 3b).
Interestingly, CA dimension 2 was significantly associated with
patient clinical status with a higher value being specific for severe
patients (Fig. 3e, left panel). This dimension was associated with
two populations of NK cells and two populations of γδ-T cells
(Fig. 3e, g), i.e., resting/activated NK cells, and resting/activated
γδ-T cells. Both activated NK and γδ-T cells were associated with
severe COVID-19 patients while resting cells were found in
healthy controls and mild patients only (Fig. 3e and Supplemen-
tary Figure 3e). Activated NK and γδ-T cells were associated with
an increased expression of cytotoxicity genes and activation
markers such as PRF1, NKG7, KLRG1, and CD247 (Fig. 3g) while
resting NK cells were featured by a higher expression of the
inhibitory KIR receptors KIR2DL1 and KIR3DL2 and resting γδ-
T cells by a higher expression of TNF and DUSP8 (Fig. 3g).
Consistently with our initial analysis of the cytokine and blood
cell count data, we found that CA dimension 2 was positively
associated with IL-1RA plasma concentration and neutrophil
counts and negatively associated with erythrocyte count and
hemoglobin concentration (Fig. 3f). Taken together, our analysis
of the lymphoid compartment revealed that the presence of a
naive T-cell population in BAL is associated with high clinical
severity, whereas the blood of severe COVID-19 is characterized
by the activation of NK and γδ-T cells.

Memory T-cell migration and disease severity is linked to CXCR6.
Expression profiles generated by scRNA-seq can be overlaid with
genome-wide association studies (GWASs) to pinpoint specific

Fig. 2 Analysis of blood myeloid cells shows unique features associated with patient status and outcome. a Expression heatmap of the 10 clusters
identified among the blood neutrophils. b Two-dimensional UMAP embedding of the blood neutrophil. Cells are colored according to their cluster. c Scatter
plot of the Correspondence Analysis (CA) of the blood neutrophil populations. d Proportion of resting neutrophils (left panel), ISGs neutrophils (middle
panel) and immature neutrophils (right panel) among blood neutrophils according to patient clinical status. A one-sided Tukey’s range test was used in the
left panel while Kruskal–Wallis rank test was used in both middle and right panel. Median and 5–95% theoretical quantiles are shown. Normality of the
distribution in the left panel was assessed using a Shapiro–Wilk test in each group individually (p= 0.39, p= 0.99, and p= 0.043, respectively). N= 32
independent clinical samples were used, including 5 derived from healthy patients, 6 from mild patients, and 21 from severe patients. e T-cell suppression
ability of CD14+ monocytes according to clinical status (right) or to ICU outcome (severe patients only, right panel). A Tukey’s range test was used in the
left panel while a two-sided Welch’s t test was performed in the right panel (t= 4.9 with a degree of freedom equal to 11.8). Median and 5–95% theoretical
quantiles are shown. Normality of the distribution in the right panel was assessed using a Shapiro–Wilk test in each group individually (p=0.91 and p=0.7
respectively). In the left panel, N= 29 independent clinical samples were used, including 4 derived from healthy patients, 7 from mild patients and 18 from
severe patients. In the right panel, N= 18 independent clinical samples were used, including 11 derived from patients who survived and 7 from deceased
patients. f Association between CD14+ monocytes ARG1 Mean Fluorescence Intensity (MFI) and immunesuppression. The dashed line corresponds to the
fitted Hill-like function. N= 29 independent clinical samples were used, including 4 derived from healthy patients, 7 from mild patients and 18 from severe
patients. g Association between CD14+ monocytes HLA-DR Mean Fluorescence Intensity (MFI) and immunesuppression. Source data are provided as a
Source Data file.
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cell types and identify potential cellular and molecular mechan-
isms, explaining the described genetic associations29. In addition
to the ABO group locus, a recent study found that another
genomic locus is associated with the development of severe forms
of COVID-1923. However, how this locus contributes to the
pathology is unclear. As six different genes were covered by the

peak association (SLC6A20, LZTFL1, CCR9, FYCO1, CXCR6, and
XCR1), we looked at their expression in the four different cellular
compartments in both blood and BAL samples. Strikingly, only
CXCR6 was expressed at a detectable level (Fig. 3h left panel, S3f)
and specifically in BAL lymphocytes, effector, and memory T cells
(Tem and Trm, respectively) and not by the naive T-cell cluster
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(Fig. 3h, right panel). As the risk allele is associated with a
decreased expression of CXCR6 and that CXCR6 is expressed by
key protective populations, our data strongly suggest that patients
with the risk allele have a lower amount of the protective T-cell
populations in the lung, therefore increasing the risk of devel-
oping severe COVID-19 forms.

Viral landscape of COVID-19 patients affects immune profile. At
the time of ICU admission, most COVID-19 patients exhibited a
low viral load in the lung, suggesting that the virus had been
mostly eliminated and that at this time the pathology was mainly
driven by an inappropriate immune response rather than by viral
replication. To validate this hypothesis, we applied our recently
published tool, Viral-Track18 on the BAL-sequencing data in
order to quantify the SARS-CoV-2 viral load and detect possible
secondary viral infections.

Quantification of SARS-CoV-2 viral reads revealed that in most
of severe patients (17/21), no SARS-CoV-2 reads could be found
(Fig. 4a). Out of the four SARS-CoV-2-positive patients, three had
low levels of viral reads (<10 SARS-CoV-2 reads per million -
RPM), whereas patient 8 displayed >1000 SARS-CoV-2 reads RPM.
This unusual amount of reads was not due to a bias in the
proportion of epithelial cells (Supplementary Figure 4a). Consistent
with our previous scRNA-seq study of SARS-CoV-2, we observed
that most reads were located in the very 3′-end of the viral genome
(Fig. 4b), probably due to the 3′ bias of our scRNA-seq method and
to nested replication process of the virus30. Surprisingly, we also
found that two patients had a significant amount of Herpex Simplex
Virus 1 (HSV-1) reads (NCBI reference number: NC_001806) with,
respectively, 265.392 and 46.229 viral reads in patients 4 and 25,
respectively (Fig. 4c, Supplementary Figure 4b). Coverage analysis
revealed dozens of peaks that corresponds to viral genes, suggesting
an active transcription of the viral genes (Fig. 4d), whereas the
quantification of the viral genes expressed revealed that the most
expressed genes include a virion component (US10) and inhibitors
of the immune response (US11 and US12) (Supplementary
Figure 4c). We validated this finding by performing a multiplex
PCR test for four different Herpesviridae, HSV-1, HSV-2, human
cytomegalovirus (HCMV), and varicella-zoster virus (VZV) on
samples from patients 8 (CLL patient, negative control), 13
(negative control), and patient 25 (Supplementary Figure 4). None
of the viruses were detected in samples from patient 8 and 13
but HSV-1 was specifically detected in BAL samples of patient 25
that were collected at two different moments during the patients’
stay in ICU.

We then looked for a possible explanation for the high SARS-
CoV-2 viral load of patient 8. As mentioned before, it appeared that
patient 8 suffered from CLL, a B-cell malignancy characterized by
the accumulation of small, mature-appearing lymphocytes in the
blood, bone marrow, and in lymphatic system31. CLL patients often
suffer from hypogammaglobulinaemia, i.e., a reduction in matu-
rated and high-affinity antibodies. We therefore quantified the
amount of IgG produced toward the receptor-binding domain

(RBD) region of the viral spike protein (Fig. 4e): while healthy
controls and most of the mild patients lacked any RBD-targeting
IgG, all severe patients but patient 8 had high levels of these
immunoglobulins. Therefore, the lack of an efficient antibody
response might have prevented the complete clearance of the virus
from the lung in this patient. We tried to investigate which BAL
cells from patient 8 were infected by SARS-CoV-2. We observed
that a reduced number of cells exhibited an extremely high number
of viral UMIs (several hundreds to several thousands), but
interestingly those cells were mostly apoptotic cells (high levels of
mitochondrial reads), neutrophils or in some rare case, cells that
expressed extremely low amount of reads (Fig. 4f, Supplementary
Figure 4e–f). At last, we looked for the possible effects of high-viral
loads on the immune system state: for this purpose, we performed a
CA on all blood cell populations. We observed that the first
dimension was associated with high-viral load, as patients 4 and 8
had the highest score among all patients with significant correlation
between total viral load and the first dimension of the CA (R= 0.80,
Supplementary Figure 4g). Furthermore, this CA dimension
correlated with a subset of blood neutrophils that specifically
expressed ISGs such as IFIT1, RSAD2, and OAS3 (Fig. 4h, i) but also
PD-L1, suggesting that a high-viral load in the lung can significantly
influence the blood immune landscape in COVID-19 patients.

Discussion
The real boundaries between sepsis induced by either SARS-CoV-2
or bacteria are still ill-defined and need to be further demarcated.
Indeed, hyper-inflammation associated with immunesuppressive
state are clinical characteristics shared among these pathologic
conditions, which underscore a susceptibility state defined as sepsis-
induced immunoparalysis32. In this disease phase, innate and
adaptive dysfunctions cooperate for the ineffective clearance of the
pathogen, vulnerability to secondary infections, and reactivation
of latent viruses33. Immunoparalysis is likely the ground for the
HSV-1 superinfection observed in some ICU patients in our study.
HSV-1 infection has been indeed identified in patients receiving
prolonged mechanical ventilation and can contribute to worse
outcome34. A recent analysis confirms HSV-1 reactivation in almost
50% of ARDS COVID-19 patients through longitudinal follow-up,
attributed to the immunesuppressed conditions of ARDS COVID-
19 patients35.

In our study, we identified at least 10 different neutrophil
states, including resting, activated, and immature cells in whole
blood and BAL. Although in mild patients the resting populations
were mainly represented, severe patients were characterized by
multiple clusters of neutrophils expressing ISG-associated genes,
CD177, PI3, and CEACAM8, reminiscent of neutrophil subsets
presenting an activated or immature phenotype, in line with
recent published data19,20. To evaluate the contribution of neu-
trophils in regulating the immune responses, marked by both
immunosuppression and inflammation, we isolated neutrophils
from the LDN and NDN fractions from peripheral blood of
severe and mild patients. For the first time, we demonstrated at a

Fig. 3 Cellular clusters associated with better patient prognosis. a Two-dimensional UMAP embedding of lymphocytes colored according to their cluster
(left panel) or their tissue (right panel). b Correspondence Analysis (CA) of blood and BAL lymphocytes. c Association between SOFA score and CA
dimension 1 score of BAL samples. d Expression heatmap of the BAL lymphocytes belonging to the cell clusters that are associated with CA dimension 1.
The 10 best markers are shown for each cluster. e Distribution of CA dimension 2 score of blood samples according to clinical status (left panel), and
proportion of resting (middle panel) and activated NK (right panel) according to clinical status. A one-sided Tukey’s range test was used to compute the
shown p values. Median and 5–95% theoretical quantiles are shown. N= 32 independent clinical samples were used, including 5 derived from healthy
patients, 6 from mild patients, and 21 from severe patients. f Ranked Pearson correlation between biological features and CA dimension 2. g Expression
heatmap of the blood lymphocytes belonging to the cell clusters that are associated with CA dimension 2. The 20 best markers are shown for each cluster.
h Mean expression of CXCR6 across different tissues and cell types (left panel) and among the different BAL lymphocytes clusters associated with CA
dimension 1. Source data are provided as a Source Data file.
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Fig. 4 Analysis of viral landscape in patients with severe COVID-19. a Number of SARS-CoV-2 UMIs in each BAL sample. b Coverage plot of SARS-CoV-
2 genome. c Viral-Track analysis of patients 4 and 25. d Coverage plot of HSV-1 genome. e Quantification of IgG targeting the RBD domain of the SARS-
CoV-2’s spike protein. OD: optical density. Median and 5–95% theoretical quantiles are shown. N= 30 independent clinical samples were used, including 5
derived from healthy patients, 6 from mild patients, and 19 from severe patients. f Mean number of SARS-CoV-2 UMIs across patient 8 cell clusters. g CA
analysis of total blood cell population. h Correlation between cell clusters proportion and total blood CA dimension 1. i Expression heatmap of cells
belonging to resting or ISGs neutrophils in peripheral blood. Source data are provided as a Source Data file.
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functional level that LDN neutrophils can suppress T-cell pro-
liferation in COVID-19 patients. More importantly, we identified
in the loss of suppressive activity by LDN-derived supernatant a
worse clinical outcome biomarker for severe patients (Supple-
mentary Figure 2f, right panel). To support our findings that the
aforementioned LDNs are reminiscent of the PMN-MDSCs
found in cancer and in sepsis36,37, we interrogated our scRNA-
seq data and found that neutrophils, in both mild and severe
COVID-19 patients, contained an immature cluster expressing
CEACAM8 and DEFA3, reminiscent of emergency myelopoiesis.
Although this is in line with results obtained by Schulte—
Schrepping et al.20, we were not able to observe the upregulation
of CD64 and PD-L1, as recently described in neutrophils during
sepsis38 and in neutrophils derived from whole blood of COVID-
19 patients20.

Interestingly, scRNA-seq unveiled a cluster of immature
CD14+ monocytes, with low HLA-DR and expressing MPO,
PLAC8, and IL1R2, in the blood of COVID-19 patients and
similar cells were reported in sepsis20,39. These findings shed light
on the practice to measure the levels of HLA-DR in monocytes as
marker for sepsis, preconized but never definitively proven
as mortality biomarker for severe sepsis, especially in ICU
patients40,41. Considering the emerging cell heterogeneity, HLA-
DR levels are insufficient to reach a predictive value for patient
mortality, if not associated with functional analyses. Indeed, our
study shows that HLA-DR reduction in monocytes, an estab-
lished hallmark of many COVID-19 patients20, could define
severe patients with higher susceptibility to a fatal outcome when
combined with the absence of suppressive activity by monocytes
(Fig. 2g). CD14+HLA-DRlow monocytes are expanded in severe
COVID-19 patients, a likely consequence of the pervasive
emergency myelopoiesis triggered by SARS-Cov2 infection39.
Based on gene expression profiles, these cell subsets were deemed
to have immunesuppressive features, which were not functionally
addressed in the study. To the best of our knowledge, we show for
the first time that immunesuppression is a hallmark of COVID-
19 evolution (Fig. 2e) and could be the basis for gradual loss of
effector/memory in favor of naive T cells (Fig. 3d). Moreover, we
defined a correlation between ARG1 expression and the immu-
nosuppressive activity of monocytes (Fig. 2f), with a minor
contribution of PD-L1 (Supplementary Figure 2g). We found that
loss of function in myeloid cells mirrors an immune pathological
status progressing from immune paralysis to “immune silence”
associated with higher susceptibility to death event (Fig. 2e,
Supplementary Figure 2f). These results corroborates the previous
findings showing the implication of CD14+ARG1+ immune-
suppressive monocytes in patients with pancreatic cancer who
also share increased levels in some inflammatory cytokines28,42.
Further studies are necessary to define whether these cells are
immature precursors of the granulocytic/monocytic lineage or a
new subset of circulating monocytes, as well as the extent of their
overlap with the immature CD14+ cells described in COVID-19
patients and sepsis20,39.

On the light of several recent studies claiming that immuno-
suppression is a hallmark of COVID-1943,44, and support the
clinical use of anti-rheumatic drugs, our data pinpoint the
repurposing of these drugs exclusively for the treatment of mild
and severe patients with a favorable prognosis.

Noteworthy, our study identifies new markers associated with
disease severity in the peripheral blood of patients, such as the
proportion of activated/resting γδ-T cells (Supplementary Fig-
ure 3e), which integrate with others already described and con-
firmed in our study (i.e., NK cells and neutrophils activation45,46,
which might be responsible for healthy tissue damage47). We
believe these data might have important implications from a
clinical and biological point of views, potentially supporting

physicians in patient stratification. More importantly, the exten-
sive molecular analysis performed in BAL samples reveals that
lymphoid cell landscape perfectly mirrors compromised healthy
conditions of the patients and identifies in the increase of naive
T cells in spite of CD4+ Trm and CD8+ Trm the worst clinical
scenario (Fig. 3c, d). These results further expand our knowledge
on the alteration of lung T-cell compartment after SARS-CoV-2
infection, as initially described48.

Naive T cells unbalance is not clearly observed in peripheral
blood of the same patients, suggesting that systemic analysis,
despite many advantages, will not provide complete picture of the
disease. In this study, we found CXCR6 highly expressed in lung
CD4+ and CD8+ Trm and Tem, whose accumulation is generally
associated with lower SOFA score, as shown in Fig. 3c, d, sug-
gesting that the accumulation of Trm and Tem is beneficial for a
better outcome of these patients. Accordingly, CXCR6 expression
was recently associated with less-severe forms of COVID-1923.
Thus, we envision a scenario in which CXCR6 orchestrates Trm
and Tem cells partitioning within the lung, directing them to the
airways49.

Collectively, the molecular, phenotypic, and functional mye-
loid and lymphoid cell characterization performed in both
peripheral blood and lung points out a profound immune dys-
regulated status, which can support secondary bacteria and virus
infection in critically ill patients (Table 2, Fig. 4c, Supplementary
Figure 4a). Indeed, as a sign of immune paralysis, monocytes in
septic patients do not respond to LPS stimulation with the
upregulation of NF-κB-dependent genes, including TNF39.
Although this was not investigated in our study, we nonetheless
show evidence that monocytes from patients who had a fatal
outcome in ICU were dysfunctional and had lost the immune
regulatory properties. It is thus likely that monocytes in term-
inally ill patients are flawed in different biological responses,
possibly including the ability to differentiate into M1 macro-
phages in the lung, as observed in the BAL of these patients.
Together with the reset of lymphoid arm indicated by the
relative abundance of naive T cells, this configures a state of
“immune silence” and supports the deploying of drugs that can
“reawaken” host immune system. “Immune silence” could be
related to the extensive immaturity of this cell population, as a
consequence of an abnormal and skewed myelopoiesis. Alter-
natively, it might be a pre-existing disorder making this group of
patients unable to cope with the hyper-inflammatory state.
Longitudinal studies are mandatory to dissect between these
different disease developments.

Our data support the administration of drugs that aim at
switching off and re-starting the perturbed host immune system
in both the adaptive and innate arms, as suggested by the efficacy
of recently adopted dexamethasone in severe COVID-19
patients50. By combining scRNA-seq with functional assays, we
were able to identify features associated with disease severity and
clinical outcome of COVID-19. However, our study is not flaw-
less and suffers from limitations, including experimental design
ones. First, this is not a longitudinal study. Therefore, it is not
possible to track at single-cell level the local and peripheral
immune landscape dynamic evolution of patients. Moreover,
single sampling approach is very likely underestimating the
number of patients facing HSV-1 infection. Second, the absence
of BAL samples from mild patients prevents us to generalize and
validate the observations made on severe ones. Moreover, the
absence of BAL samples from healthy control deprives us of
estimating the basal state and composition of the lung immune
system. However, the invasiveness of BAL collection procedure
and the possible serious negative consequences on the health of
both spontaneously breathing, mild COVID-19 patients and
healthy donors raises important ethical question that need to be
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considered while designing COVID-19 cohorts. Finally, the BAL
samples used in our study is composed by a mix of physiologic
solution, which is mechanically introduced and bronchoalveolar
fluid. This method captures infiltrating immune cells in spite of
non-immune cell types (i.e., epithelial cells), as shown by recent
autopsy reports51. Lung biopsy represents an interesting alter-
native to BAL but is far riskier, especially for patients suffering
from ARDS, such as severe COVID-19 patients, and the amount
of available material is limited. An alternative approach would be
the collection of samples from deceased patients; however, as
most patients died after several weeks in ICU, the biological
features observed during the autopsy might either be linked to the
disease itself or to the extended stay in ICU. In the case of lung
biopsy, highly multiplexed imaging techniques such SeqFISH52 or
CODEX53, but also spatial transcriptomic technologies54 could be
explored. Such approaches would provide gene expression spatial
pattern at a near single-cell resolution and gain essential infor-
mation concerning potential cellular interactions. At last, we
observed that several patients had a significant interferon-induced
polarization of blood neutrophils that could not be solely
explained by the virus presence in the lung. Such polarizations
might also be due to secondary infections, but mostly bacterial
rather than viral. Bacterial secondary infection is a condition that
critically ill patients often face before entering or during ICU
hospitalization. The inflamed fluid-filled alveolar tissue observed
during SARS-CoV-2 infection represents indeed an ideal
habitat for bacterial growth of pathogens including Pseudomonas
aeruginosa and Staphylococcus aureus55. According to this, many
studies showed moderate to high percentages (~22–73%) of sec-
ondary bacterial infection in critically ill patients hospitalized in
ICU during SARS-CoV2 severe pneumonia3,56,57. This result
strengths and extends what already observed in previous epi-
demic disease, such as SARS-CoV58 and MERS59. Therefore, an
extensive metagenomic analysis of the BAL could reveal disease-
associated bacterial landscape and be related to specific immune
phenotype.

Overall, our study expands the biological insight on the
multifaceted virus–immune system interplay and provides a solid
background to design and test new candidate drugs for severe
COVID-19 patients.

Methods
Study design and clinical considerations. This study includes a group of
21 severe COVID-19 patients admitted to ICU, 10 mild SARS-CoV-2 patients and
5 healthy donors. The anagraphic and clinical features of the three groups of
individuals are recapitulated in Table 1 and 2. The clinical condition of the patients
was defined according to an eight-category ordinal scale60. In brief, score 1 and 2
for not hospitalized patients with no limitations/limitations of activities, respec-
tively; score 3 and 4 for hospitalized patients, not requiring/requiring oxygen
therapy by mask, respectively; score 5 and 6 for hospitalized patients requiring
non-invasive ventilation/intubation and mechanical ventilation, respectively; score
7 for hospitalized patients requiring multi-organ support other than ventilation;
score 8 for death patients. All 31 patients with COVID-19 were admitted, within
the period from March 12th to April 20th 2020 to the University Hospital of
Verona. At sampling, the stage of disease was categorized as mild (patients not
requiring non-invasive/mechanical ventilation and/or admission to ICU, score on
ordinal scale 3–4) or severe (patients requiring admission to ICU and/or non-
invasive/mechanical ventilation, score on ordinal scale 6–7)60. All patients were
hospitalized in ICU for respiratory organ failure as proved by their clinical para-
meters (SOFA score, pCO2, pO2, FiO2, P/F ratio). Within this cohort, one patient
was also affected by CLL, two patients displayed also either cardiac or kidney
failures. Patients’ age range mirrors the characteristics of the individuals admitted
in ICU in that time frame and is matched within the three cohorts. Less than 20%
of all patients were on steroids at sampling. The study has been designed with the
purpose of defining a complete framework of COVID-19 patients’ immune land-
scape. To this aim, we collected clinical (i.e., co-morbidities, pulmonary perfor-
mances, outcome at dismissal from Verona Hospital) and laboratory (i.e., leukocyte
subsets, P-ferritin, P-D-Dimer, C-reactive protein, P-fibrinogen quantification)
information and integrated them with molecular (i.e., single-cell transcriptomic
analysis) proteomic (cytokines quantification and serology), phenotypic (myeloid

characterization in terms of expression of immunesuppression hallmarks), func-
tional (myeloid immunesuppressive assay) data.

Ethics approval statement. All relevant ethical guidelines have been followed, and
any necessary IRB and/or ethics committee approvals have been obtained. This
study was approved by the Ethics Committee for Clinical Experimentation,
Department of Hospital Medical Management, Hospital Trust of Verona in
Verona, Italy (protocol 17963 and 51095; principal investigator, Vincenzo Bronte;
registered in ClinicalTrials.gov with following id NCT04438629). All participants
(and/or initially their families) provided written informed consent before sampling
and for the use of their clinical and biological data.

Preparation of biological samples. For each severe patient, ~20 ml of BAL fluid
was obtained, stored at room temperature and processed within 2 h in a BSL-3
laboratory. No BAL fluid was obtained from mild patients and healthy donors. An
unprocessed aliquot was used for bacterial culture. The BAL fluid was filtered two
times through a nylon gauze and a 100-µm nylon cell strainer to remove clumps
and debris. The supernatant was then washed with PBS 1× and centrifuged. RBCs
were lysed with 4 mL of 0.2% NaCl solution (3 min, RT) and the reaction was
blocked by adding 9 mL of 1.2% NaCl solution. The cells were washed with PBS 1×,
resuspended in Roswell Park Memorial Institute (RPMI) 1640 medium supple-
mented with 5% bovine serum albumin and counted. Cell viability was determined
by Trypan blue exclusion. BAL fluids of patients with COVID-19 infection con-
tained a heterogeneous number of cells ranging from 0.83 × 106 to 22 × 106 cells.
Cells were resuspended at a concentration of 1 × 106 /ml for single-cell analysis.
Peripheral blood (PB) from COVID-19 patients and healthy donors was collected
in EDTA-coated tubes. In all, 2 ml of PB was washed once with PBS 1BAL and the
RBCs lysis was performed twice adding 15 mL of 0.2% NaCl solution (3 min, RT)
and the reaction was blocked by adding 35 mL of 1.2% NaCl solution. The cells
were washed with PBS 1BAL, resuspended in RPMI 1640 medium supplemented
with 5% bovine serum albumin, filtered through a 100-µm nylon cell strainer and
counted. Cell viability was determined by Trypan blue exclusion. Cells were
resuspended at a concentration of 1 × 106 /ml for single-cell analysis.

SARS-CoV-2, HSV-1 detection, and bacteria identification. Nucleic acids were
extracted from BAL samples by Seegene Nimbus instrument (Seegene; Seoul, South
Korea) and SARS-CoV-2-related genes (E, N, and RdRP) were amplified by
polymerase chain reaction (PCR) with the Allplex 2019-nCoV assay kit (Seegene)
according to the manufacturer’s instructions. BAL samples from COVID-19
positive patients were processed for bacterial isolation. In brief, samples were
treated with 1% v-v dithiothreitol for 30 min at 25 °C Upon treatment, (20 μl of)
the samples were streaked out on petri dishes containing different types of agar
(Blood Agar, Chocolate Agar, Columbia Nalidix Acid agar, Mannitol Salt Agar,
McConkey, and Sabouraud Agar). Cultures were incubated for 24 h at 37 °C and
bacterial growth was evaluated as colony-forming unit per ml. Bacterial species
were identified by MALDI-tof (VITEK-MS, BioMérieux; France) and antimicrobial
susceptibility was tested by VITEK-2, BioMérieux; France) and Kirby–Bauer disk
diffusion assay. Nucleic acids isolated from BAL samples were processed to mul-
tiplex PCR procedure for the simultaneous detection of HSV-1, HSV-2, HCMV,
and VZV, using an Allplex assay (Seegene) according to the manufacturer’s
instructions. Unfortunately, the presence of those viruses could not be assessed in
patient 4 due to the limited amount of available BAL fluid.

Detection of cytokines and serology. Cytokines released by patients’ monocytes
and neutrophils were quantified by Human ProcartaPlex™ Panel 1 multiplex
(ThermoFisher Scientific, Waltham, MA, USA). The ELISA assay to detect
Immunoglobulins (Ig) used fragment of the SARS-CoV2 spike glycoprotein
(S-protein) as antigens based on a recently published protocol61. The Spike SARS-
CoV2 glycoprotein RBD was expressed in mammalian human embryonic kidney
cell line 293 (HEK293, ATCC® CRL-1573™, LGC Standards S.r.l., Milano, Italy) at
IEO, Milan by Drs. Marina Mapelli and Sebastiano Pasqualato as glycosylated
proteins by transient transfection with pGACCS vectors generated in Dr. Kram-
mer’s laboratory. Cells were grown in DMEM (Invitrogen, Carlsbad, CA, USA)
supplemented with 10 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
(Euroclone, Milano, Italy), 150 U/ml streptomycin 200 U/ml penicillin (Euroclone,
Milano, Italy), 2 mM L-glutamine (Euroclone, Milano, Italy), and 10% heat-
inactivated fetal bovine serum (FBS; Invitrogen, Carlsbad, CA, USA). The con-
structs were synthesized using the genomic sequence of the isolated virus, Wuhan-
Hi-1 released in January 2020, and contained codons optimized for expression in
mammalian cells. Secreted proteins were purified from the culture medium by
affinity chromatography, quantified, and stored in liquid nitrogen in aliquots. The
ELISA tests to detect IgG in patients’ sera used as antigens the recombinant
fragments of the RBD of the Spike SARS-CoV2 glycoprotein. After binding of the
proteins to a Nunc Maxisorp ELISA plate, patients’ sera to be analyzed were
applied to the plate to allow antibody binding, and then revealed with secondary
antihuman- IgG (BD) antibody conjugated to enzyme horseradish peroxidase
(Thermo Scientific 31410, 0.8 mg/ml, 1:1000). Reaction was revealed upon addition
of TMB (Merck). Optical density at 450 nanometers was measured on a Glomax
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(Promega) plate reader. All samples were tested and validated with an ELISA assay,
as indicated in62.

Flow cytometry analysis. Immunophenotype analysis on whole peripheral blood
was performed according to standard procedures in order to characterize monocyte
subsets (defined as classical, CD14high CD16low/dim; intermediate CD14int CD16+;
non classical CD14low/dim CD16high). In brief, peripheral blood was incubated with
FcR Blocking reagent (Miltenyi Biotec, Paris, FR) followed by the addition of the
followings: antihuman PE-conjugated CD56 (BD Bioscience, San Jose, CA, USA;
clone NCAM16.2, cat. num. 335791, 25 µl/ml), fluorescein isothiocyanate (FITC)-
conjugated-CD16 (BD Bioscience, San Jose, CA, USA; clone 3G8 cat. num. 555406,
20 µl test;), PerCP-Cy5.5-conjugated CD3 (BD Bioscience, San Jose, CA, USA;
clone UCHT1, cat. num. 560835, 5 µl test), PE.Cy7-conjugated HLA-DR (eBios-
ciences, ThermoFisher Scientific, Waltham, MA, USA; clone L243, 335795, 5 µl
test), APC.H7-conjugated CD14 (BD Bioscience, San Jose, CA, USA; clone MφP9,
cat. num. 560180, 5 µl test), Brilliant Violet 421™-conjugated PD-L1 (BD
Bioscience, San Jose, CA, USA; clone MIH1, 563738, 5 μl test;) and alexa fluor 647-
conjugated ARG1 (developed in our laboratory28) antibodies, Aqua LIVE/DEAD
dye (ThermoFisher Scientific, Waltham, MA, USA). RBCs were lysed using Cal-
Lyse™ Lysing Solution (ThermoFisher Scientific, Waltham, MA, USA) in accor-
dance with the manufacturer’s instructions. Samples were acquired with FACS
Canto II (BD, Franklin Lakes, NJ, USA) and analyzed with FlowJo software
(Tree Star, Inc., Ashland, OR, USA).

Myeloid cell isolation, characterization, and functional assay. Cells were iso-
lated from EDTA-treated tubes (BD Biosciences, NJ, USA) and freshly separated by
Ficoll-Hypaque (GE Healthcare, Uppsala, Sweden) gradient centrifugation. PBMCs
were counted and the monocyte fraction (CD14+) was further isolated by CD14−

microbeads (Miltenyi), following the manufacturer’s instructions. From the CD14−

fraction the CD66+ LDNs were isolated by the sequential addition of CD66b-FITC
antibody (BD Biosciences, NJ, USA) and microbeads anti-FITC (Miltenyi), fol-
lowing the manufacturer’s instructions. The NDNs CD66b+ were isolated from the
RBC layer by dextran density gradient followed by CD66b-antibody as described
for LDNs. The purity of each fraction was evaluated by flow cytometry analysis.
Samples with a purity >95% were assessed for their suppressive capacity. In all,
0.5 × 106 cells of each cell type were plated in 24-well plates for 12 h in complete
RPMI supplemented with 10% FBS. At the end of the incubation, viability was
evaluated by flow cytometry and Trypan blue assay, and both the supernatants and
the cells were collected and cultured with CellTrace (Thermo Fisher Scientific)
labeled PBMCs, stimulated with coated anti-CD3 (clone OKT-3, eBioscience,
Thermo Fisher Scientific 16-0037-81) and soluble anti-CD28 (clone28.2,
eBioscience, Thermo Fisher Scientific 16-0289-81) for 4 days in 37 °C and 8% CO2

incubator63. For the cells, a ratio of 3:1 (target:effector) was used. At the end of the
culture, cells were stained with anti-CD3-PE/Cy7 (UCHT1, BD biosciences 563423,
5 µl/test) and CellTrace signal of lymphocytes was analyzed with FlowJo software
v10 (Tree Star, Inc. Ashland).

Single-cell RNA sequencing. BAL and peripheral blood cells were isolated and
prepared as described above. For each sample, cells were resuspended in RPMI
supplemented with 5% FBS to a final concentration of 1000 cells per ml and
processed using the 10x Genomics Chromium Controller and the Chromium
NextGEM Single-Cell 3′ GEM, Library & Gel Bead kit v3.1 (Pleasanton, California,
United States) following the standard manufacturer’s instructions. In brief, 10,000
live cells were loaded onto the Chromium controller to recover 4000 single-cell
GEMs per inlet uniquely barcoded. After the synthesis of cDNA, sequencing
libraries were generated. Final 10× library quality was assessed using the Fragment
Analyzer High Sensitivity NGS kit (Agilent Technologies, Santa Clara, CA, USA)
and then sequenced on the Illumina NextSeq500 (Illumina, San Diego CA, USA)
generating 75 base pair paired-end reads (28 bp read1 and 91 bp read2) at a depth
of 50,000 reads/cell.

Data analysis and statistics
Generation of UMI tables. Upstream processing of reads was done using the
CellRanger toolkit with default parameters. SARS-CoV-2 (NCBI reference number:
NC_045512.2) and human hg38 genomes were downloaded from NCBI website.
SARS-CoV-2 GTF annotation file was downloaded from the UCSC and merged
with the human GTF as an additional chromosome. ORF_10 Gene 3′ boundary
extended by 100 bases to catch all reads that belong to this transcript.

High-level analysis of scRNA-seq expression data. ScRNA-seq expression data
analysis were performed using the R-based Pagoda2 pipeline (https://github.com/
hms-dbmi/pagoda2/)24 in addition to an in-house R script. In brief, UMI table
were loaded using the read.10x.matrices() function. Low-quality cells were removed
using the following strategy: cell with <500 UMIs and >20% of mitochondrial genes
were removed. Two rounds of analysis were performed: in the first one, all filtered
cells were used to identify the major cell types, then cells from each cellular
compartments are analyzed individually to provide more detailed informations.
For each analysis, the number of highly variables genes (HVGs) was determined
using the adjustVariance() function with the gam parameter set to 10. HVGs were

selected using the following strategy: for each gene, its number of zeros and its
mean expression are computed. A local polynomial model is then used to predict
the number of zeros according to the log mean expression (loess function with
degree parameter set to 2). The residuals of this model (excess of zeros) are then
used to ranked the genes and the genes with the highest excess of the zeros are
considered as the most HVGs. PCA reduction is then computed using the calcu-
latePcaReduction() function. The number of computed PC was changed in each
analysis owing to variable number of cells and cellular heterogeneity. A K-nearest
neighbor graph was then build with the function makeKnnGraph() with the K
value set to 30 and the distance parameter set to “cosine”. In order to get high-
quality cell clusters, we used the Leiden community detection implemented in the
R package leiden, a wrapper of the python package leidenalg. The leiden() function
was applied to the KNN graphs with default parameters for each analysis. Marker
genes were identified using the getDifferentialGenes() function. UMAP low-
dimensional embedding was computed using the uwot R package, and more pre-
cisely the umap() function with the n_neighbors parameter set to 30, and the
metric parameter set to “cosine”. In order to group clusters of cells in the first
round of analysis, mean gene expression of the most variable genes was computed
using the aggregate() function. Spearman’s correlation matrix was then computed
using the cor() function with the method parameter set to “Spearman”. Hier-
archical clustering was then performed on this matrix using Ward’s method and
the resulting tree used to aggregate the cell clusters.

CA of the scRNA-seq data. In order to identify trends in cellular composition
across samples, we used a multivariate technique called CA. CA is highly similar
to PCA but is applied to contingency table instead of classical continuous data
table. First data are pre-processed by dividing each entry by the sum of all matrix
entries resulting in the matrix S. Then, a second matrix is computed by sub-
tracting the expected distribution of samples (obtained by multiplying the row
and column marginal probably vectors) resulting in a new matrix M. M is then
decomposed using singular value decomposition. Because CA is a descriptive
technique, it has the advantage of being applicable to tables whether or not the
chi-squared statistic is appropriate. We used the R implementation of CA from
the package FactoMineR (CA() function) with default parameters. To determine
the significant components, we looked at the scree plot and selected the eigen-
values/component located before the elbow. To improve the quality of our
analysis, we removed cell clusters corresponding to red blood cells, platelets, and
cancer cells from patient 8.

To detect clinical and biological variables associated with the computed
correspondence components we used the following strategy: for cytokine
concentrations, we first took the square root of the initial values to get normally
distributed variables and then computed Pearson’s correlation with each
component independently. For the other continuous variables (clinical scores, age,
body mass index…), Pearson’s correlation was directly computed. To test the
association between CA component or a specific cell type proportion and a
categorical variable (i.e. patient clinical status and survival) we either applied a
Tukey’s range test (TukeyHSD() function) if the variable is not heavy-tailed. If the
cell proportions are clearly heavy-tailed, we applied a Kruskal–Wallis rank test.
Normality of the variables was checked using the Shapiro–Wilk test, through the R
function shapiro.test().

Viral-Track analysis. To detect and study viruses in our scRNA-seq samples, we
used Viral-Track, a computational tool that screen the raw sequencing files to find
viral reads (32479746). Processing of the file was performed using UMI-tool
(28100584). First, cell barcodes were extracted and a putative whitelist computed
using the umi_tools whitelist command with the parameters ‘–stdin—bc-pattern =
CCCCCCCCCCCCCCCCNNNNNNNNNN –log2stderr’. Following the mapping
of the reads to viral genomes and transcript assembly, the mapped reads were
assigned to transcripts using the R package Rsubread through the function fea-
tureCounts() with default parameters. The command “umi_tools count” is then
used to compute the final expression table with the following parameters:–per-
gene–gene-tag = XT–assigned-status-tag = XS–per-cell.

In the case of patient 8, cells were not filtered on total host UMIs and
proportion of MT UMIs but only on total combined host and viral UMIs to avoid
removing apoptotic cells containing a high-viral load but expressing few host genes.

Quantification of HSV-1 gene expression. Transcriptome annotation file for the
NC_001806 viral segment was manually downloaded from the NCBI server. BAM
files containing the HSV-1 reads from patients 4 and 25 were loaded into R using
the GenomicAlignments package and gene expression quantification done using
the featureCounts() function from the Rsubread package with default parameters.

Analysis of the serum cytokine, blood cell count, and clinical data. Using a Cullen
and Frey graph (descdist() function from the fitdistrplus package), we observed
that both serum cytokine and blood cell count variables could be transformed into
gaussian-like variables by applying a simple square root function and then used for
further analysis. Association between blood cell counts or serum cytokine con-
centration and patient clinical status was assessed by fitting an analysis of variance
(ANOVA) model to the transformed variables (aov() and anova() functions).
Correction for multiple testing was done using the p.adjust function with
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parameter method set to ‘BH’. When correlations with a CA dimension were
computed, the cor() function with default parameters was used. To validate the
association between the SOFA score and the lymphoid CA dimension 1 we fitted a
basic linear model with the lm() function and assessed the significance of the
association by performing a Fisher test with the anova() function.

Analysis of the immunosuppression, flow cytometry, and cytokine secretion data. As
both flow cytometry and cytokine secretion data were extremely heavy-tailed we
applied a logarithmic transformation with a pseudo count of 1 (log10(1+ x)).
Spearman correlations between protein MFI or cytokine concentration and
immunesuppression was computed using the cor() function.

In order to model the relationship between ARG1 MFI and
immunesuppression, we applied a function similar to the Hill function used in
biochemistry and to model drug dose-response curves:

S ¼ Emin þ
Emax

1þ K
x

� �n ð1Þ

Here S corresponds to the immunesuppression, x to the transformed ARG1 MFI,
Emin to the basal immunesuppression, Emax to the maximal suppression that can be
induced by ARG1, K to the transformed ARG1 MFI required to get half of the
maximal suppression (Emin + Emax) and n the cooperation coefficient. This
function was fitted using the nls() function with default parameters.

Quantitative variables indicated in Tables 1 and 2 were expressed as the median
and interquartile range (IQR), qualitative ones as percentages. All statistical
analyses were performed using R 3.6.1 on an Ubuntu 18.04 workstation.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The scRNA-seq data have been deposited in the Gene Expression Omnibus (GEO) under
accession code GSE157344. The authors declare that all other data supporting the
findings of this study are available within the article and its supplementary information
files. Source data are provided with this paper.

Code availability
All scripts used for the data analysis are available at https://github.com/PierreBSC/
Verona_COVID19.
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Supplementary Figure 1. Quality control of the scRNA-seq dataset and blood cell count 

analysis. (a) Distribution of total cellular unique molecular identifier (UMIs, log10 scale). 500 UMI 

threshold (vertical red dashed line) filters out low quality cells. (b) Proportion of mitochondrial UMIs 

among total cellular UMIs. 20% threshold (vertical red dashed line) filters out low quality 

cells. (c) Distribution of total gene UMIs (log10 scale). 50 UMI threshold (vertical red dashed line) 

filters out lowly expressed genes. N= 147207 cells from 32 independent patients were examined (a-

c). (d) Number of high quality cells that passed QC in the different samples types. Median and 5%-

95% theoretical quantiles are shown. N= 53 independent clinical samples were used (21 matched 

BAL and blood samples from severe patients, 5 and 6 blood samples from healthy controls and mild 

patients, respectively). (e) Spearman’s correlation heatmap of the mean expression of the most 

variable genes in each single-cell cluster. (f) Effects of patient clinical status on blood cell 

counts.  The p-values are computed by fitting and testing an ANOVA model (Methods, one-sided 

Fisher test). 0.01 significance threshold (vertical red dashed line) identifies cell types which blood 

count is affected by the clinical status.   (g) Number of erythrocytes (left panel), neutrophils (middle 

panel) and lymphocytes (right panel) in blood based on patients clinical status. Displayed p-values 

were computed as described above, by fitting and testing an ANOVA model (one-sided Fisher 

test). Median and 5%-95% theoretical quantiles are shown. N= 33 independent clinical samples (5 

healthy controls, 7 mild, 21 severe patients). (h) Effects of patient clinical status on serum cytokine 

concentration. The p-values are computed by ANOVA function (Methods, one-sided Fisher test). The 

vertical red dashed line corresponds to the 0.01 significance threshold used to identify cytokines 

which serum concentration is affected by the clinical status. (i) Serum concentration of VEGF-A (left 

panel), IL6 (middle panel) and IL1RA (right panel) based on patients clinical status. Displayed p-

values were computed as described above, by ANOVA function (one-sided Fisher test). Median and 

5%-95% theoretical quantiles are shown. (f, h,i) N= 32 independent clinical samples (5 healthy 

controls, 6 mild, 21 severe patients). 

 

 

  



 

 

 

 



 

 

Supplementary Figure 2. Dissection of the blood neutrophil compartment. (a) Percentage of 

variance explained by the 10 first components of the blood neutrophil CA. N= 32 independent clinical 

samples were used, including 5 derived from healthy patients, 6 from mild patients and 21 from severe 

patients. (b) Correspondence Analysis of blood neutrophils (first and second components). (c) 

Proportion of PI3+ (left panel) and CD177+ neutrophils (right panel) among total blood neutrophils 

based on patient clinical status. A one-sided Kruskall-Wallis rank test was used in both panels. 

Median and 5%-95% theoretical quantiles are shown. N= 32 independent clinical samples were used, 

including 5 derived from healthy patients, 6 from mild patients and 21 from severe patients. (d) 

Pearson correlation of biological variables with blood neutrophil CA dimension 2. (e) T-cell 

suppression by various blood myeloid cell or their supernatant. The p-value is computed by fitting 

and testing an ANOVA model (one-sided Fisher test, F = 16.0, degree of freedom equal to 3). Median 

and 5%-95% theoretical quantiles are shown. N=112 independent measurements were used. (f) T-

cell suppression by monocyte supernatant (left panel) and LDN supernatant (right panel) of severe 

patients based on clinical outcome. P-values are computed by applying a two-sided Welch’s t-test 

(t=3.0 and t=2.2 with a degree of freedom of 12.9 and 11.6 respectively). Median and 5%-95% 

theoretical quantiles are shown. N=18 independent clinical samples were used, including 11 derived 

from patients who survived and 7 from deceased patients (g) Flow cytometry gating used to measure 

HLA-DR, ARG1 and PD-L1 (CD274) expression in monocytes. (h) Association between monocytes 

PD-L1 MFI and suppression. (i) Pearson correlation of monocyte secreted cytokine concentrations 

with monocyte immune-suppression. 

 

  



 

 

 

 



 

 

Supplementary Figure 3. Association between blood and BAL lymphocyte populations and 

patient clinical status. (a) Expression heatmap of lymphocytes. The 16 displayed genes correspond 

to genes known to play an important role in lymphocyte biology. (b) Percentage of variance explained 

by the 10 first components of the lymphocyte CA. N= 32 independent clinical samples were used, 

including 5 derived from healthy patients, 6 from mild patients and 21 from severe patients. (c) 

Correlation between CA dimension 1 score of BAL samples and 5 clinical variables. (d) Correlation 

between CA dimension 2 score of blood samples and 5 clinical variables. (e) Proportion of resting 

(left) and activated (right) γδ-T cells among blood lymphocytes. A one-sided Tukey’s range test was 

used to compute p-values. Median and 5%-95% theoretical quantiles are shown. N= 32 independent 

clinical samples were used, including 5 derived from healthy patients, 6 from mild patients and 21 

from severe patients. (f) Expression of five severe COVID-19 genetically associated genes among 

tissues and cell types. N=61989 cells derived from 21 independent patients were used. 

 

 

  



 

 

 

 



 

 

Supplementary Figure 4. Study of the pulmonary viral landscape in severe COVID-19 patients. 

(a) Association between the proportion of epithelial cells in each BAL sample and the number of 

SARS-CoV-2 reads. The dashed line corresponds to a linear regression which p-value and R are 

displayed on the top of the panel. (b) Quantification of HSV-1 reads across BAL samples.  (c) Ranked 

mean expression of HSV-1 genes in patients 4 and 25. (d) Results of the qPCR test for   herpes viral 

infections. (e) Relationship between total host and SARS-CoV-2 UMIs in patient 8 BAL cells. (f) 

Percentage of variance explained by the 10 first components of the total blood CA. (g) Association 

between total viral load in the BAL and total blood CA dimension 1. The dashed line corresponds to 

a standard linear regression and its associated p-value and R are displayed in the panel. 

 

 



 

 

 

Healthy 

Controls

Epithelial 

cells

γδ-T 

cells

NK 

cells

CD4+ T 

cells 

CD8+ T 

cells
B cells

Monocy

tes

Macroph

ages (1)

Macroph

ages (2)

Neutrop

hils (1)

Neutrop

hils (2)

Neutrop

hils (3)

Neutrop

hils (4)

Neutrop

hils (5)

Blood_38 2 219 696 191 1 426 230 11 0 21 564 2 10 29

Blood_39 2 357 194 88 0 138 227 20 0 37 1357 8 43 34

Blood_40 1 474 491 89 4 125 344 19 0 62 1067 3 27 53

Blood_41 1 176 138 24 0 60 109 3 0 12 402 28 11 18

Blood_42 1 447 69 35 6 63 204 15 0 25 605 15 4 6

Mild Patients
Epithelial 

cells

γδ-T 

cells

NK 

cells

CD4+ T 

cells 

CD8+ T 

cells
B cells

Monocy

tes

Macroph

ages (1)

Macroph

ages (2)

Neutrop

hils (1)

Neutrop

hils (2)

Neutrop

hils (3)

Neutrop

hils (4)

Neutrop

hils (5)

Blood_32 0 51 31 47 1 2 418 4 0 85 1472 95 47 0

Blood_33 0 133 173 49 4 117 275 1 0 7 217 2653 18 11

Blood_34 1 175 121 307 13 86 232 10 1 23 268 36 3 0

Blood_35 1 150 55 78 7 42 333 4 0 37 1285 132 47 20

Blood_36 0 249 525 72 6 36 1058 5 0 301 13 4 3 1

Blood_37 0 150 208 85 8 91 241 5 0 54 140 5 8 5

Severe Patients
Epithelial 

cells

γδ-T 

cells

NK 

cells

CD4+ T 

cells 

CD8+ T 

cells
B cells

Monocy

tes

Macroph

ages (1)

Macroph

ages (2)

Neutrop

hils (1)

Neutrop

hils (2)

Neutrop

hils (3)

Neutrop

hils (4)

Neutrop

hils (5)

BAL_01 11 0 0 1 0 0 12 273 0 8 218 62 434 293

BAL_02 182 131 135 255 796 2 0 2139 5 95 14 4 178 4

BAL_03 5 3 0 1 6 0 1 186 2 37 72 20 1853 184

BAL_04 72 6 18 20 63 3 0 168 0 144 3 2 35 27

BAL_05 5 0 6 1 22 0 2 406 2 83 73 3 1128 249

BAL_06 92 12 3 56 33 0 3 200 1 41 28 7 365 21

BAL_07 79 1 1 8 10 2 11 907 0 35 12 39 2053 1260

BAL_08 14 3 0 6 51 0 5 97 0 807 37 2 347 13

BAL_09 59 9 5 74 177 1 14 765 104 333 324 25 1382 107

BAL_10 7 15 0 40 164 1 10 215 1541 50 123 7 768 95

BAL_11 19 2 6 2 16 0 2 345 1 75 39 1 598 180

BAL_14 208 5 18 22 55 5 10 449 2 220 54 3 558 94

BAL_16 2 6 0 11 10 2 4 583 3 31 35 0 1669 440

BAL_17 10 2 3 17 9 1 4 742 6 39 349 52 2907 141

BAL_18 12 0 0 0 3 0 8 133 0 14 108 32 174 2783

BAL_22 161 12 17 101 171 4 1 173 76 910 180 8 2237 18

BAL_23 210 63 48 1201 1085 38 2 161 2012 48 38 2 185 262

BAL_24 111 1 0 4 27 0 14 389 15 607 128 15 1182 101

BAL_25 46 22 14 34 29 6 16 298 10 256 40 6 760 8

BAL_27 218 14 10 50 43 1 5 196 5 115 101 13 614 44

BAL_29 20 7 3 6 10 0 2 220 6 435 2 1 1601 84

Blood_01 0 32 44 18 1 130 190 4 0 9 1185 242 10 80

Blood_02 0 58 24 27 6 55 270 0 0 154 649 186 3 0

Blood_03 0 6 18 9 0 41 139 2 0 65 1138 412 13 9

Blood_04 0 179 124 36 61 70 347 2 0 1782 251 53 1 8

Blood_05 0 32 33 15 9 26 161 1 0 120 420 51 5 3

Blood_06 0 5 9 37 0 41 80 0 0 17 116 21 2 2

Blood_07 0 52 99 10 0 5 122 1 1 5 554 267 15 1

Blood_08 2 144 7 78 30 1 159 0 0 2009 613 341 3 1

Blood_09 0 52 16 108 0 29 253 3 0 53 321 62 5 0

Blood_10 1 141 36 143 0 154 462 5 0 100 2145 114 4 3

Blood_11 0 12 44 48 1 12 257 5 0 476 297 116 8 11

Blood_14 0 41 62 58 2 17 188 4 0 126 43 8 0 1

Blood_16 2 398 134 29 4 99 331 3 0 15 717 221 8 1

Blood_17 0 1 38 6 0 25 260 0 0 96 1356 230 1 1

Blood_18 0 37 107 27 1 42 325 2 0 6 1411 908 2 5

Blood_22 0 21 28 35 0 20 136 4 0 16 936 60 2 0

Blood_23 0 56 70 84 0 51 515 7 0 20 1083 123 29 30

Blood_24 0 34 24 12 2 24 243 1 0 610 463 102 2 0

Blood_25 0 83 82 21 1 40 206 0 0 300 128 37 0 0

Blood_27 4 26 78 24 0 26 191 0 0 98 1739 223 5 0

Blood_29 0 25 19 8 0 5 112 1 0 131 206 741 8 4

Supplementary Table 1: Absolute cell numbers of immune cells identified in each patient’s specimen referred to Figure 1C. 


