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 A B S T R A C T

Software platforms for human motion analysis are increasingly utilized across various fields, from Healthcare 
to Industry 5.0. However, the inherent inaccuracies of these platforms often lead to noisy observations of 
human poses or periods of missing information. As a result, data filtering for denoising or completion is 
a fundamental step before data analysis. Over the years, different techniques have been proposed, from 
general-purpose solutions based on low-pass filters to more advanced and embedded approaches based on 
state observers rather than deep learning. This survey presents the current state-of-the-art filtering solutions 
for denoising and completing data generated by software platforms for human motion analysis. It focuses on 3D 
positional data extrapolated through marker-based or marker-less motion capture systems. The survey proposes 
a concise taxonomy based on filter technology and application assumptions. For each class, it summarizes 
the basic concepts and reports application feedback collected from the literature. The survey also includes 
implementation codes or links to the authors’ original codes, enabling readers to quickly reproduce all the 
algorithms in different experimental settings (https://github.com/PARCO-LAB/mocap-refinement).
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1. Introduction

The understanding, analysis, and evaluation of human movements 
are playing an increasingly important role in people’s professional 
and personal lives and are presently a significant topic in research on 
human–machine interaction [1–3]. Various technologies have been de-
veloped to capture the human motion. Some rely on reflective markers
placed on the human body and a multi-camera optical system that 
uses triangulation of the reflected light to calculate the 3D position of 
each marker [4,5]. Others rely on RGB or RGB-D camera sensors and 
estimate the human pose through inference on Deep Neural Networks 
(DNN) without the need for markers [6,7].

Aside from implementation technology, platforms for human mo-
tion analysis extrapolate keypoints that represent the spatial coordinates 
of the main human body joints. Compared to video data, skeletons 
are a compact representation that naturally enables quantitative in-
formation retrieval on human actions. It is consistent across subjects 
and application scenarios and independent of changing backgrounds 
or viewpoints in the video. Based on the skeleton pose data, kinematic 
and semantic features can be easily derived, which are compatible with 
existing motion analysis practices in high-level vision tasks [8–11], 
sports [12], industrial [13,14], and medical applications [15].

Both marker-less and marker-based motion capture (mocap) systems 
have an intrinsic inaccuracy, often leading to noisy keypoints, although 
varying degrees. The inaccuracy sources of marker-less human pose 
estimation (HPE) systems are of various types, including imprecise 
or inconsistent annotations in the training dataset, poor image or 
depth data quality, rare poses, dropped frames, or heavy occlusions in 
the real scene [16,17]. Misplacements, occlusions, and dropped mark-
ers are common noise sources in marker-based mocap systems [18]. 
The combination of such noise sources, along with temporary de-
synchronizations between the optics and the elaboration software, 
leads to periods during which the human pose information is even 
missing [19].

Furthermore, keypoint coordinates are often utilized to extract more 
complex information about human poses and motion, such as joint an-
gles and angular velocity. However, errors in the initial measurements 
are amplified when mathematical differentiation is used to extrapolate 
velocities and even further when a second differentiation is calcu-
lated to determine body accelerations [20]. Consequently, data filtering 
for keypoint denoising or skeleton completion is crucial before data 
analysis.

Various filtering techniques have been proposed for 3D human 
motion data. To the best of our knowledge, the literature does not 
currently provide comprehensive reviews that classify and explain these 
different solutions. This survey aims to fill that gap by presenting an 
2 
overview of denoising and completion filters that can be applied to 
refine 3D human motion data generated by marker-based or marker-
less mocap systems. The survey focuses on designing, optimizing, and 
combining filtering methods. It begins with an overview of the different 
measurement errors. It proposes a taxonomy of the different filtering 
techniques, where each class is explained in terms of key concepts, 
target errors, and important application results from the literature.

This paper also provides an open-source library containing each 
reviewed filtering algorithm’s implementation code (or links to the 
authors’ original code). The repository also includes the precision of 
the filtering results obtained using the Human3.6M motion capture 
dataset [21]. Additionally, the survey explains the most common met-
rics and standard datasets used in literature to measure the accuracy of 
motion capture data and the performance of the filtering techniques.

The article is organized as follows. Section 2 presents the basic 
concepts related to human motion analyses, filtering, and the problem 
statement. Section 3 presents an overview of the literature analysis 
and the proposed taxonomy. Sections 4–8.4 present key concepts of 
each filtering class and major feedback from the literature. Section 12 
concludes the work with remarks.

2. Basic concepts and problem statement

This survey focuses on filtering algorithms for motion capture sys-
tems (mocaps) that take a 3D skeleton of noisy keypoints as input 
and generate a corresponding 3D skeleton of refined keypoints as 
output (see Fig.  1). Filtering algorithms for systems that cannot directly 
measure 3D human positions, such as inertial measurement units, fall 
outside the scope of this survey. Throughout this survey, we refer to 
the platform for acquiring the 3D skeleton as the mocap, regardless of 
whether it uses marker-based or marker-less technology.

The filtering methods implement denoising, completion, or a combi-
nation of the two to enhance the accuracy of 3D human pose estimation 
data. Denoising refers to removing noise from the raw data by eliminat-
ing errors or inaccuracies that may have occurred during data capture 
or processing of a frame. Completion fills in missing data points in 
the 3D pose data that may have occurred due to occlusions or other 
factors that prevented certain joints from being captured during the 
data collection process.

In this context, we define frame 𝑘 as a time instant when the mocap 
captures the pose of a human body and extrapolates the corresponding 
spatial information. A keypoint is a term used to refer to the 3D position 
of a physical or virtual marker: 
𝑘𝑝𝑖[𝑘] =

[

𝑝𝑥[𝑘], 𝑝𝑦[𝑘], 𝑝𝑧[𝑘]
]

(1)

where 𝑝𝑥[𝑘], 𝑝𝑦[𝑘], 𝑝𝑧[𝑘] are the coordinates on the 𝑥-axis, 𝑦-axis, and 
𝑧-axis, respectively.
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Fig. 1. Standard pipeline of a motion capture (mocap) system, from capturing the subject movements to the corresponding representation through skeletons. Marker-based mocap 
systems typically rely on multiple infrared cameras, while markerless HPE systems rely on RGB or RGB-D cameras. Both systems generate one 3D skeleton per frame, which may 
have artifacts: inaccurate keypoint localization (a), missing keypoints (b), or a combination of the two (c). For one or a sequence of frames, the skeleton might also not exist (d). 
Each filtering algorithm discussed in this survey refines the per-frame noisy 3D skeleton by estimating the true position of the keypoints.
Fig. 2. Overview of the different types of noise.

We define temporal window 𝛥 of length 𝑙: 

𝛥𝑙 =
[

𝑘 − 𝑙
2 , 𝑘 +

𝑙
2

]

(2)

a sequence of consecutive frames. We define the skeleton sk as the 
collection of keypoints that belong to the same person: 
𝑠𝑘𝑛[𝑘] = {𝑘𝑝𝑖,𝑛[𝑘] ∶ 𝑖 = 1… |kps|} 𝑛 ∈ [1, 𝑁] (3)

where |kps| is the number of keypoints detected through the mocap. 
𝑁 is the maximum number of people detected, distinguishing single-
person (e.g., [22–24]) from multi-person mocap systems (e.g., [25–
28]). Throughout this survey, we assume one skeleton per frame (𝑁 =
1).

2.1. Measurement errors

In marker-less mocaps, occlusions, HPE limitations, or inaccuracies 
of input sensors such as depth cameras can result in noisy or missing 
keypoints. In marker-based mocaps, a missing keypoint is generally 
due to occlusions or issues related to the physical markers, such as 
the markers falling off the subject’s skin. In this study, we define per-
frame errors as the observable and measurable artifacts on a single 
frame, which include noisy or missing keypoints (as shown in Fig. 
1(a)–(d)). When the localization inaccuracy of a keypoint is significant, 
it is referred to as an outlier.

Per-frame errors that persist over temporal windows lead to jittering,
low-frequency, or bias errors in the measurement of human motion 
(see Fig.  2). The jittering problem is especially noticeable in marker-
less mocaps, primarily because HPE frameworks do not consider the 
3 
temporal coherence across successive frames. Other factors that can 
cause jittering include poor image quality, unusual skeleton poses, or 
occlusions [29].

Filtering solutions for missing or noisy keypoints differ in their 
ability to handle the number of missing keypoints and the number of 
frames in which they occur. This survey refers to these methods as
sequence completion methods. We refer to all processes that reduce noise 
and jittering as denoising methods.

3. Literature review and classification

Refining the keypoints position is crucial for enhancing the accuracy 
of motion capture systems, including marker-less and marker-based 
approaches. During our literature review, we systematically searched 
the Google Scholar database using various combinations of keywords 
such as ‘‘human motion’’, ‘‘motion capture’’, and ‘‘human pose esti-
mation’’ along with ‘‘denoising’’ and ‘‘completion’’. We gathered 167 
relevant papers and eliminated duplicates, ultimately selecting 114 
highly relevant articles. These articles are presented in Table  1.

We classified these contributions into five different classes (see Fig. 
3):

• General purpose, which refine data using well-established arith-
metic algorithms on spatial and temporal data without making 
specific assumptions about human biomechanics.

• State observers utilize prior knowledge about the system (such 
as keypoint position, velocity, or acceleration in past frames) to 
refine the motion sequences.

• Dimensionality reduction, which takes advantage of motion syner-
gies that represent well-known motion control strategies adopted 
by the human brain. These algorithms extract a lower-
dimensional representation of the motion sequence to refine the 
corrupted sequences.

• Deep neural network, a class of machine learning algorithms. In 
particular, we focus on Autoencoders, trained to refine noisy or 
incomplete pose estimations by mapping them to the latent space
and decoding them back to the original space.

• Hybrid approaches. They combine two or more methods of the 
previous classes, aiming to leverage the complementary strengths 
of different technologies.

Fig.  4 shows the number of papers published in each category 
over the past few years. The following sections will focus on each 
class of filtering algorithms, explaining the underlying principles and 
the specific types of errors they solve and briefly summarizing the 
variations offered by each contribution.
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Fig. 3. Proposed classification of the filtering methods.
Table 1
Overview of approaches and the corresponding contributions.
 Category Method Denoising Completion Contributions  
 
General purpose

Moving average 3 [30–32]  
 Low-pass 3 [33–38]  
 Least-Squares 3 [31,39]  
 Interpolation 3 [32,40–43]  
 
State observer

Kalman 3 3 [31,32,39,44–48] 
 Extended Kalman 3 3 [49,50]  
 Unscented Kalman/Particle 3 3 [51–59]  
 

Dimensionality reduction

Truncated singular value decomposition 3 [60]  
 Principal component analysis 3 3 [29,42,61–66]  
 Low-Rank matrix completion 3 [60,67–71]  
 Noisy low-rank matrix completion 3 3 [69,72–78]  
 Robust principal component analysis 3 [79–87]  
 Non-negative-Matrix factorization 3 [88]  
 Dictionary learning 3 3 [89–94]  
 

Deep neural network

Undercomplete autoencoder 3 3 [95–97]  
 Denoising autoencoder 3 3 [98–112]  
 Variational autoencoder 3 3 [17,113], [114]  
 Graph neural network 3 3 [115–121]  
 Transformer 3 3 [122–129]  
 Denoising diffusion probabilistic model 3 3 [130–135]  
 Other architectures 3 3 [136–141]  
Fig. 4. Number of contributions related to methods for human motion refinement from 
2008 to 2024.

4. General purpose

This class groups filtering algorithms universally adopted in signal 
processing theory and applied to refine human motion software. The 
filter design and parameters are independent of the input data, and 
they refine motion data using arithmetic algorithms on spatial or 
temporal information without making any specific assumptions about 
human biomechanics or motion synergies. Table  2 shows a comparison 
between all general-purpose methods. 

4.1. Moving average

The moving average is the simplest family of filters that denoises 
keypoint information by smoothing their positional data in a given 
temporal window. The most straightforward is the simple moving average
4 
(SMA) filter. Given the coordinate vector 𝑝 of a keypoint 𝑘𝑝𝑖 in the 
temporal window 𝛥𝑙, the SMA of 𝑝 at frame 𝑘 is defined as: 

SMA(𝑝, 𝑘, 𝛥) = 1
𝛥

𝛥
2
∑

𝛿=− 𝛥
2

𝑝[𝑘 + 𝛿] (4)

This filter can reduce noise, and its frequency behavior depends 
on the window length. A larger window can result in smoother out-
comes and reduced outliers and jittering. Edwards and Green [31] 
conducted an analysis and found that an SMA filter with a window 
length of 5 frames provided the best denoising of upper limb motion 
data extrapolated by a markerless mocap system

The fundamental distinction among the different moving average 
filters is the weighting function. Whereas in SMA filters the information 
extrapolated from each frame of the window is weighted equally,
weighted moving average (WMA) filters assign different weights to dif-
ferent frames. A WMA filter is defined as: 

WMA(𝑝, 𝑘, 𝛥,𝑤) =

𝛥
2
∑

𝛿=− 𝛥
2

𝑝[𝑘 + 𝛿] ⋅𝑤
[

𝛿 + 𝛥
2

]

(5)

where 𝑤 ∈ R1×𝛥 is an array of weights Wei et al. [30] used the WMA 
filter to denoise several high-velocity actions, such as jumping and 
dancing, captured from a marker-based mocap.

Exponential moving average (EMA) is a WMA filter in which the 
weight assigned to each frame used for the average calculation has 
an exponentially decaying value. Unlike SMA and WMA filters, EMA 
has an infinite window length and is defined recursively as an Infinite 
Impulse Response (IIR) filter: 

EMA(𝑝, 𝑘) =
{

𝑝[𝑘] 𝑘 = 0
(6)
𝛼𝑝[𝑘] + (1 − 𝛼) ⋅ EMA(𝑝, 𝑘 − 1) 𝑘 > 0
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Table 2
Comparison of the general-purpose methods.
 General purpose method Advantages Disadvantages  
 Moving average and low-pass ◦ Allows frequency control

◦ May blur motion details  
 ◦ Easy to implement  
 Least squares ◦ High smoothness ◦ Poor at handling high-error jitter  
 ◦ Only suited for slow motions  
 Interpolation ◦ Suited for for small gaps ◦ Cannot denoise existing keypoints 
where 𝛼 ∈ [0, 1] is a user-defined coefficient to weigh all elements 
of the coordinate vector. Edwards and Green [31] compared the SMA 
and EMA filters and quantified the accuracy gain of EMA over SMA 
in denoising human motion. The Microsoft Kinect SDK uses the Holt 
double exponential (HDE) smoothing filter as the default filter for 
human pose estimation. HDE is a smoothing algorithm that recursively 
implements the EMA filter and tracks the slope of the data to preserve 
short-term fluctuations [142].

4.2. Low-pass

A low-pass filter allows only signals with a frequency lower than 
a chosen cutoff to pass through, while a moving average filter is a 
low-pass FIR filter with no direct control over the cutoff frequency. 
The Butterworth filter [143] is the most commonly used low-pass IIR 
filter in the literature for motion analysis [33–37]. It is the default 
denoising filter implemented in the user application software of Vi-
con [4] and Qualisys [144], two of the major marker-based mocap 
system platforms. Crenna et al. [38] tested the Butterworth filter on 
different human gestures (e.g., hopping and walking) captured by a 
marker-based mocap and claimed that it achieved the most reliable per-
formance in removing synthetic white Gaussian noise when compared 
to SMA.

4.3. Least-squares

The least-squares (LS) filter denoises signals through a curve-fitting 
algorithm, which smooths trajectories of data samples over time to 
polynomial functions. LS is particularly well-suited for denoising hu-
man motion since it best applies to smooth values that change slowly 
and human motion frequencies typically fall between 0 and 20 Hz
[145].

LS Gaussian is a variant of the LS filter that uses Gaussian func-
tions for the impulse response and is best suited for situations where 
residuals around the true curve are assumed to be independently and 
identically distributed with mean zero and constant variance [146]. Li 
et al. [39] found that LS Gaussian filters achieved the best results in 
removing outliers along the trajectory of the upper limb during linear 
and planar motions.

Another filter that employs a similar concept to LS is the Savitzky–
Golay (SG) filter, which uses closed-form linear coefficients so that 
the filtering results can be computed with a convolution [147]. Li 
et al. [39] showed that the SG filter outperforms the LS Gaussian filter 
in denoising human motion sequences obtained from a single camera 
marker-less mocap.

4.4. Interpolation

Interpolation is commonly used to recover signal gaps in various 
applications, including motion capture systems. When a sequence of 
skeletons in a temporal window has missing keypoints for a certain 
period of time, interpolation can be applied to estimate the missing 
keypoints from an incomplete sequence [148]. One of the most pop-
ular interpolation techniques is spline interpolation, which connects 
spatially or temporally adjacent points using low-degree polynomial 
functions to maximize the signal smoothness [149]. Several surveys 
focused on interpolation to refine motion data can be found in [32,
40–43].
5 
Fig. 5. Filtering through state observer: The observer corrects the keypoint position 
based on the previous state 𝑥̂[𝑘−1]. When a new observation 𝑦[𝑘] arrives, the observer 
performs a weighted average between the prediction of the inner state and the state 
obtained with the noisy measurement.

5. State observers

In control theory, a state observer is a system that estimates the 
internal state of a real system based on measurements of its input 
and output. The observer assumes an a priori model consisting of a 
transition function 𝑓 and an output function ℎ, which may depend 
on the system inputs. State observers refine signals by utilizing the 
knowledge contained in the system model (see Fig.  5). Typically, state 
observers have two phases: prediction and correction. The state estimate 
is projected forward in time during the prediction phase based on a pri-
ori knowledge. The measured output is used to refine the state estimate 
in the correction phase. In refining human motion, the system state is 
often represented by the body joints’ position, velocity, acceleration, or 
angular velocity. The a priori model typically considers aspects related 
to human biomechanics, such as rigid body dynamics and kinematic 
constraints. Table  3 shows a comparison between all state-observer 
methods. 

5.1. Kalman filter

The Kalman filter (KF) is one of the most representative and widely 
used examples of a state observer, especially for linear dynamic sys-
tems. It utilizes input/output measurements observed over time and 
assumes a noise model to estimate a Gaussian distribution of states with 
minimum variance for each time frame [150]. A KF model assumes that 
the state at time frame 𝑘 evolves from the state at the previous time 
frame according to an a priori model in the form of: 
𝑥[𝑘] = 𝐹𝑥[𝑘 − 1] + 𝑞[𝑘 − 1] (7)

where 𝐹  is the state transition matrix, 𝑥 is the state vector, and 𝑞 ∼
 (0, 𝑄) represents the process noise.

At frame 𝑘, the system output 𝑦[𝑘] is expressed as follows: 
𝑦[𝑘] = 𝐻𝑥[𝑘] + 𝑟[𝑘] (8)

where 𝐻 is the observation matrix, which maps the state space onto 
the output. The matrix 𝑟 ∼  (0, 𝑅) represents the covariance of the 
system measurements. Large values in the measurement covariance 
𝑅, compared to the state covariance 𝑄, indicate that the filter is less 
confident in the measured data than in the system knowledge
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Table 3
Comparison of the state-observer methods.
 State observer method Advantages Disadvantages  
 
Kalman

◦ Low computational demands
◦ Less accurate in non-rectilinear movements

 
 ◦ Suited for rectilinear motion  
 ◦ Optimal for gaussian noise  
 Extended Kalman ◦ Low computational demands

◦ Needs an explicit motion model  
 ◦ Allows to describe complex motions  
 Unscented Kalman/Particle ◦ Does not need an explicit motion model ◦ More computationally expensive  
In the literature, KF solutions primarily differ based on the choice 
of the state vector and transition matrices. Finding a transition matrix 
that effectively follows the evolution of the system state is crucial 
for implementing an accurate KF and may strongly depend on the 
application, such as straight or cyclic motion. Aristidou et al. [44], Wu 
et al. [45], and Hu et al. [48] considered a state as follows: 
𝑥[𝑘] =

[

𝑝x[𝑘] 𝑝̇x[𝑘] 𝑝y[𝑘] 𝑝̇y[𝑘] 𝑝z[𝑘] 𝑝̇z[𝑘]
]𝑇 (9)

where 𝑝 and 𝑝̇ are the position and velocity of keypoint 𝑘𝑝𝑖, respec-
tively. They assume each keypoint coordinate has uniform rectilinear 
motion at constant speed, and define the transition matrix 𝐹  as follows: 

𝐹x = 𝐹y = 𝐹z =
[

1 𝑑𝑡
0 1

]

𝐹 =
⎡

⎢

⎢

⎣

𝐹x 0 0
0 𝐹y 0
0 0 𝐹z

⎤

⎥

⎥

⎦

(10)

where 𝑑𝑡 is the time elapsed between two frames.
Edwards et al. [31] considered an uniformly accelerated rectilinear 

motion and defined 𝑥 and 𝐹  as follows: 
𝑥𝑘𝑝𝑖 =

[

𝑝x 𝑝̇x 𝑝̈x 𝑝y 𝑝̇y 𝑝̈y 𝑝z 𝑝̇z 𝑝̈z
]𝑇 (11)

𝐹x = 𝐹y = 𝐹z =
⎡

⎢

⎢

⎣

1 𝑑𝑡 1
2𝑑𝑡

2

0 1 𝑑𝑡
0 0 1

⎤

⎥

⎥

⎦

𝐹 =
⎡

⎢

⎢

⎣

𝐹x 0 0
0 𝐹y 0
0 0 𝐹z

⎤

⎥

⎥

⎦

(12)

Tripathy et al. [46] modeled the state vector as: 
𝑥𝑘𝑝𝑖 [𝑘] =

[

𝑝𝑖x[𝑘] 𝑝𝑗x[𝑘] 𝑝𝑖x[𝑘] 𝑝𝑗x[𝑘] 𝑝𝑖x[𝑘] 𝑝𝑗x[𝑘]
]𝑇 (13)

where 𝑖 and 𝑗 are two physically connected joints of the human body. 
The transition matrix is designed to force a constant distance between 
such joints over time to reflect the human skeleton biomechanics.

5.2. Kalman filter variants

Although KF is best suited for linear dynamic systems, human 
motion often involves non-linear transitions [151]. To overcome this 
limitation, variants of KF refine the state transition and output of the 
system as follows 
𝑥[𝑘] = 𝑓 (𝑥[𝑘 − 1])𝑦[𝑘] = ℎ(𝑥[𝑘]) (14)

where 𝑓 and ℎ are non-linear functions.
The Extended Kalman Filter (EKF) is the most commonly used non-

linear extension of the standard KF. It works by locally linearizing the 
transition function at each iteration step. In EKF, matrices 𝐹  and 𝐻 in 
Eqs. (7) and (8) are replaced by non-linear functions 𝑓 and ℎ, which 
can better model non-linear dynamics. To compute the optimal gain, 
EKF linearizes 𝑓 and ℎ around the current estimate by computing a 
matrix of partial derivatives [152]. However, if 𝑓 and ℎ are highly non-
linear, EKF may perform poorly since the gain computation covariance 
propagates through linearization  [153]. Some studies have successfully 
used EKF to denoise markerless mocap data from a single RGB-D 
camera [50], improve the accuracy of the Kinect SDK tracking [49], 
and filter the output provided by the Kinect SDK to avoid inconsistent 
estimations of the limb lengths [47].

The Unscented Kalman Filter (UKF) and particle filter (PF) are alter-
native methods to the EKF, which provide a more accurate estimation 
6 
Fig. 6. Matrix representation of human motion in a 𝑛-frames temporal window.

of the distribution of the state random variable through sampling 
techniques [154–156]. Larsen et al. [51] used UKF to denoise skeletons 
provided by a Kinect camera, and reported that UKF yielded more pre-
cise results at a lower computational cost than PF. Vartiainen et al. [53] 
demonstrated that UKF can track instant changes more precisely than 
EKF in marker-based mocap. Agarwal et al. [52] estimated lower 
limb dynamics during gait using an RGB camera with UKF. Musunuri 
et al. [57] showed that UKF was more effective than EKF in reducing 
nonlinear temporal noise in Kinect RGB-D mocap. Gomes et al. [58] 
proposed a UKF-based approach for gap-filling in corrupted motion 
data generated by a marker-based mocap system.  Martini et al. [59] 
proposed a three-step filtering pipeline comprising a spatial node, a 
temporal node, and a particle filter. The spatial node assesses prediction 
reliability based on joint relationships, while the temporal node tracks 
individuals using joint positions and reliability scores. The particle filter 
combines this information to handle occlusions and ensure smooth 
predictions. 

The Tobit Kalman Filter (TKF) is another variation of KF that enables 
the estimation of the system state even in the presence of missing 
or noisy measurements [157]. Loumponias et al. [55,56] applied TKF 
to recover sequences from a markerless mocap system, where oc-
cluded keypoints were considered censored measurements. They claim 
that, compared to EKF and UKF, TKF is more accurate when, due to 
occlusions, the skeleton is partial.

6. Dimensionality reduction

In data analysis or data mining, an attribute refers to a characteristic 
or feature of a system that is measured for some observations (records) 
and can vary from one observation to another. These attributes and 
observations are typically represented in matrices, with the columns 
representing the attributes and the rows representing the observations, 
forming a dataset. When the number of attributes in the dataset is large, 
it is referred to as high-dimensional [158]. Dimensionality reduction 
(DR) represents such high-dimensional data in a lower-dimensional 
subspace to capture the ‘‘essence’’ of the data and separate it from noise.

In human motion refinement, DR methods are applied to solve 
denoising and completion issues. Fig.  6 shows the representation of 
human motion in a temporal window of 𝑛 frames as a matrix 𝑀 , where 
each row stores the 3D coordinates of all human keypoints for a frame. 
Using this notation, each column represents the motion in 3D of a single 
keypoint throughout the entire temporal window.

As body segments are connected through physical articulations 
and the motor cortex utilizes motion synergies extensively, human 
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Table 4
Comparison of the dimensionality reduction methods.
 Dimensionality reduction method Advantages Disadvantages  
 Truncated SVD/PCA ◦ Simple implementation ◦ Only captures dominant trends  
 ◦ Fails with non-linear patterns  
 LRMC ◦ Suited for filling gaps ◦ Works only with clean data  
 Noisy LRMC/Robust PCA ◦ Handles both gaps and noise

◦ More computationally expensive  ◦ Suited for sparse errors  
 NNMF ◦ Generates interpretable decompositions ◦ May be less accurate  
 Dictionary learning ◦ Runs in real-time ◦ Needs large training dataset  
motion can be efficiently represented in lower dimensions [159–161]. 
Consequently, human motion data, i.e., keypoint positions over time, 
is highly correlated and can be approximated using low-rank matri-
ces [60]. This approximation, with substantially fewer rows or columns 
than the original matrix, captures the essence of human motion. Tem-
poral correlation (e.g., repetitive movement patterns) is identified as
temporal properties, whereas kinematic synergies of the human body 
are represented by the correlation between data in columns and are 
identified as spatial properties (e.g., when the hand reaches a target, the 
elbow and shoulder keypoints move in the same direction). Table  4 
shows a comparison between all dimensionality-reduction methods. 

6.1. Truncated singular value decomposition

To extract the essential information from the motion matrix and re-
move noise, the matrix is decomposed into three sub-matrices using the 
singular value decomposition (SVD) method [162]. Given the motion 
matrix 𝑀 ∈ R𝑛×3𝑚 (built as shown in Fig.  6), the SVD of 𝑀 is: 
𝑀 = 𝑈𝛴𝑉 𝑇 (15)

where 𝑈 ∈ R𝑛×𝑛 and 𝑉 ∈ R3𝑚×3𝑚 are orthonormal matrices that 
contain information about the spatial and temporal properties among 
keypoints, respectively. The information is represented through the 
eigenvectors of 𝑀𝑇𝑀 , which are ordered by importance along the 
columns in 𝑈 and 𝑉 𝑇 , respectively. 𝛴 ∈ R𝑛×3𝑚 represents a diago-
nal scaling matrix, in which the values are the weights (ordered by 
importance) of the corresponding property.

Starting from the sub-matrices, the original matrix 𝑀 can be recon-
structed as follows: 
𝑀 = 𝜎1𝑢1𝑣

𝑇
1 + 𝜎2𝑢2𝑣𝑇2 +⋯ + 𝜎3𝑚𝑢3𝑚𝑣𝑇3𝑚 (16)

where 𝜎𝑖 represents the 𝑖th element of the 𝛴 diagonal, 𝑢𝑖 is the 𝑖th 
column of 𝑈 , and 𝑣𝑇𝑖  is the 𝑖th column of 𝑉 𝑇 . Eq.  (16) represents 
the motion data where the terms are ordered from left to right by 
importance (i.e., 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎3𝑚 ∈ 𝛴). Generally, SVD pro-
vides a hierarchical representation of the human motion data deter-
mined by dominant correlations. It provides a numerically stable matrix 
decomposition that is guaranteed to exist.

The leftmost vectors of 𝑈 and 𝑉 𝑇  contain the principal basis describ-
ing the motion matrix, while the rightmost vectors contain minor trends 
and uncorrelated signals that typically originate from measurement 
noise. The relevance of the vector pair 𝑢𝑖𝑣𝑖 is determined through the 
diagonal element 𝜎𝑖 ∈ 𝛴, which represents the weight in Eq. (16).

Truncation aims to approximate the observation matrix 𝑀 with 
another matrix 𝑀̃ of rank 𝑟 as follows: 
𝑀̃ = 𝜎1𝑢1𝑣

𝑇
1 +⋯ + 𝜎𝑟𝑢𝑟𝑣𝑇𝑟 𝑟 < 3 𝑚 (17)

where the user defines 𝑟 to split the main motion trends and noise. 
The threshold rank 𝑟 is lowered as the data becomes more noisy. Fig. 
7 provides a graphical overview of the truncation process

The effectiveness of this approach is mainly motivated by the
Eckart–Young Theorem [163]. According to this theorem, the best possi-
ble low-rank approximation of matrix 𝑀 , obtained by minimizing the 
7 
Fig. 7. Overview of decomposition, truncation, and reconstruction phases of dimen-
sionality reduction applied to human motion refinement: sequences of skeletons are 
stored in the matrix 𝑀 and decomposed into matrices 𝑈 , 𝛴, 𝑉 𝑇 . The matrix 𝛴̃ is 
obtained zeroing the rightmost columns of 𝛴.

Frobenius norm of the difference between 𝑀 and the approximated 
matrix 𝑀̃ , is given by the truncated SVD of 𝑀 . Lai et al. [60] applied 
the truncated SVD approach to denoise a marker-based mocap data and 
minimize the error of a motion sequence. Although we only found one 
reference for this method, it is a starting point for many approaches 
reported below.

6.2. Principal Component Analysis

Principal component Analysis (PCA) is a technique used to extract 
the most statistically relevant elements of high-dimensional data by 
utilizing linear correlation between columns.

In the case of human motion data, given a motion matrix 𝑀 ∈
R𝑛×3𝑚, where 𝑛 represents the number of frames and 𝑚 represents the 
number of keypoints, PCA methods first calculate the mean motion 
matrix 𝑀̄ ∈ R𝑛×3𝑚: 

𝑀̄ =
⎡

⎢

⎢

⎣

𝜇1
⋮
𝜇𝑛

⎤

⎥

⎥

⎦

[

1…1
]

1×3𝑚 𝑠.𝑡. 𝜇̄𝑖 =
1
3𝑚

3𝑚
∑

𝑗=1
𝑀𝑖𝑗 (18)

where 𝜇̄𝑖 ∈ R represents the mean value computed along row 𝑖. The 
mean-centered motion matrix 𝐵 ∈ R𝑛×3𝑚 is obtained by a simple 
subtraction: 
𝐵 =𝑀 − 𝑀̄ (19)

The principal components (PCs) matrix 𝛬 ∈ R𝑛×3𝑚 of 𝐵 is obtained 
through SVD over 𝐵: 
𝐵 = 𝑈𝛴𝑉 𝑇 = 𝛬𝑉 𝑇 → 𝛬 = 𝐵𝑉 (20)

where 𝑉 ∈ R3𝑚×3𝑚 is a matrix whose columns are the eigenvectors 
of 𝐵𝑇𝐵. 𝑉  represents an orthonormal transform that projects the data 
matrix 𝐵 onto its principal axes, where the first principal axes represent 
the largest data variability. Reversing Eq. (20), the original data matrix 
𝐵 can be reconstructed as a linear combination of PCs, using the matrix 
𝑉 𝑇 : 
𝐵 = 𝛬𝑉 𝑇 (21)

Federolf et al. [64] utilized the correlation within motion data 
to address the problem of missing markers by recovering principal 
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Fig. 8. Representation of the matrices used to perform sequence completion: 𝐵 is the 
incomplete motion matrix, 𝐵0 is obtained zeroing all missing values of 𝐵, 𝐶 is obtained 
maintaining only complete entries of 𝐵, and 𝐶0 is obtained zeroing elements of 𝐶 were 
the missing values in 𝐵 are located. 𝐵̂ is the recovered matrix, whose elements are 
used to fill the gaps of 𝐵.

components from a subset of uncorrupted sequences. Given a mean-
centered corrupted motion matrix 𝐵 ∈ R𝑛×3𝑚, they build matrix 𝐵0 ∈
R𝑛×3𝑚 by zeroing all missing values.

In the first step, they created a matrix 𝐶 ∈ R𝑙×3𝑚 from the portion 
of 𝐵 where all keypoints were available, and matrix 𝐶0 ∈ R𝑙×3𝑚 was 
built to mimic the corruption pattern of 𝐵. Fig.  8 visually represents 
the involved matrices. Finally, 𝐵̂ ∈ R𝑛×3𝑚 is the unknown matrix used 
to fill in the gaps of 𝐵.

In the second step, they calculate PCA on 𝐵0, 𝐶, 𝐶0: 

𝐵0 = 𝛬0𝑉
𝑇
0 𝐶 = 𝛬𝐶𝑉

𝑇
𝐶 𝐶0 = 𝛬𝐶0𝑉

𝑇
𝐶0 (22)

The eigenvectors matrix 𝑉 𝑇  is then calculated, which be used to 
reconstruct 𝐶0 from the uncorrupted PCs of 𝐶: 

𝐶0 = 𝛬𝐶0𝑉
𝑇
𝐶0 = 𝛬𝐶𝑉

𝑇 (23)

At this point, the method finds the transform 𝑇 ∈ R3𝑚×3𝑚 between 
corrupted and uncorrupted eigenvectors 𝑉 𝑇

𝐶0 and 𝑉 𝑇 : 

𝑇𝑉 𝑇
𝐶0 = 𝑉 𝑇 (24)

The method is based on the fact that if 𝑇  describes a transformation 
between eigenvectors, then 𝑇 −1 describes the transform between PCs 
as follows:

𝐶0 = 𝛬𝐶𝑉
𝑇 from (23) (25)

𝛬𝐶0𝑉
𝑇
𝐶0 = 𝛬𝐶𝑇𝑉

𝑇
𝐶0 from (22), (24) (26)

𝛬𝐶0 = 𝛬𝐶𝑇 (27)

𝛬𝐶0𝑇
−1 = 𝛬𝐶 (28)

The computation of 𝑇  is based on eigenvectors rather than directly 
on PCs. This is because the dimensions of PCs differ between 𝐵0 to 
𝐶0, while the size of the eigenvectors matrix depends only on the 
number of keypoints. According to this method, the transform 𝑇 −1

between corrupted and uncorrupted PCs is computed by considering 
the emulated gap (from 𝐶 to 𝐶0) and is used to correct the real gaps 
(from 𝐵̂ to 𝐵0). In particular, it is used to correct corrupted PC of 𝐵0
as follows: 
𝛬𝐵0

𝑇 −1 = 𝛬̂ (29)

The recovered matrix 𝐵̂ is estimated as:
𝐵̂ = 𝛬̂𝑉 𝑇 (30)

= 𝛬̂𝑉 𝑇
𝐶 assuming 𝑉 𝑇 ≈ 𝑉 𝑇

𝐶 (31)

= 𝛬0𝑇
−1𝑉 𝑇

𝐶 from (29) (32)

= 𝐵0𝑉0𝑇
−1𝑉 𝑇

𝐶 from (22) (33)

In [65], the authors propose extending the method described above, 
where the number of PC-vectors is selected by setting a threshold on 
the cumulative sum of normalized singular values. This helps to remove 
8 
noise and preserve valuable information. The effectiveness of the PCA-
based approach was tested on various gait datasets with information 
gaps of up to 70% of the frames. The authors claimed that accuracy 
only declines when applied to motion sequences with unpredictable 
movement patterns.

Liu et al. [61] proposed a strategy for recovering different sets of 
markers across a moderate-to-long period using PCA. They claimed 
that their method can reconstruct believable movements even when the 
number of missing markers reaches 50%

Lou et al. [29] implemented a motion denoising technique that uses 
PCA to learn several motion bases from a dataset and corrects the input 
with those bases. They claimed that their system obtains good results in 
filtering marker-based mocap data containing a percentage of outliers 
below 15%. However, filtering noisy input with completely different 
motion patterns decreases the quality of the motion.

Shum et al. [63] proposed a real-time PCA-based method to correct 
skeletons from Kinect SDK. They created a motion database from 
sequences dimensionally reduced using PCA, and the algorithm corrects 
corrupted skeletons through such a motion database.

Li et al. [66] presented a PCA-based method to solve the missing 
keypoint problem. They applied PCA to an entire training dataset 
and stored the results. Once the PCs were obtained, given an in-
complete motion sequence 𝑀 , the algorithm first found the complete 
matrix 𝑀 ′ with the information obtained from the PCA of the com-
plete dataset and then filled the unknown values of 𝑀 with the esti-
mated information of 𝑀 ′. They found that this method outperformed 
other state-of-the-art completion methods, such as linear and spline 
interpolation.

To overcome the limitations of PCA on denoising non-linearly cor-
related human motion, Tangkuampien et al. [62] used kernel-PCA as 
a non-linear denoising technique. Kernel-PCA is an extension of PCA, 
where data is non-linearly mapped via a semi-positive definite kernel 
function to a feature space before applying linear PCA. As shown in 
their experiments, kernel techniques with filtering based on greedy 
algorithms outperform linear PCA in the refinement of Gaussian noise 
for marker-based mocap data at a very high computational cost.

6.3. Low-rank Matrix Completion

Matrix completion is the process of filling in missing values in a ma-
trix. Low-rank matrix completion (LRMC) is completing an incomplete 
matrix such that the resulting matrix has a low rank. Given 𝑀 ∈ R𝑛×3𝑚

motion matrix with gaps (i.e., missing information), LRMC involves 
finding: 

min
𝑀̃

𝑟𝑎𝑛𝑘(𝑀̃) 𝑠.𝑡. 𝑀̃𝑖,𝑗 =𝑀𝑖,𝑗 ,∀ (𝑖, 𝑗) ∈ 𝛺 (34)

where 𝑀̃ ∈ R𝑛×3𝑚 is the recovered complete matrix, 𝑑 is the number of 
joints, and 𝑛 is the number of frames.

To accomplish this, a logic matrix 𝛺 ∈ R𝑛×3𝑚 is created to represent 
the known elements of M (set to 1) and unknown elements (set to 0). 
LRMC is an effective solution for missing marker issues, as it preserves 
the spatial–temporal properties of human motion [70]. However, the 
method has limitations. For example, if an entire row or column is 
missing, the matrix cannot be recovered without additional informa-
tion. Additionally, LRMC formulated as in Eq. (34) has the drawback 
of NP-Hardness in the 𝑟𝑎𝑛𝑘 function.

To address this issue, singular value thresholding (SVT) is an iterative 
algorithm that approximates the LRMC problem by minimizing the 
nuclear norm, which replaces the original 𝑟𝑎𝑛𝑘 function. The SVT 
problem can be formulated as follows: 
min
𝑀̃

‖𝑀̃‖∗ 𝑠.𝑡. 𝑀̃𝑖,𝑗 =𝑀𝑖,𝑗 ,∀ (𝑖, 𝑗) ∈ 𝛺 (35)

where ‖𝑀‖∗ is the nuclear norm for approximating the rank of 𝑀
[164].
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Lai et al. [60] applied SVT to reconstruct missing joints of a marker-
based mocap. They showed that human motion can be effectively 
recovered starting from a sequence with up to 50% of missing data. Cui 
et al. [70] proposed an SVT-based method to solve the missing keypoint 
problem. They showed their method can obtain better accuracy than 
recovery algorithms implementing full connection neural networks and 
long-short memory networks.

Tan et al. [67,68] applied SVT to solve the missing keypoint prob-
lem, specifically when an entire column or row is missing, including 
skeleton constraints (i.e., inter-joint distances) in the SVT definition.

Mohaoui et al. [71] solved the LRMC problem through Canonical 
Polyadic (CP) decomposition. The CP decomposition generalizes the 
Singular Value Decomposition (SVD) from matrices to higher-order 
tensors. While SVD expresses a matrix as a sum of rank-one matrices, CP 
decomposition represents a tensor as a sum of rank-one tensors, each 
formed by the outer product of vectors from each dimension. Unlike 
SVD, CP decomposition has no closed-form solution and is typically 
computed using iterative optimization methods. In this context, the 2D 
incomplete motion matrix 𝑀 ∈ R𝑚×3𝑛 is reshaped into the 3D tensor 
𝑀 ′ ∈ R𝑚×𝑛×3. Their completion algorithm follows a two-step iterative 
process. First, it estimates the CP decomposition of 𝑀 ′. Then, using this 
decomposition, it fills in the missing entries of the tensor. 

6.4. Noisy low-rank matrix completion

Noisy low-rank matrix completion (NLRMC) aims to recover a com-
plete low-rank matrix from a noisy observation. NLRMC operates sim-
ilarly to LRMC, with the additional assumption that the known values 
are corrupted by noise. The problem of Eq. (34) is modified as follows:
min
𝑀̃

𝑟𝑎𝑛𝑘(𝑀̃) 𝑠.𝑡. ‖𝜋𝛺(𝑀̃ −𝑀)‖𝐹 ≤ 𝛿 (36)

where ‖ ⋅ ‖𝐹  is the Frobenius norm, 𝜋𝛺 is a linear operator that keeps 
the entries in 𝛺 unchanged zeroing the others, and 𝛿 is the noise 
coefficient [165].

SVT can solve the NLRMC problem by truncating the nuclear norm 
of 𝑀 from Eq. (35) through a threshold 𝜆: 
min
𝑀̃

𝜆‖𝑀̃‖∗ 𝑠.𝑡. 𝑀̃𝑖,𝑗 =𝑀𝑖,𝑗 ,∀ (𝑖, 𝑗) ∈ 𝛺 (37)

An alternative to SVT is Augmented Lagrange Multiplier (ALM), 
widely used to solve constrained optimization problems [166,167].

Starting from a corrupted and incomplete motion matrix 𝑀 ∈ R𝑛×3𝑚
defined as follows: 
𝑀 = 𝜋𝛺(𝐸 +𝑍) (38)

where 𝐸 ∈ R𝑛×3𝑚 is the complete and clean observation matrix and 
𝑍 ∈ R𝑛×3𝑚 is an additive error matrix, ALM leads to an equivalent 
expression for (34): 
min
𝐸

‖𝐸‖∗ + 𝜆|𝜋𝛺(𝑍)|1 𝑠.𝑡. 𝑀 = 𝜋𝛺(𝐸 +𝑍) (39)

where ‖ ⋅ ‖1 is 𝓁1−norm and 𝜆 is a weighting coefficient to balance the 
effects of the two parts. Bautembach et al. [69] presented a comparative 
study of algorithms to perform LRMC and NLRMC specifically for 
marker-less mocap data. Li et al. [72] proposed BoLeRo, a method 
that uses ALM to reconstruct corrupted sequences while adhering to 
bone length constraints. Feng et al. [73] proposed a variation of ALM 
called TSMC to solve the NLRMC, taking into account the temporal 
smoothness of human motion. However, TSMC is slow when it comes to 
recovering long motion sequences. To address this issue, Hu et al. [74] 
proposed a version of TSMC that avoids using SVD. Xia et al. [77] 
used ALM to fill gaps in sequences recorded with a marker-based 
mocap system, incorporating kinematic restrictions like bone length 
and smoothness to provide realistic results. Similarly, Chen et al. [75] 
added constraints to preserve the spatial–temporal and structural prop-
erties embedded in human motion. Hu et al. [78] designed a subspace 
clustering technique to solve the NLRMC problem. They divided the 
recovery of missing keypoint problem from a noisy input into several 
NLRMC sub-problems through clustering and solved them with ALM.
9 
Fig. 9. General structure of motion refinement through RPCA. Noisy motion data is 
framed as a matrix (𝑀) and then decomposed into sparse matrix 𝑆 (containing the 
noise) and low-rank matrix 𝐿 (containing the clean data).

6.5. Robust Principal Component Analysis

Robust Principal Component Analysis (RPCA) enhances the perfor-
mance of PCA in the presence of grossly corrupted sequences. The 
complete observed matrix 𝑀 ∈ R𝑛×3𝑚 is first decomposed as follows: 
𝑀 = 𝐿 + 𝑆 (40)

where 𝐿 ∈ R𝑛×3𝑚 is a low-rank matrix and 𝑆 ∈ R𝑛×3𝑚 is a sparse matrix 
containing noise (see Fig.  9).

Following the RPCA notation, classic PCA is defined as follows: 
min
𝐿̃

‖𝑀 − 𝐿̃‖2 𝑠.𝑡. 𝑟𝑎𝑛𝑘(𝐿̃) ≤ 𝑘 (41)

where 𝑘 is a positive constant and ‖ ⋅ ‖2 denotes the 𝓁2-norm, in this 
case the largest singular value of 𝑆 =𝑀 − 𝐿 matrix.

If the noise 𝑆 is not independent and identically distributed, such 
as a corrupted entry in 𝑀 , it can result in an estimated matrix, 𝐿̃, 
that is significantly different from the true 𝐿 [168]. To overcome this 
limitation, the RPCA problem is formulated as follows: 
min
𝐿,𝑆

𝑟𝑎𝑛𝑘(𝐿) + ‖𝑆‖0 𝑠.𝑡. 𝑀 = 𝑆 + 𝐿 (42)

where both 𝑟𝑎𝑛𝑘(⋅) and the 𝓁0-norm ‖ ⋅ ‖0 terms are non-convex. The 
problem in Eq. (42), also known as Principal Component Pursuit, is 
relaxed as follows: 
min
𝐿,𝑆

‖𝐿‖∗ + 𝜆‖𝑆‖1 𝑠.𝑡. 𝑀 = 𝑆 + 𝐿 (43)

ALM can efficiently solve the RPCA problem by modifying the linear 
operator 𝜋𝛺 in Eq. (39) such that 𝜋𝛺(𝐴) = 𝐴. Wang et al. [80] proposed 
an RPCA-based method for reconstructing and denoising keypoints 
from Kinect SDK, approximated using ALM. They also addressed the 
sub-problem of bone length consistency in [81], where a tree structure 
describes the skeleton, with each node representing a joint and each 
edge representing a bone. In [83], the method was tested on both 
marker-based and marker-less mocap data, and the authors found that 
the primary limitation of the RPCA decomposition is the unbalanced 
observation matrix, which reduces the efficiency of rank minimization 
in capturing the matrix global information. They used Hankel-like 
augmentation on the matrix to address this issue while maintaining 
the rank in [82].  Raj et al. [87] introduced two additional constraints 
𝐶𝑡𝑚, 𝐶𝑝ℎ to the objective function of Eq.  (42): 

min
𝐿,𝑆

𝑟𝑎𝑛𝑘(𝐿) + 𝜓1‖𝑆‖0 +
𝜓2
2
𝐶𝑡𝑚(𝐿) +

𝜓3
2
𝐶𝑝ℎ(𝐿) (44)

where 𝜓1, 𝜓2, 𝜓3 are regularization terms. The trajectory movement 
function 𝐶𝑡𝑚(⋅) calculates the difference between the adjacent rows of 
the 𝐿 matrix. Minimizing the Frobenius norm of such a matrix improves 
the smoothness of the node trajectories. The pair-wise hierarchical 
function 𝐶𝑝ℎ(⋅) calculates the distance between each parent–child node 
pair in the skeletal representation. Minimizing the result of 𝐶𝑝ℎ(𝐿)
limits the undesired drifting of nodes in a frame during recovery. 

In [169] Eq. (43) is solved using the accelerated proximal gradient 
(APG) method, which is a fast iterative approximation algorithm also 
used in NLRMC. Liu et al. [79] separated the human skeleton into 
several sub-matrices, assuming each body segment shares the same 
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low-dimensional subspace representation. They used APG to find a 
complete low-rank matrix approximation from each noisy sub-matrix. 
In [84–86], alternatives to APG and ALM for solving Eq. (43) are 
presented, specifically for human motion refinement.

6.6. Non-negative Matrix Factorization

Non-negative Matrix Factorization (NNMF) [170] is an alternative 
approach to PCA in which both data and components are assumed to 
be non-negative. Although NNMF has been widely used on images, it 
applies to many problems. Given a motion matrix 𝑀 ∈ R𝑛×3𝑚+ , NNMF 
approximates 𝑀 to have rank 𝑟 with two matrices 𝑊 ∈ R𝑛×𝑟+  and 
𝐻 ∈ R𝑟×3𝑚+  such that: 

min
𝑊 ,𝐻

‖𝑊𝐻 −𝑀‖

2
𝐹 𝑠.𝑡. 𝑊 ≥ 0 ∧𝐻 ≥ 0 (45)

The limits imposed on the matrix factors 𝑊  and 𝐻 distinguish 
NNMF from PCA. While PCA requires the columns of 𝑊  to be or-
thonormal and the rows of 𝐻 to be orthogonal to each other, NNMF 
only requires that all three matrices be positive [171]. In [88], Peng 
et al. modeled the human skeleton into five low-rank sub-matrices and 
solved the missing keypoint problem by adapting Eq.  (45) using NNMF 
as follows: 
min
𝑊 ,𝐻

‖𝜋𝛺(𝑊𝐻 −𝑀)‖2𝐹 𝑠.𝑡. 𝑊 ≥ 0 ∧𝐻 ≥ 0 (46)

They quantitatively showed that their NNMF-based method outper-
forms SVT-based methods [60,68].

6.7. Dictionary Learning

Dictionary Learning (DL) is a machine learning approach that cre-
ates a sparse representation of the input data through a linear combi-
nation of basic elements. These elements are known as atoms and are 
stored in a dictionary.

Given 𝑀 ∈ R𝑛×3𝑚 motion matrix, methods based on DL minimize 
the reconstruction error as follows: 
min
𝐷,𝑊

‖𝑀 −𝐷𝑊 ‖

2
𝐹 𝑠.𝑡. ∀𝑖 ∈ [1, 𝑛] ∶ ‖𝑊𝑖‖0 ≤ 𝑘 (47)

where 𝐷 ∈ R3 𝑚×𝑝 is the dictionary, 𝑊 ∈ R𝑛×𝑝 is the sparse weight 
matrix, and 𝑘 is the target sparsity threshold for each row of 𝑊 . If the 
size 𝑝 of 𝐷 is less than the training set samples 𝑛, then the dictionary 
is called undercomplete. Dictionaries are typically built using efficient 
methods such as MOD [172] and K-SVD [173]. The DL approach allows 
the problem of human motion denoising to be mapped into a general 
minimization problem. Denoising involves learning motion dictionaries 
from various clean actions and, at runtime, automatically selecting the 
best-correlated subset of motion bases to reconstruct the clean motion. 
Fig.  10 gives an overview of the whole process. Once the dictionary 
𝐷 ∈ R3𝑚×𝑝 is built, given 𝑚 ∈ R3𝑚 noisy skeleton, the weight vector 
𝑤 ∈ R𝑝 can be found as: 
min
𝑤

‖𝑚 −𝐷𝑤‖2𝐹 𝑠.𝑡. ‖𝑤‖0 ≤ 𝑘 (48)

The approximated vector 𝑚̃ ∈ R3𝑚 is obtained as follows: 
̃ = 𝐷𝑤 (49)

The non-convex minimization problem of Eq. (48) can be approx-
imated with two different norms, depending on the noise type of the 
corrupted sequence. Xiao et al. [89] claim that a 𝓁2∕𝓁1 denoising model 
best applies with Gaussian noise: 
min
𝑤

‖𝑚 −𝐷𝑤‖22 + 𝜆‖𝑤‖1 (50)

In contrast, a 𝓁1-only denoising model is most suited in case of outlier 
keypoints: 
min ‖𝑚 −𝐷𝑤‖ + 𝜆‖𝑤‖ (51)

𝑤 1 1
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Fig. 10. In refinement through DL, the training phase involves building the dictionary 
𝐷 and the weights 𝑊𝑇  from the training set 𝑀𝑇 . In the online denoising phase, the 
vector of weights 𝑤 that best approximates the corrupted keypoint vector 𝑚(𝑡𝑘) is found 
using the dictionary 𝐷. The weight vector 𝑤 and dictionary 𝐷 are then used to compose 
a clean motion vector 𝑚̃.

Fig. 11. Structure of a neural network: Input layer (𝑖), hidden layers (ℎ1 ,… , ℎ3), and 
output layer (𝑜).

The authors suggest combining the two filters sequentially in the 
presence of both Gaussian noise and outliers.

Feng et al. [90] divided the human body in parts and then re-
fined each sub-chain through DL. They collected an enormous training 
dataset and then normalized each coordinate. They trained multiple 
motion dictionaries, one per body part. After experimental analysis of 
marker-based mocap sequences, the authors concluded that their DL-
based method yields better performance with more stable bone lengths 
than methods based on KF and LS.

Mei et al. [93] refined, through DL, the corrupted sequences ac-
quired using a monocular 3D HPE [174]. Unlike the other approaches, 
they trained multiple small dictionaries so that each skeleton is repre-
sented by the dictionary with the smallest reconstruction error. They 
developed a weight mechanism to leverage the temporal smoothness 
to reconstruct consequent skeletons with similar bases.

Wang et al. [94] refined the outcome of monocular 3D HPEs using 
DL. After a normalization step, they transform the skeleton into a 
distance matrix by computing the distances between all pairs of joints. 
The algorithm takes the distance matrix as input and reconstructs it as 
a linear combination of bases obtained during the training phase. The 
reconstructed skeleton is then scaled, aligned, rotated, and translated 
to match the position and orientation of the initial corrupted skeleton.

Xia et al. [91] demonstrated how to recover a partial motion data 
sequence using DL, which requires a slightly different approach than 
the standard denoising problem. During runtime, when a subset of 
keypoints is missing, they extrapolate the weight vector 𝑤 (originally 
obtained through Eq.  (48)) as follows: 
min
𝑤

‖𝛹 (𝑚) − 𝛹 (𝐷𝑇 )𝑇𝑤‖2𝐹 𝑠.𝑡. ‖𝑤‖0 ≤ 𝑘 (52)

where 𝛹 (⋅) is a function that maintains only the columns that are not 
missing in 𝑚. Once obtained 𝑤, missing keypoints of 𝑚 are estimated 
by applying Eq. (49).

7. Deep neural network

This class encompasses methods that leverage deep learning and 
neural networks to refine human motion data. A neural network is a 
computational model inspired by the structure of the biological human 
brain that attempts to identify relationships in a set of data [175]. It 
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Fig. 12. General structure of an autoencoder. From left to right: input (𝑚), encoder 
(𝐸), latent space (ℎ), decoder (𝐷), and refined output (𝑚′).

consists of an input layer (𝑖), one or more hidden layers (ℎ), and an output 
layer (𝑜) (see Fig.  11). Each layer processes the inputs through nodes, 
known as neurons. A neuron weights the corresponding inputs based on 
the task the model attempts to learn and generates an output through a 
non-linear activation function applied to the sum of its inputs. Activation 
thresholds and weights are set during a training procedure using a loss 
function [176]. Such a cost function is a mathematical function that 
condenses a complex system’s important features into a single scalar 
value, making it easier to compare and evaluate different results [177].

In recent years, deep learning has been used to refine motion 
data, with a focus on a particular type of neural network known as 
autoencoders (AE) (see Fig.  12). AEs are trained to reproduce a given 
input, typically a set of keypoints that form a human skeleton, with 
high accuracy. The key idea is to leverage the internal layers of the AE 
to capture the essential features of human poses while discarding noisy 
information.

Starting with the input data, which is a set of keypoints representing 
a 𝑠𝑘𝑒𝑙𝑒𝑡𝑜𝑛 (sk), Autoencoders (AEs) are trained to accurately reproduce
the input, 𝑠𝑘𝑒𝑙𝑒𝑡𝑜𝑛′ (sk’). The main idea behind using AEs is to utilize 
the implicit characteristics of internal layers to capture the essential 
features of human poses while filtering out the noise. Fig.  12 shows the 
structure of an AE neural network, which consists of encoding layers 
(E), a hidden layer (h), also known as the latent space, and decoding 
layers (D). During the training phase, the network minimizes a certain 
loss function, 𝐿: 
𝐿(𝑠𝑘,𝐷(𝐸(𝑠𝑘))) (53)

A common cost function used in this context is the mean squared 
error, which penalizes the difference between the input skeleton 𝑠𝑘 and 
the output 𝑠𝑘′ = 𝐷(𝐸(𝑠𝑘)). There are two main architectural models of 
AE proposed in the literature: Feed-forward neural networks (FFNN) and
recurrent neural networks (RNN). FFNNs connect the input layer to the 
output layer through activation functions without forming cycles [175]. 
The hidden space ℎ at frame 𝑘 in a FFNN is defined only by the current 
input: 
ℎ(𝑘) = 𝑓 (𝑠𝑘[𝑘], 𝜃) (54)

where 𝜃 is the set of weights of the network.
RNN architectures are characterized by feedback connections [176]. 

In contrast to Eq. (54), the hidden space ℎ at frame 𝑘 in an RNN is 
defined not only by the current input but also by the previous state: 
ℎ(𝑘) = 𝑓 (ℎ[𝑘 − 1], 𝑠𝑘[𝑘], 𝜃) (55)

Hidden layers implement self-interaction to support time delays and 
feedback loops. Table  5 shows a comparison between all deep neural 
network methods. 

7.1. Undercomplete autoencoder

An AE can be considered undercomplete when its latent space ℎ is 
smaller than the input skeleton 𝑠𝑘. This approach forces the AE to 
capture the most relevant features of the training data and implicitly 
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performs dimensionality reduction. Undercomplete AE is a general-
ization of the linear dimensionality reduction method presented in 
Section 6. When the decoder is linear and the loss function is the 
mean squared error, an undercomplete AE learns to span the same 
subspace as PCA [178]. However, unlike PCA, AE allows the model 
to learn more meaningful generalizations of human motions non-linear
functions [175]. Bütepage et al. [95] implemented three types of under-
complete AE to recover information about multiple missing keypoints, 
where they set all joints belonging to the same limb to zero to simulate 
occlusions. They claimed that all their AE models effectively inferred 
the missing keypoints with no significant deviation from the ground 
truth. Xia et al. [96] proposed an undercomplete AE with an additional 
layer after the encoder, called local self-expression layer, to maintain the 
representation correlations between consecutive skeletons for the same 
problem.  Yuhai et al. [97] proposed U-Bi-LSTM, an undercomplete AE 
designed explicitly for motion completion, that leverages the underly-
ing structure and temporal dependencies in the motion data through its 
compressed representation in the bottleneck hidden layer. 

7.2. Denoising autoencoder

A denoising autoencoder (DAE) is an AE that receives a corrupted 
skeleton as input and is trained to predict the original uncorrupted
skeleton. The training phase relies on the minimization of the following 
loss function 𝐿: 
𝐿(𝑠𝑘,𝐷(𝐸(𝜉(𝑠𝑘)))) (56)

where 𝜉(⋅) is a function that corrupts the input data with a specific type 
of noise. As a result, rather than simply copying the input skeleton, 
DAEs are trained to cancel out noise. This is done by implicitly learning 
the structure of 𝑠𝑘.

Holden et al. [99] proposed a FFNN DAE to reconstruct the skele-
ton motion from a marker-less mocap. They showed the method’s 
validity to fix corrupted sequences of human poses using the skeleton 
information. They used an RGB-D camera and an inertia-based mocap 
as ground truth. They compared the recovered data with the results 
obtained by applying PCA and found that AE performs better than PCA 
in the presence of different motion patterns in the same sequence.

Mall et al. [100] proposed a RNN AE for marker-based mocap 
data refinement. The RNN architecture exploits temporal relationships 
between subsequent frames, by processing the input vector with a look-
back and look-ahead window. Although the neural network is originally 
designed to denoise human motion, the authors demonstrate that gap 
filling is also possible. In this approach, the missing values are filled 
with linearly interpolated values, which the RNN then corrects to 
generate the complete sequence of values. The authors claimed that 
each frame may be denoised in less than 1ms, excluding the delay for 
getting the look-ahead frames.

Kucherenko et al. [98] proposed two different NN architectures, one 
LSTM-based RNN and one FFNN to denoise and reconstruct corrupted 
sequences captured with a marker-based mocap. At the training time, 
their function 𝜉(⋅) of Eq. (56) injects additive Gaussian white noise to 
the network’s input. Li et al. [101] proposed a Bidirectional Recurrent 
Autoencoder (BRA) based on LSTM to learn spatiotemporal patterns 
and refine noisy sequences. They claimed that their NN can handle a 
wide variety of noise types at a low time cost. In [102], they proposed 
another type of BRA that maintains bone-length consistency by keeping 
the distance between keypoints that are naturally connected by a bone 
(called bone-length consistency). Ji et al. [103] proposed a RNN to 
estimate the missing keypoint position from sequences captured with 
a marker-based mocap. Zhu [104] designed a RNN to detect noise and 
recover a noisy sequence with gaps. Kaufmann et al. [105] proposed a 
DAE to denoise marker-based mocap sequences. In removing Gaussian 
noise from the inputs, the model in [99] outperforms the model pro-
posed in [105]. On the other hand, the model in [105] outperforms the 
model in [99] by far when filling in randomly dropped joints.
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Table 5
Comparison of the deep neural network methods.
 Deep neural Network method Advantages Disadvantages  
 Undercomplete autoencoder ◦ Good generalization

◦ Cannot reconstruct fine details  
 ◦ Interpretable latent space  
 Denoising autoencoder ◦ Explicitly trained for noise removal ◦ May underperform in motion completion 
 Variational autoencoder ◦ Suited for modeling uncertainty ◦ More complex to train  
 ◦ Less interpretable latent space  
 Graph neural network ◦ Better at capturing spatial relationships ◦ Requires accurate graph modeling  
 Transformer ◦ Suited for long-term temporal patterns ◦ Requires larger training sets  
 DDPM ◦ Accurate under extreme corruption

◦ Highest computational cost  
 ◦ Strong generative capacity  
Fig. 13. General structure of a Variational Autoencoder. From left to right: input, 
encoder (𝐸), mean hidden space (𝜇), std. dev. hidden space (𝜎), sampled latent space 
(ℎ), decoder (𝐷), and refined output.

Lohit et al. [106] predicted the position of missing keypoints on-
line, from both a marker-based mocap and Kinect RGB-D camera. Li 
et al. [108] proposed a RNN based on LSTM that considers the bone 
length constraints to recover and denoise sequences acquired with a 
marker-based mocap. Zeng et al. [107] proposed SmoothNet, a FFNN 
that improves both temporal smoothness and precision simultaneously 
on 2D HPE, 3D HPE, and SMPL [179]. Zhu et al. [109] proposed a RNN 
DAE to solve the missing keypoint problem with marker-based mocap 
sequences. In [110], they implemented an additional loss function 
based on bone-length consistency to improve the naturalness of the 
result. In [111,112], they integrated LSTNet [180], an LSTM placed 
between the output of the encoder and the hidden space. After an 
experimental evaluation of the CMU dataset corrupted with synthetic 
noise, they claimed that integrating LSTNet helps the DAE to capture 
long-term features better.

The Masked autoencoder is a type of DAE where parts of the input 
data are replaced with a specific value before being fed into the 
network. This AE aims to reconstruct the original, unmasked input data 
from this partially observed input. They are typically used to train 
Natural Language Processing models (e.g., BERT [181]) that predict 
masked words based on the context provided by the surrounding ones. 

7.3. Variational autoencoder

A variational autoencoder (VAE) is a widespread AE variant in 
which the encoder learns a probability distribution over the latent space 
approximating a normal distribution. Fig.  13 shows an overview of the 
VAE structure. The encoder generates two vectors, one for the mean (𝜇) 
and one for the variance (𝜎), representing a Gaussian distribution over 
the latent space. The latent code ℎ is then derived from the Gaussian 
distribution: 
ℎ = 𝜇 + 𝜎 (57)

The decoder transforms the latent code back to the original input space.
Nakatsuka and Komorita [17] implemented a VAE to refine 3D 

HPE data from low-resolution images. During training, they first fed 
the VAE with ground truth data and then added three types of noise: 
left–right keypoint switching, jittering keypoints, and dropping frames. 
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They claim their model could eliminate jitters and produce smooth 
movements in real-time, even under large and complex noise-intensity 
conditions. Chen et al. [113] developed a constrained VAE to denoise 
motion sequences. They tested the VAE, adding different variances 
of Gaussian noises to the ground truth of Human3.6M [21].  Fiche 
et al. [114] proposed Motion-DVAE, a VAE that leverages motion priors 
to capture the short-term spatiotemporal dependencies. They split the 
computation into two stages: the learning stage, where an unsupervised 
framework estimates the parameters of the inference model and then 
the regression stage. 

7.4. Graph neural network

The Graph Neural Networks (GNN) is a versatile class of NN designed 
to operate on graph-structured data, where entities and their relation-
ships are represented as nodes and edges. This representation enables 
GNNs to capture complex dependencies and interactions in the data 
effectively.

Nguyen et al. [117] proposed TA-WLS, a method based on GNN to 
complete missing keypoints in marker-based mocap data. The input 
is a skeleton sequence with missing information, then reconstructed 
by the model leveraging the graph’s spatiotemporal properties. Pan 
et al. [116] proposed a GNN to recover the position of missing key-
points in marker-based mocap data. They implemented an LSTM to 
model the relationships between neighbor markers by computing the 
variances of pairwise distances between all markers. In this way, neigh-
bor markers will have small variances and thus can be used to recover 
their position in case of missing information.  Choi et al. [120] proposed 
a directed acyclic graph neural network (GNN) for motion refinement. 
The model follows an encoder–decoder structure, with each component 
comprising three directed graph network blocks that update node and 
edge features based on their neighbors. To capture temporal dynamics, 
the final block of the encoder and the initial block of the decoder are 
implemented as bidirectional LSTMs. 

The Graph Convolutional Network (GCN) is a GNN with convolu-
tional layers. GCN learns node representations better by aggregating 
information from a node’s neighbors.  Cui et al. [115] proposed a 
GCN architecture to recover missing keypoints without training. Yin 
et al. [137] designed a spatial–temporal graph convolutional network 
(ST-GCN) to reconstruct corrupted motion sequences captured with 
marker-based mocap.  Xu et al. [121] proposed a model based on ST-
GCN to recover the motion information from a sequence of missing 
frames.  He et al. [118] introduced CAIR, a two-step filter for motion 
completion. Given a sequence of partial skeletons in input, they divided 
the refinement process into two steps: an encoder–decoder framework 
fills the gaps in the sequence, and then a GCN denoises the recov-
ered values.  Lee et al. [119] introduced a DAE based on GCN for 
motion completion. Specifically, they employed spectral graph convo-
lution to extract key graph features via spectral filtering. Additionally, 
they incorporated Laplacian smoothing in the encoder and Laplacian 
sharpening in the decoder. 
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7.5. Transformer

The Transformer is a type of NN architecture based on the self-
attention mechanism. It computes scores for each pair of input elements, 
weights them based on that score, and then aggregates the weighted 
elements to form new representations. In contrast to RNNs, this mech-
anism allows entire data sequences to be processed concurrently rather 
than sequentially.

Cui et al. [122] proposed a bi-directional attention network (BAN) 
and LSTM to solve the missing keypoint problem. Xu et al. [123] 
proposed AuxFormer, a transformer-based learning framework that can 
denoise, complete, and forecast human motion. The network encodes 
keypoints, timestamps, and masking information, then implements spa-
tial and temporal attention to model all dependencies. Liu et al. [124] 
proposed a transformer-based method to recover missing keypoints. 
It inputs a sequence of partial skeletons and reconstructs the missing 
information by leveraging the temporal and spatial attention mecha-
nisms. In particular, they used two distinct encoders to extract twice 
the relationships between the same joint at different time steps and 
between different joints at the same time step. In their test, their 
model outperformed an FCNN and an LSTM. Chi et al. [125] in-
troduced PORT, a lightweight transformer-based filter to complete 
missing keypoints from marker-less mocaps. Since HPEs tend to have 
low confidence under occlusion, their method can also refine those 
keypoints, masking and reconstructing them. Although it is a data-
driven method, they claim it does not require fine-tuning because 
the global and local relationships between keypoints learned from 
a dataset are still valid when applied to other datasets. Björkstrand 
et al. [126] proposed XMAE, a lightweight masked AE, to recover a 
complete skeleton given a partial and noisy set of keypoints. They 
implemented a cross-attention mechanism to learn the spatial relation-
ship between keypoints from the training set.  Mascaró et al. [127] 
presented UNIMASK-M, a transformer-based model for motion comple-
tion and forecasting. They employed a pose decomposition approach, 
deconstructing a single skeleton into patches, along with the standard 
ViT [182] self-attention encoder and decoder block. He et al. [128,129] 
proposed a spatiotemporal attention-based graph neural network to 
denoise motion data. Unlike traditional GCNs, they used the attention 
mechanism to establish direct connections between distant nodes. 

7.6. Denoising Diffusion Probabilistic Model

The Denoising Diffusion Probabilistic Model (DDPM) is a class of 
generative models that produces high-quality data by iteratively adding 
and removing noise [183]. The process begins by corrupting the data 
with Gaussian noise. The model is then trained to reverse this process, 
gradually removing noise from the data to recover the original complex 
distribution.

Du et al. [130] proposed AGRoL, a DDPM predicting the full-body 
pose given the position and orientation of only the head and both 
hands. Although based on DDPMs, renowned for being heavy, they 
kept the architecture compact to run it in real-time.  Yan et al. [131] 
proposed a DDPM-based architecture for denoising motion data se-
quences. Unlike standard DDPMs that sample noise from a standard 
Gaussian distribution, their method samples from a conditional multi-
variate Gaussian distribution. The conditioning is based on the paired 
2D poses and the initial 3D pose estimates produced by a 3D pose 
estimator. Zhang et al. [132] presented RoHM, a DDPM-based approach 
to denoise and complete motion sequences. RoHM consists of two 
sub-tasks: reconstructing global trajectory and predicting local motion 
using two distinct diffusion models. This decomposition allows each 
model to focus on the specific motion characteristics, leading to a 
more effective reconstruction process. Wang et al. [133] proposed a 
method to refine skeletons from egocentric videos through DDPM. 
Their approach leverages joint uncertainty, using a diffusion model to 
regenerate high-uncertainty joints conditioned on the more reliable, 
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low-uncertainty joints. Bozzini et al. [134,135] presented a lightweight 
algorithm to refine highly corrupted motion data in real-time. The core 
is based on the Denoising Diffusion Implicit Model (DDIM), a more 
efficient sampling method for diffusion models. DDIM can generate 
high-quality samples in significantly fewer steps than DDPM, leading 
to substantial speedups. 

7.7. Other architectures

Skurowski et al. [136] reviewed various neural network architec-
tures to solve the missing keypoint problem. They implemented two 
types of FFNN and three types of RNN (i.e., LSTM, BILSTM, GRU). The 
experimental analysis found that RNNs achieve better results for shorter 
gaps, while FFNNs outperform RNNs for longer gaps.

Wang et al. [138] proposed an overcomplete AE based on LSTM. 
Differently from undercomplete AE, this AE has a latent space ℎ with 
a higher dimension than the input/output data. They called this archi-
tecture Spatio-temporal Recurrent Neural Network (STRNN) and showed 
how STRNN predicts long-duration motions and can be used to denoise 
corrupted sequences. They recovered the original motion from ground 
truth sequences from two widespread marker-based mocap datasets 
randomly perturbed with synthetic noise to test the latter.

D’Eusanio et al. [139] proposed RefiNet, a three-block filter, to 
improve any HPE’s precision using an RGB-D camera. While the first 
and the third blocks fall outside the scope of the survey, in their second 
block, they implemented an FFNN composed of a sequence of 4 layers 
that directly regresses the 3D key points’ error.

Wang et al. [140] proposed HiMoReNet, a split-and-recombine 
method to denoise skeleton sequences. The filter divides all joints into 
five groups (torso and four limbs) and then applies specific layers 
to each group to capture spatial and temporal relationships. In the 
experiments, they claim to outperform [107] in precision because the 
splitting method helps to distinguish motion patterns for different body 
parts. 

Dang et al. [141] proposed MoManifold, an optimization method 
that uses manifolds distance to denoise motion data. During training, 
MoManifold learns an independent implicit surface representing plau-
sible acceleration vectors for each body joint in a high-dimensional 
space. These acceleration manifolds capture the continuity and struc-
ture of realistic human motion, enabling the assessment of motion 
plausibility. At runtime, the distance between a joint’s acceleration 
and its corresponding learned manifold measures how well the motion 
aligns with natural human dynamics. 

8. Hybrids and other approaches

This class includes all filtering contributions that combine two 
or more approaches belonging to the previous classes to employ the 
complementary strengths of various methodologies.

8.1. State observer and evolutionary algorithm

State observers are effective in correcting noisy keypoints and es-
timating their position, even in the presence of occlusions. However, 
some formulations (e.g., Eq.  (9)) do not consider biomechanical con-
straints. To address this issue, various approaches in the literature 
combine state observers with evolutionary algorithms to incorporate 
such constraints. Evolutionary algorithms are optimization techniques 
inspired by the process of biological evolution. Differential evolutionary
(DE) optimization, in particular, is a class of stochastic search methods 
that iteratively seeks to improve a candidate solution concerning a 
specified quality metric [184].

Das et al. [185,186] improved motion data from a marker-less 
mocap system with KF and then used DE to minimize the bone length 
variance. They adopted the transition function and state representation 
of Eq. (12). The optimization is performed building a graph where 
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each joint is a vertex, and each body segment is an edge. DE attempts 
to decrease the positional change of each vertex while minimizing 
the variation of edge lengths. The KF state is then updated with the 
adjusted measurement.

Tripathy et al. [187] implemented a particle filter to retrieve more 
realistic anthropometric measurements from a marker-less mocap. They 
implemented an evolutionary algorithm to reduce the bone length 
variations. Zhou et al. [188] proposed the combination of a Tobit 
particle filter and a differential evolutionary algorithm to smooth the 
results of Kinect SDK, keeping the bone lengths constant.

8.2. Low-dimensional state observer

The implementation choices that have the greatest impact on the 
filtering accuracy of a state observer are the underlying dynamical 
model and the state (as discussed in Section 5). In the case of Eq. (12), 
each keypoint coordinate is typically treated independently, which 
leads to a loss of important correlations between coordinates.

Burke and Lasenby [189] used KF to the low-dimensional space 
obtained with SVD. They first implemented a mean-centered training 
set 𝐵𝑛×3𝑚 by subtracting mean column 𝜇𝑛×1 from each column of a 
training set 𝑀𝑛×3𝑚, as in Eq. (19). Then, they obtained 𝑉 3𝑚×3𝑚 through 
SVD on 𝐵, as in Eq. (15). Finally, they derived matrix 𝑉 3𝑚×𝑑 by 
discarding the 3𝑚−𝑑 least relevant basis functions from 𝑉 . This matrix 
was used to project the input skeleton 𝑚1×3𝑚 into its low dimensional 
state 𝑥1×𝑑 : 
𝑥[𝑘] = 𝑉 𝑇 (𝑚[𝑘] − 𝜇) (58)

The KF consists of a state transition matrix 𝐹  set to an identity matrix to 
simulate random walk motion model. The output matrix 𝐻 is adapted 
to de-project the low dimensional state into the space of the input 
skeleton: 
𝐻̃ = 𝐻𝑉 (59)

The experiments reduced the low-dimensional state from 47 markers 
to a vector of size 77. They claim that this method achieves compact 
error distribution thanks to the temporal smoothing and keypoint 
correlations.

8.3. State observer and neural network

Methods based on state observers are typically considered alter-
natives to methods based on neural networks. State observers rely 
on a priori knowledge of the system dynamics and aim to estimate 
the system’s state based on measurements of its inputs and outputs. 
In contrast, neural networks do not require any explicit definition of 
the system model, and instead, they learn to approximate the system 
behavior automatically during the training phase. However, different 
works in the literature showed that combining the two approaches can 
lead to better results.

Park et al. [190] improved the skeletons extrapolated by a Kinect, 
by integrating two RNN DAEs with KF. They recorded a dataset with 
Kinect and a marker-based mocap as ground truth. One RNNs refines 
the key keypoint positions, while the other refines the keypoint ve-
locities. In both cases, given the input skeletons from the marker-less 
mocap, they minimize the bias w.r.t. the ground truth. At run-time, 
the KF exploits the refined skeleton position and velocity to improve 
the temporal smoothness. Coskun et al. [191] used deep learning to 
learn the motion model and all the noise parameters. They created 
three distinct RNNs with different goals: Predicting the new state, 
estimating the prediction noise, and estimating the measurement noise. 
The outputs are then used to compute the correction phase of the KF. 
As a result, they do not need the process and measurement covariance 
matrices and the transition function in advance. The experimental 
evaluations, conducted on the Human3.6M dataset [21], show that this 
method outperforms traditional filtering techniques such as EMA, KF 
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and AE. Lannan et al. [192–194] proposed to filter the latent space of 
an undercomplete AE to denoise motion data. In [192], they applied 
traditional techniques, such as SMA and KF, on the compressed latent 
space. They reconstructed the motion data by decoding the filtered 
latent space, claiming that the smoothing filter guidance reduces the 
noise and produces a smoother outcome than the approach in [99]. 
In [193] and in [194], they developed a specific Tobit KF to smooth 
the latent space of the AE. They showed that the filter can improve 
the output from Kinect SDK in keypoint position, joint angles, and 
bone lengths.  Martini et al. [195] proposed FLK, a real-time filter to 
perform denoising and completion. FLK combines a Kalman filter with a 
recurrent neural network to learn the underlying human motion model. 
These two components enable the filter to effectively handle both jitter 
and dropped frames. 

8.4. Other approaches

This section collects the literature contributions to human motion 
refinement that fall outside the proposed taxonomy.
Tree-based regression. Tree-based regression is a machine learning ap-
proach that uses decision trees to predict continuous numerical values. 
Regression trees split the data into regions based on feature values and 
predict outcomes by averaging the target values within each region. 
The model recursively partitions the input space by selecting features 
and thresholds that minimize prediction error. Random forest regres-
sion (RFR) is a machine learning technique to predict a value based 
on a combination of multiple decision trees. Combining the predictions 
made by each tree in the forest produces the final prediction. Shen 
et al. [196] proposed a denoising method based on RFR that meets real-
time constraints. Their main idea is to convert a denoising problem into 
a bias estimation problem. They trained an RFR function that estimates 
the offsets between the keypoints provided by Kinect SDK and the 
actual positions. They also leveraged temporal smoothness by mini-
mizing an energy function.  Skurowski et al. [197] evaluated various 
tree-based regression methods to solve the missing keypoint problem. 
They compared the results of CART [198], M5P [199], gradient-boosted 
trees [200], bagging of trees [201], random forests, FFNN [136], spline 
interpolation, and LRMC algorithm. They found that, with up to 50 
frame gaps, spline interpolation outperformed the other methods. For 
longer gaps, M5P significantly outperforms the other approaches. 
Gaussian process regression. Gaussian process regression (GPR) is a 
probabilistic machine learning method to predict a value by modeling 
the relationship between the input and target variables as a Gaussian 
process. Zhou et al. [202] used GPR to reconstruct corrupted skeletons 
in presence of self-occlusions, introducing also a temporal consistency 
term to constrain the velocity variations between successive frames. 
In [203], they created a mixture of Gaussian processes, by dividing 
the skeleton space in local regions using clustering algorithm. Chiang 
et al. [204] captured the joint movement traces of different people by 
using a motion capture system and a Kinect, mapping with GPR the 
mocap and Kinect data into a standardized domain.
Skeleton database search. Baumann et al. [205] addressed the missing 
keypoint problem by storing a collection of clean skeletons in an 
efficient spatial indexing structure (i.e. kd-tree). They normalized the 
skeleton w.r.t. global position and orientation, by storing velocities and 
accelerations. In the presence of missing keypoints, similar keypoints 
positions are retrieved from the database with the nearest neighbor 
search.  Yasin et al. [206] implemented a fast kd-tree algorithm to 
complete missing keypoints from sequences. They first construct a 
knowledge base from the existing clean datasets, building a kd-tree. 
Then, given a missing keypoint, they implemented a search for near-
est neighbors from the GPU-based kd-tree.  The work of Plantard 
et al. [207] follows a similar principle to address the denoising prob-
lem. They collected a set of prior clean skeletons to optimize the 
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data provided by Kinect SDK. They proposed a structure, called a
Filtered Pose Graph, to efficiently search the skeletons. When a new 
skeleton arrives from the mocap, the algorithm evaluates the reliability 
of each keypoint. Then, it searches the Filtered Pose Graph for the best 
candidate skeleton by replacing keypoints with low-reliability scores 
with those found in the database.

9. Evaluation metrics and datasets

This section summarizes the main measurement metrics and
datasets used for evaluating the accuracy of a refinement method. All 
the contributions discussed in this survey employ one or more of these 
metrics and datasets.

9.1. Evaluation metrics

The Mean Absolute Error (MAE) is a commonly used metric for 
evaluating one-dimensional signals in the machine learning context. In 
the human motion refinement context, it evaluates the precision of each 
coordinate of all keypoints. Given the refined positions 𝑝̂ of a keypoint 
coordinate and the corresponding ground truth 𝑝̄, MAE is defined as: 

MAE(𝑝̂, 𝑝̄) = 1
𝑛

𝑛
∑

𝑘=0
| 𝑝̂[𝑘] − 𝑝̄[𝑘] | (60)

where 𝑛 is the total number of frames of the motion sequence.
The Root Mean Squared Error (RMSE is another commonly used 

metric to evaluate the accuracy of a refinement method in the machine 
learning context. Similar to MAE, RMSE measures the precision of each 
coordinate for each keypoint. It is defined as follows: 

RMSE(𝑝̂, 𝑝̄) =

√

√

√

√

1
𝑛

𝑛
∑

𝑘=0
(𝑝̂[𝑘] − 𝑝̄[𝑘])2 (61)

Due to the squaring operation, RMSE is more sensitive to outliers. As a 
consequence, RMSE values are generally higher than MAE values.

The most used metrics to evaluate the accuracy of 3D HPE is 
the Mean Per Joint Precision Error (MPJPE). It measures the average 
Euclidean distance (𝓁2-norm) between the predicted and ground truth 
positions of each joint across all samples, averaged over all joints. Given 
a refined motion matrix 𝑀̂ that stores 𝑛 frames of 𝑚 keypoints and its 
corresponding ground truth motion matrix 𝑀̄ , MPJPE is defined as: 

MPJPE(𝑀̂, 𝑀̄) = 1
𝑛 ⋅ 𝑚

𝑛
∑

𝑘=0

𝑚
∑

𝑗=0
‖𝑀̂𝑘,𝑗 − 𝑀̄𝑘,𝑗‖2 (62)

The Mean Per Joint Acceleration Error (Accel) evaluates the smooth-
ness and jitter errors. Given a refined acceleration matrix 𝐴̂, obtained 
deriving two times each keypoint of the motion matrix 𝑀̂ , and its 
corresponding ground truth acceleration matrix 𝐴̄, Accel is defined as: 

𝐴𝑐𝑐𝑒𝑙(𝐴̂, 𝐴̄) = 1
(𝑛 − 2) ⋅ 𝑚

𝑛
∑

𝑘=2

𝑚
∑

𝑗=0
‖𝐴̂𝑘,𝑗 − 𝐴̄𝑘,𝑗‖2 (63)

Besides smoothness, the consistency of bone lengths is another 
important aspect that characterizes the efficiency of a refining method. 
Given two keypoints 𝑖, 𝑗 that are connected by a fixed bone (e.g., elbow 
and wrist), the bone length is defined as: 
𝑏(𝑠𝑘) = ‖𝑠𝑘𝑖 − 𝑠𝑘𝑗‖2 (64)

where 𝑠𝑘 is the skeleton defined in Eq. (3).
The Bone Length Error (BLE) averages the absolute differences be-

tween each predicted bone length and its corresponding ground truth. 
Given the set of bones B, BLE is defined as: 

𝐵𝐿𝐸(𝑠𝑘, 𝑠𝑘) = 1
|𝐵|

𝐵
∑

𝑏
|𝑏(𝑠𝑘) − 𝑏(𝑠𝑘)| (65)

where 𝑠𝑘 is the skeleton refined and 𝑠𝑘 is the ground-truth skeleton.
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9.2. Datasets

The Carnegie Mellon University Motion Capture Database (CMU) [208] 
is the oldest and most used dataset in the context of human motion 
refinement. It consists of 2605 trials, captured using a marker-based 
mocap. HDM05 [209] contains more than 2337 sequences performed 
by 5 actors, captured with a marker-based mocap. Human3.6M [21] is 
one of the most widely adopted datasets for 3D HPE. It comprises 3.6 
million frames obtained through 4 RGB cameras at 50 Hz. It includes 
3D skeletons acquired with a marker-based mocap. It is one of the 
datasets most frequently used in the literature to test HPE software, 
both single-camera and multi-camera. The Berkeley Multimodal Human 
Action Database (MHAD) contains about 82 min of videos, divided into 
11 actions performed by 12 actors. The recording setup consists of a 
marker-based mocap, 4 stereo-vision cameras, and 2 Kinects.

10. Quantitative comparison

We conducted a quantitative comparison to evaluate the effective-
ness of different filtering methods. Table  7 provides an overview of 
these results using the Human3.6M dataset, injected with four different 
types of noise (see Table  6).

In low error jitter, the function 𝜉LEJ(⋅), which corrupts the input data, 
is modeled as: 
𝜉LEJ(𝑥) = 𝑥 + 𝑒𝛼(2𝑒 − 1), 𝑒 ∼  (0, 1) (66)

where 𝑥 is the clean input data and 𝑒𝛼 is a constant (𝑒𝛼 = 100 mm). In
high error jitter, the function 𝜉HEJ(⋅) is modeled as: 

𝜉HEJ(𝑥) = 𝜉LEJ(𝑥) + 𝐵0.1𝑒𝛽 (2𝑒 − 1), 𝑒 ∼  (0, 1) (67)

where 𝑒𝛽 is a constant set to 500 mm. 𝐵𝑁 ∼ Bernoulli(𝑁) is 
an indicator random variable that determines whether high noise is 
added to the system, with 𝐵 = 1 indicating the presence of noise and 
𝐵 = 0 indicating no noise. In the experiments, each data point has a 
10% probability of being corrupted with this type of error. In missing 
keypoints, the function 𝜉MK(⋅) is modeled as: 

𝜉MK(𝑥) =

{

𝑥 if 𝐵0.9

𝑛𝑎𝑛 otherwise
(68)

where each data point has a 10% probability of being masked. In
missing keypoints with error, the function 𝜉MKE(⋅) is modeled as: 

𝜉MKE(𝑥) =

{

𝜉LEJ(𝑥) if 𝐵0.9

𝑛𝑎𝑛 otherwise
(69)

In addition to accuracy, latency is reported for each method, represent-
ing the processing time of a single frame, offering insight into their 
applicability for real-time use cases. 

We used subjects 9 and 11 for the test, and the other subjects for 
training the learned methods. We set the temporal window to 20 frames 
for all methods and briefly fine-tuned each parameter to minimize 
the error. Further implementation details can be found in the GitHub 
repository.1 All experiments are run on a desktop setup (AMD Ryzen 9 
7950X, 64 GB RAM DDR5, Nvidia RTX 4090)

The results confirm that all tested methods successfully denoise 
corrupted input data. General-purpose filters provide effective noise 
suppression, while state observers manage both jitter and missing 
keypoints simultaneously. Their strong performance across varied dis-
tortion conditions highlights their value in practical motion refinement 
pipelines. In contrast, dimensionality reduction methods suffer when 
using a short temporal window, making them more appropriate for 
offline processing. Deep neural network approaches are highly depen-
dent on the training data, network architecture, and noise type; thus, 

1 https://github.com/PARCO-LAB/mocap-refinement.

https://github.com/PARCO-LAB/mocap-refinement
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Table 6
Quantitative comparison of different methods on the Human3.6M dataset corrupted with synthetic Gaussian noise and occlusions.
 Category Method Low error jitter High error jitter  Missing keypoints Missing keypoints with error Latency

 MPJPE 
(mm)

Accel 
(mm/s2)

MPJPE 
(mm)

Accel 
(mm/s2)

MPJPE 
(mm)

Accel 
(mm/s2)

MPJPE (mm) Accel 
(mm/s2)

time (ms)  

 Baseline 96.1 229.96 146.31 381.87 – – – –  
 

GeneralPurpose

SMA 74.6 11.5 85.0 19.7 – – – – <1  
 WMA 76.8 4.4 88.7 7.0 – – – – <1  
 EMA 55.4 85.8 89.6 140.8 – – – – <1  
 Butterworth 24.8 3.0 41.5 5.0 – – – – ~2  
 Savitzky–Golay 63.3 116.7 102.1 194.5 – – – – <1  
 Interpolation – – – – 0.3 1.1 244.8 634.0 ~3  
 LSG 62.7 17.2 78.4 19.4 – – – – <1  
 
StateObserver

Kalman filter (0th) 46.4 29.4 66.0 48.3 30.1 2.8 48.7 29.6 <1  
 Kalman filter (1st) 42.3 33.0 65.9 54.2 21.4 2.4 44.2 33.2 <1  
 Kalman filter (2nd) 43.1 35.7 68.8 58.7 19.0 2.4 45.0 36.0 <1  
 
DimensionalityReduction

Truncated SVD 64.0 143.7 98.3 226.6 – – – – <1  
 LRMC – – – – 4.9 16.7 92.5 219.7 <1  
 Noisy LRMC – – – – 32.3 109.4 111.1 267.8 <1  
 RPCA 79.8 182.0 90.2 207.7 – – – – <1  
 
Deep NeuralNetwork

Undercomplete AE 83.6 197.7 128.0 331.0 – – – – ~3  
 Denoising AE 59.5 89.5 92.0 75.6 – – – – ~3  
 RNN AE 61.4 84.7 92.0 75.6 – – – – ~5  
Table 7
Comparison between the different refinement classes.
 Category Suggested for Main

advantages
Main
disadvantages

Computational 
Complexity

 

 General purpose Low-error jitter; missing 
keypoints; real-time 
applications

Simple to implement; 
computationally efficient; does 
not need training

Requires information of the 
past and/or future trajectory; 
works only at keypoints 
coordinate level; needs 
manual tuning

Linear in the number of 
frames; works in 
real-time

 

 State observer Low and high error jitter; 
missing keypoints; real-time 
applications

Computationally efficient; does 
not need training

Needs a nominal motion and 
noise model; needs manual 
tuning

Quadratic to cubic in 
state dimensions; works 
in real-time

 

 Dimensionality
reduction

High-error jitter; missing 
keypoints; offline applications

Refines multiple keypoints 
simultaneously; does not need 
manual tuning

Learns only linear motion 
correlations; may need 
training data

Quadratic to cubic in 
data size 
(frames × joints); works 
best offline

 

 Deep neural network High error jitter Refines multiple keypoints 
simultaneously; learns complex 
motion correlations and does 
not need manual tuning

Needs training data; 
computationally heavy; can 
introduce bias error depending 
on the training dataset

Varies from moderate to 
very high; needs GPU

 

a thorough exploration of these factors could enhance their refine-
ment capabilities. For instance, Zeng et al. [107] reported an 85% 
improvement on the Accel metric on Human3.6M by designing a model 
architecture specifically optimized for smooth motion data from a 
targeted set of HPEs. 

11. Discussion and future directions

This survey provided a thorough overview of filtering methods for 
denoising and completing 3D human motion data. The application 
requirements must be carefully considered before choosing the best 
filtering technique. Several factors determine the most appropriate 
filtering technique for refining mocap data, including the specific type 
of noise and the computational cost.

Table  7 compares the different classes among the proposed tax-
onomy. General purpose filters are the easiest and computationally 
efficient methods to reduce low-error jittering and missing keypoints. 
However, they do not consider the underlying structure of human 
motion, which may result in unnatural movements. State observers 
take a more sophisticated approach based on prior knowledge of hu-
man biomechanics. These methods can effectively handle denoising 
and completion tasks but require accurate motion and noise models. 
Dimensionality reduction techniques take advantage of the low di-
mensionality of human motion caused by coordination patterns and 
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biomechanical constraints. While these methods are beneficial for deal-
ing with missing data, their effectiveness can be influenced by the 
complexity of the motion. Deep learning techniques have gained popu-
larity due to their ability to extract complex motion patterns from data. 
While they have produced impressive results, their behavior may be 
unpredictable when applied to data that may differ from the training 
dataset. Hybrid approaches that combine elements from various cate-
gories represent a promising direction, leveraging the strengths of each 
technique to overcome the limitations of individual methods. 

The rapidly evolving field of human motion refinement contin-
ues to present open challenges. Existing methods are primarily tested 
on single noise types, whereas errors in real-world mocap data can 
be due to different causes.  Despite the impressive performance of 
deep learning methods in motion refinement tasks, they face sev-
eral practical challenges that can limit their deployment in real-world 
applications. Training deep neural networks typically requires large-
scale, high-quality annotated datasets, which are time-consuming and 
expensive, especially when ensuring consistency across diverse mo-
tion types and occlusion scenarios. Another critical limitation is the 
computational complexity of many state-of-the-art models, such as 
transformers and DDPMs, which makes real-time inference difficult on 
resource-constrained systems like mobile robots or wearable devices. 
Consequently, there is a growing need for model light-weighting tech-
niques, such as pruning, quantization, and knowledge distillation, that 
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reduce inference latency and memory footprint while preserving model 
performance. 

Real-world applications may span diverse domains. In medical re-
habilitation, for instance, gait analysis relies heavily on accurate joint 
trajectory data to assess patient progress. In such applications, where 
real-time performance is not as strict as in other domains, dimension-
ality reduction methods can be advantageous due to their explain-
ability. In contrast, industrial environments, particularly in human–
robot collaboration tasks, require quick and robust refinement to pre-
vent collisions or task errors. For such settings, real-time performance 
requirements critically influence algorithm selection: methods with 
low latency (e.g., moving averages, Kalman filters, and lightweight 
autoencoders) are preferred. 

As markerless systems become more common, future research
should look to combine multi-person tracking and filtering techniques. 
Also, investigating filtering methods for non-positional data extrap-
olated from alternative mocap sources, such as those from inertial 
measurement units (IMUs), would broaden the applicability of these 
refinement techniques to a wider range of motion analysis applications.

12. Conclusion

Based on rapid technological advancement, human motion anal-
ysis has gained significant attention in research on human–machine 
interaction. Various techniques have been developed to capture human 
motion, including marker-based and marker-less motion capture sys-
tems. While these systems provide reliable human pose data, they are 
still subject to intrinsic inaccuracies that often lead to noisy keypoint 
coordinates. Filtering techniques have been proposed to denoise and 
complete the 3D human motion data generated by these systems. In 
practical applications, the filter choice critically impacts the quality 
of refined motion and the feasibility of deployments in real-time sys-
tems and resource-constrained settings, such as in telerehabilitation 
or human–robot interaction. However, there is currently no compre-
hensive review in the literature that provides a classification and 
explanation of these filtering techniques. To fill this gap, this survey 
provided an overview of denoising and completion filters for 3D human 
motion data. It started with an overview of the different measurement 
errors and proposed a taxonomy of the different filtering techniques. 
For each class, it summarized the basic concepts and reported applica-
tion feedback collected from the literature. The article also includes 
an open-source library containing the implementation code of each 
reviewed filtering algorithm, along with the precision of the filtering re-
sults on different motion capture datasets.  Future research should focus 
on developing unified frameworks that balance accuracy, speed, and 
generalizability, possibly through biomechanics-aware hybrid models 
or lightweight self-supervised learning strategies. 

Glossary

Completion Filling in missing samples (gaps) in motion data; also 
called imputation or in-painting.

Denoising Any operation that suppresses stochastic noise while keep-
ing the underlying kinematic signal intact.

Filter Generic label for any algorithm that processes a signal to sup-
press noise or guess missing values.

Gaussian Process (GP) Bayesian non-parametric model that provides 
both mean prediction and uncertainty for each pose.

Human Motion Analysis Capturing, modeling, synthesizing, and in-
terpreting human movements.

Human Pose Estimation (HPE) Computer-vision pipeline that
localizes body key-points in 2-D or 3-D from RGB or depth 
frames.
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Infinite Impulse Response (IIR) Filter Digital filter whose impulse 
response theoretically lasts forever; includes Butterworth and 
EMA

Inverse Kinematics (IK) Optimization that finds joint angles produc-
ing a desired end-effector pose while respecting kinematic con-
straints.

Kinematic Constraints Anatomical limits (joint ranges, limb lengths) 
enforced to keep completed poses physically plausible.

Latent Space Representation of data in a lower dimension, revealing 
underlying hidden features and patterns that are not directly 
observable in the original input.

Missing Data Absent samples caused by marker occlusion, dropped 
frames, or sensor malfunction.

Noise Unwanted random deviations in captured joint positions caused 
by sensor jitter or tracker mis-detections.

State Observer Model-based estimator (e.g. Kalman, Luenberger) that 
reconstructs hidden joint velocities or torques.
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