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Abstract

We consider the test statistic devised by Christensen, Oomen and Reno in 2020 to obtain insight
into the causes of flash crashes occurring at particular moments in time in the price of a financial
asset. Under an Ito semimartingale model containing a drift component, a Brownian component and
finite variation jumps, it is possible to identify when the cause is a drift burst (the statistic explodes) or
otherwise (the statistic is asymptotically Gaussian). We complete the investigation showing how infinite
variation jumps contribute asymptotically. The result is that the jumps never cause the explosion of the
statistic. Specifically, when there are no bursts, the statistic diverges only if the Brownian component is
absent, the jumps have finite variation and the drift is non-zero. In this case the triggering is precisely
the drift. We also find that the statistic could be adopted for a variety of tests useful for investigating
the nature of the data generating process, given discrete observations.
©2023 The Author. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

On a filtered probability space ({2, F, {F;}ief0.77, P) and on a fixed time horizon 7 > 0,
we consider a cadlag Ito semimartingale (SM)

dY, = b,dt + 0, dW, +dX,, t € [0, T}, (1)

Yy being Fy-measurable, modeling the evolution in time of the price of a financial asset. The
drift process {b;};>¢ and the volatility process {o,},>0 are progressively measurable processes
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having paths with finite right limits and left limits (ladlag); any path of o is non-negative;
{W,};>0 is a standard Brownian motion and X is a pure-jump process represented as the sum
of its compensated small jumps plus the sum of the not-compensated big jumps,

x,=// xﬁ(ds,dx)+// xu(ds,dx), t €0, T], )
0 Jx|<1 0 Jix|>1

where u(ds, dx) is a random jump measure defined on ({2 x [0, 7] x R) and endowed with a

compensator of type v(ds, dx) = A(s, x)dxds, where A(s, x) is random, and ft = p — v is the

compensated measure. Formal conditions on the components of Y are given in Section 2.
For fixed 7 € (0, T), we focus on the asymptotic behavior of

" K AY
o i A3)

NN s o
(

where: for any integer n > 0, {f; =1,

Mi=1,..., n} gives a non-random partition of [0, T];
AY =Y, —Y, ;K =K(5=); K R — Ry is a continuous kernel function and / is a
bandwidth parameter. We are interested in the framework where

n — 400 while 2 — 0 in such a way that nh — +o0, “4)

and we assume that the partition does not differ asymptotically significantly from the equally
spaced partition, as explained below.

The statistic 7" is devised in [2], where an Ito SM is considered to model the price evolution
of a financial asset. Christensen, Oomen and Reno wished to test whether a sudden large
movement of the asset price at a particular time 7 (flash crash) is due to a drift burst, i.e. a local
explosion of the drift coefficient around 7. They were particularly interested in understanding
whether a flash crash occurring at 7 is more compatible with an explosion (burst) at ¢ of the
Brownian coefficient (the volatility) or with an explosion at 7 of the drift coefficient. Thus
their test statistic was intended to compare the magnitudes of o7 and b7, and T is given by
/h times the ratio of the two kernel-based estimators l;; = %Z?:l K;A;Y of the drift and

1
6; = (3 X1, Ki(A;Y)*)? of the volatility at 7. Under the null hypothesis of either no drift
bursts, or the occurrence of bursts with the one in drift smaller than the one in volatility, the
statistic is asymptotically normal, while, under a given class of alternative models including
bursts, T;” is shown to explode when there is a burst in the drift larger than a burst in the
volatility.

However in their framework the values assumed by the volatility process are always strictly
positive and only finite variation (FV) jumps are considered, and it is natural to wonder what
role infinite variation (IV) jumps would play within T;', for instance whether the explosion
observed in the empirical implementation of the statistic on finite samples may be due to a
jump component of IV, possibly present in the data generating process (DGP). Or, how the
statistic would behave if the DGP did not contain any Brownian components. Therefore we
expand the analysis on the asymptotic behavior of 77", under the hypothesis of no bursts, when
Y also contains IV jumps and/or does not contain the Brownian motion, and we complete the
picture given in [2].

Three elements are crucial for this analysis. First, separately measuring the contribution of
the jump component X of the model is necessary because we need to know the exact speed
of convergence of each term involving the increments A; X so as to be able to decide which
terms in 7;" are leading when considering the complete model. For this reason our first step is
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to illustrate the behavior of 77" for a pure jump model. After that the behavior in the complete
framework will be an immediate consequence. Note however that, as pure jump models exist
and are currently used for financial asset prices, the analysis of the statistic within the first step
framework is also important in itself.

Second, in the pure jump framework it turns out that the behavior of T}" is different in the
two cases where 7 is or is not a jump time. In fact, denoting by AXj; the size of the jump that
possibly occurred at £, the numerator tends (w-wise if the jumps have FA, in probability if they
have IA) to K(0)AX;, and the denominator to /K (0) - |[AX;|. Thus if AX; # 0 the statistic
has a well defined finite limit, otherwise both numerator and denominator tend to O and, as
soon as th’ is defined, the limit is determined by the dominant terms.

Third, the contribution of the jump terms is essentially determined by the freneticism of the
jumps, and for this reason we deal with processes X with constant jump activity index o on
2 x [0, T]. When o = 0 the asymptotic distribution of the statistic is substantially different
depending on whether the jumps have finite or infinite variation. In the former case (¢ < 1),
as well as when o = 1, we obtain the explosion of Tt-”, while if « > 1 then |Tt-”| does not
explode, as numerator and denominator tend to O at the same speed, which depends on the
magnitude of «.

To get an insight into how things are going, let us consider the simple case when A;Y =
alA + o A;W + A;J, with constant drift and volatility coefficients, a symmetric a-stable
Lévy jump process J and evenly spaced observations, where A = T/n. If ¢ # 0 the
three components have the following different magnitude orders: aA = O(A),c AW =
OP(\/Z), Aid 4 AéJI: while for any « € (0,2) we obtain A « /A, the term aA is
dominated or dominates A# depending on whether ¢ > 1 or @ < 1, respectively. It is thus
easy to convince ourselves that if o # 0 then the Brownian component gives the leading term
both of A;Y and of (A;Y)?, and since under our assumptions we have Y KiA/h— 1, we
obtain Y1_, Kio*(A;W)?/h £ o2 (see also Lemma 3 in [2]), and that Y7, K;0 A; W/~/h is
asymptotically Gaussian (as in the proof of Theorem 1 there). Thus under the null of no drift
or volatility bursts, even in the presence of IV jumps 77" is asymptotically Gaussian.

Let us now deal with the case of 0 = 0, when the model is of the pure jump type
and with drift: we have Y\ K;A;Y = Y7 KiaA+ Y " | K;A;J and Y1, K;(A;Y)? =
Y Kia* A +2aAY T KA T + Y Ki(A;J)?. It turns out that when o < 1 the sum
Z?zl K;a A dominates all the other sums at both numerator and denominator of Tl-”, while for
o > 1 the jumps always dominate. More in detail, when o < 1 and ) /_, K;aA dominates,
denoting by =~ that two expressions have the same limit and by é that they have the same limit
in distribution, we obtain Y ;_, K;(aA) ~ ah, while Y _|_, Ki(aA)* ~ a*h A. Since % — 00,
then |T'| — +o0.

For the case @ > 1 when the jump component dominates, for sake of simplicity we illustrate
the case where the kernel function is given by a continuous approximation of the indicator
I < 1y The jump contribution is as follows:

n ~ ~ 41
Do KidiJ ~ Zzi,le[zl%,tﬂr%] Aid = Jt‘+% - Jr'—% ~ haJy,

and

Y KA Z,ifle[;_%y,ur%](ﬂz'])z -~

2 fi 2 fi 2 .9

Vs =Jin)" = X et fie ) AT A = (Jppn = Jig)” = ha I},
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thus the numerator and the denominator of |7;'| tend to O at the same speed hé, and the statistic
cannot diverge.

More generally, our results are that, on the set where AX; = 0, if a non-zero Brownian
term is present in the model Y then, under the no-burst hypothesis, 7" never explodes: it is
asymptotically normal, whatever the jump activity index, because the Brownian terms dominate
all the others at numerator and denominator. The conclusion is that a flash crash cannot be
explained by infinite variation jumps, i.e.: in the presence of a Brownian component in the
model, a drift 5 which is exploding in relation to the volatility is the only case in which T}
explodes. This happens precisely because the numerator asymptotically behaves as +/21b; while
the denominator approaches o7.

By contrast, the IV jumps happen to dominate any other term only when ¢ =0 and o > 1,
but then they contribute by the same amount both to the numerator and the denominator, and
the statistic cannot explode.

Note that in the absence of the Brownian component and when the jumps have finite varia-
tion then the drift of ¥ bursts in relation to the zero volatility, and consistently |7;"| explodes.

The finite activity jump case (the simplest case of FV jumps) is dealt with under more
general conditions for the choice of partitions and for the jump sizes. For the infinite activity
case, on the other hand, we assume evenly spaced observations and that the small jumps have
constant jump activity index «. In the latter framework we first analyze the case where the
compensated small jumps are the ones in a (not necessarily symmetric) «-stable Lévy process,
we denote them J. In this way we can study the asymptotic behavior for the characteristic
functions of numerator and squared denominator of the statistic separately, and, when o > 1
and the jump sizes have symmetric law, also for the characteristic function of the joint law of
squared numerator and squared denominator. We provide closed form expressions for the limit
characteristic functions. Subsequently the results are extended to more general jump processes
X with jump index . In fact, under our assumptions we can split the compensated small jumps
X into the sum J 4+ X’ of the ones in an «-stable model plus those in a residual process X’ with
a lower jump activity index, and we show that the contribution of X’ does not substantially
change the results which hold for the «-stable case.

Actually, T} could be exploited for many different tests. Assuming model (1) we firstly
check whether the distribution of 7} is plausibly Gaussian. In case, the DGP contains a BM,
otherwise it is an SM only containing jumps, compensator of the small jumps, and possibly
a further drift component: if the distribution of |Tt"| does not collapse to a constant and does
not explode the DGP has IV jumps, if |Tt”| — oo then the DGP has FV jumps, but no jumps
occurred at #; if |7}"| — 4/K(0) then a jump occurred at 7. Assessment of whether through 7}
we can further distinguish FA from IA jumps is ongoing.

The rest of the paper is organized as follows: Section 2 sets out details of the model
considered and provides some notation; Section 3 analyzes the behavior of 7" for the pure
jump SM X. In particular, Section 3.1 deals with the case of finite activity jumps: the necessary
assumptions are established and the first main theorem is stated; Section 3.2 deals with the case
of infinite activity jumps: further assumptions are made and the second main result of the paper
is stated. Section 4 shows the behavior of T;' for the complete SM model (1), possibly including
infinite variation jumps. Section 5 briefly illustrates the theoretical results from simulated
data, and Section 6 discusses a possible extension of the results to a multivariate framework.
Section 7 includes the proof of our first lemma, the statements of other five necessary lemmas
and the proofs of the theorems. The statements of two further lemmas, the proofs of the second
to eighth lemmas and of the corollary to Theorem 2 are shown in the Appendix.
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2. Setting

We start by introducing our setting and some notation. We assume that model (1) further
satisfies the following conditions: A(w, s, x), from 2 xR, xR to R, is progressively measurable
(e. [ 4 M(s, x)dx is a progressively measurable process for any Borel subset A of R); when
X has FV jumps, we also require that the process

a; = / xA(s, x)dx
lx]<1

is ladlag; if u(w, {s}, R) # O then fou({s}, dx) #0.

The ladlag condition of the paths of b and o required after (1) ensures that no bursts
occur, in drift nor in volatility; the measurability condition for A is required to make the two
processes fot fIXI<1 xji(ds, dx) and fot f‘x|>1 xA(s, x)dxds well-defined. When X has FV jumps,
the compensator of the small jumps is given by fof asds. The last requirement simply means
that if a jump occurs at s then its size is non-zero.

Notation 1. K, = 0+OO Kw)du, K_ = fi)oo K (u)du. For any ladlag random process b,
b =bj_ - Ky +bp - K_. 5)
After defining A = A, = I and Ayyux = Apar,n = max;_y, |t — t;_1| we assume that
Apax <CA

for a fixed constant C, which means that the partition should not differ too much, asymptot-
ically, from the equally spaced partition. The framework (4), under which we look for our
asymptotic results, means that A — 0 and % — 0.

As mentioned in the Introduction, in the presence of the Brownian part in the model, in
restriction to the set where AX; = 0 the contribution of the jumps turns out always to be
negligible. To illustrate this, we start by analyzing the jump contribution in the pure jump
model (2), then return to the general model in Section 4.

3. Pure jump model

Within the framework in (2) note that for fixed 7 € (0, T') the statistic T of our interest is
well-defined when the denominator is non-zero. As will be clear from the proofs of Lemma 1
and Theorem 2 (part a), this is the case at least when X jumps at 7 or when X has IA jumps
and in any small interval some jumps occur. When no jumps occur at 7 and X has FA jumps,
the statistic is well-defined at least when aX # 0 (see (18)).

As mentioned in the Introduction, for a fixed w it turns out that the behavior of Tt-” is
different in the two cases where ¢ is or is not a jump time, and the asymptotic distribution
of the statistic is substantially different depending on whether the jumps have finite or infinite
variation. We tackle the finite activity jump case first, while the infinite activity case is dealt
with in Section 3.2.

Notation 2. C always indicates a constant. Within the algebraic expressions we retain the
constant C even where the two sides of an equality yield different constants. Given two functions
f, g, then f(h) ~ g(h) indicates that lim,_.o f(h) = lim,_.¢ g(h), while f(h) ~ g(h) indicates

that limh_m% = C, f(h) K g(h) indicates asymptotic negligibility of f w.rt. g, ie.
d
limy,_, ¢ g ((Z)) = 0. Given two sequences T",U" of random variables, T" >~ U" means that
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they have the same limit in distribution. Recall that AX, indicates the size of the jump that
possibly occurred at t (in our framework AX; = 0 iff u(w, {t},R) =0); Ky, = K ’%5 . For
any o > 0, Ko = fR K*w)du. Ry = (0, +00), R_ = (—o00,0). ulds,dx), ii(ds, dx) can
be abbreviated using du, dfi, respectively.

3.1. Finite activity jumps

We now consider the case where [ [, 1v(ds, dx) = [;| [, A(s, x)dxds < 0o as. Hence
we obtain a.s.

t t t
/ laslds < / / [x|A(s, x)dxds < / /A(s,x)dxds < 00,
0 o Jix|<t o Jr

so X can be written as

t t
X, :/ /xu(ds,dx)—/ / xA(s, x)dxds.
0 JR 0 Jlx|=1

The latter term — [ . _
hand fol Jg xdu coincides with Zg’zl ¢, for any ¢ € [0, T'], where N is the process counting
the finitely many jumps, occurring at some random times Si(w), ..., Sy, @w)(w) on [0, T'], and
cp =cpw) = fR xpu({S,}, dx) = c(w, Sp, xp) is the random finite size of the jump at S,. Thus
we also can write X as

Ny t t
X, = ZC,, — f agds = L; — f asds.
et 0 0

Note that while, for any s, |a;|] < o0, a.s., in general the drift process a could not be
uniformly bounded in (w, s).

| XA(s, x)dxds = — fof asds is a random drift component. On the other

Assumption Al (Kernel Function).

Al K : R — R, is a Lipschitz continuous function with Lipschitz constant Lk and satisfies

lim K(x)=0, lim K(x)=0and [, K(x)dx = 1.
x—+00 X—>—00

Al1.2 K satisfies the following:
Cif lal < bl then K(2) < K(%)
- for any fixed x # 0, K(3) < hA4, as h — 0, under (4).

%2

Remark 1. (i) The Gaussian kernel K(x) = % satisfies Assumption Al for instance with

h = AY with y € (0, 1). This is the case if for instance & = k, A with k,, = CA™?.
(ii) To know how T:" behaves asymptotically if the kernel is an indicator function, our results
can be used where the kernel is a Lipschitz continuous approximation of the indicator function.

Assumption A2 (Partitions of [0, T]). After defining

H" = % 3z

<t
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we assume that:

- for any t € (0, T] the lim,_, 100 H™ = H, > 0 exists and is finite,

- H is Lebesgue differentiable in (0, T) except for a finite and fixed number m > 0 of points
Tiy ..., Tm, and H' is bounded,

fI(") (i : 3k, 7y € [ti_1, 1;)), then SUP; 1) SUPsep Ly 1S L| — 0, as n — 00.

- T/n

Remark 2. The previous Assumption A2 is similar to Assumption 2.2 in [7] but less restrictive.

When we have equally spaced observations all the A; coincide with % and H' = 1. When
the observations are more (less) concentrated around ¢, we have H;, < 1 (H, > 1).

Note that, where it is defined, H' > 0, however if for example n - min; A; — C > 0 then
H > 0.

As an example, consider the sequence of partitions where the length of the ﬁrst [n/2]

intervals [£;_1,#;) is 2¢ and the length of the remaining n — [n/2] is ¢. Then ¢ = - H[l”]l

and, forany t € (0, T], H, = ‘;—tltsﬁ —i—(%T + %)Itn1 where 7y = 27 /3. This function H is not
differentiable at t;, so m = 1 and for any n, I ) is the only i for which [#;_;, t;) contains t;.
Further, the interval [#;_1, t;) for whichi € 1};’ is the first interval with length 925 As for the third
condition in Assumption A2, for any n if f;_y < 71 < #; then sup,, . |H, Ll — 2/3,

| — 0.

s T/n
but if both #;_1, #; are on the same side of 71 (thus i ¢ I(”)) then SUPserr, i) |H, — T/n

HET | = 0, and Assumption A2 is satisfied.

Further, SUP}; ) SUPselr,_ .1 |H, — T/n =3 - 1+[
Assumption A3 (Jump Intensity and Sizes). For the process a; = fm< | XA(s, x)dx one of the
following conditions holds true: -

(i) a.s. sup;_y ., SUPsep, | 1 las —ay_,| = 0;

P
(”) Sup[ 1. Sups‘e[l‘,'_],l,') |a5 - ati—l| - 0’
(iii) there exists p > 0: Vs, u such that |s —u| < A then E[|a;, — a,|] < CA*.

Remark 3. (i) The above requires regularity of the paths of the drift coefficient a. For instance,
if a path a,(w) is continuous, then on [0, T'] it is uniformly continuous in s, and (i) is satisfied.

(ii) If a.s. A(s, x) is bounded in x and, for any x, A(s, x) is continuous in s, then, in this
framework of finite activity jumps, A3 (i) is satisfied.

(iii) If X does not depend on s then a, reduces to the finite r.v. a = f i< xA(x)dx for any
t, and trivially all the three conditions (i)—(iii) are satisfied. For instance A3 is satisfied if X
has jumps with identically distributed Gaussian sizes.

(iv) Condition (ii) of A3 amounts to saying that the sequence of processes

G™W = 3" (as — a;,_)se;_, .1 tends to O ucp.

(v) Condition (iii) is similar to a requirement given in Assumption 2.1 in [7].

The following definition helps to focus on the asymptotic behavior of T, recall that
throughout the paper 7 € (0, T) is fixed. Given a deterministic function f(x) we set

F'(X) = Z K; f(A: X). (6)

i=1

With f(x) = x we obtain the numerator of 77, with f(x) = x? the squared denominator.
Note that here we are only interested in the r.v. F"(X) (rather than in a process), which is
computed using all the increments A; X with #; from #; to #,. The next lemma describes the
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asymptotic behavior of F"(X), and is used in the proofs of both Theorems I and 2. It is proved
in Section 7.

Lemma 1. Ifas A0, T]xR) <ooand L = (fot fop,(ds, dx))t>0, then under (4), if K
is continuous at 0 and lim,_, 1o, K(x) = 0, then for any real function f(x) continuous on R
we have

a.s.

F*(L) = F(L) = K()f(ALj).

From the lemma, the limit of 7" is almost immediately obtained for the paths @ on which
AX; # 0. On the other hand, for the ws where AX; = 0 both the numerator and the
denominator of Tf” tend to 0, and we need some work to catch the leading terms.

Recall that in the case where 7 is not a jump time, if the drift in X is absent 7;'(X) may
not be defined. This is the case for instance when Ny = 0; or when N7 > 1 but the support of
K is bounded. If e.g. K(x) is a Lipschitz continuous approximation of I 1p for sufficiently
small A then both Y7 K;A; X =0 and Y ;| K;(A; X)* =0, thus T/*(X) is not defined. Note
that it is always true that if Y _, K;(A; X)* = 0 then also Y I | K; A; X = 0.

The behavior of T;" in this framework is as follows:

Theorem 1. Under model (2), conditions (4) and h% — 0,
(a) If K satisfies Assumption Al.1 and a.s. Supsc(o 7 f\x|51 |x|A(s, x)dx < 400, then a.s.

T!' I ax;20) — v K(0) - sgn(AXp) I ax; 20y

(b) Under Assumptions Al, A2 and A3(i) and if (ay)s>0 is ladlag then the following holds
true a.s.: ifatf # 0 and H,-/i > 0, then in restriction to the set where AX; =0 but Ny > 0,

T — sgn(—a;f) - oo,

where a* is defined as in (5).
If, within (b), Assumption A3(i) is replaced by either Assumption A3(ii) or Assump-
tion A3(iii) then the result is in probability.

Remark 4. (i) a7 is a weighted sum of a7, and a;_, the values of the drift component of X at
the left and the right of 7. If af = 0 then a;_ - K, = —aj, - K_ and we have a symmetry in the
drift coefficient values before and after 7. In this case the drift of X has no impact on 7", the
behavior of the statistic is only determined by the jumps, and 7" does not explode anymore
(as in Corollary 2).

The symmetry in the drift coefficient values means a symmetry of the law (on R) of the
sizes of the jumps that can occur before 7 with respect to the ones after. In fact, when for
instance K is symmetric, the condition az(w) = 0 means that limy_,7_ f\x|51 xMw, s, x)dx =
—limy_ 74 f|x|51X)‘(")’ s,x)dx. If L was a strictly positive constant, then we would obtain
jixlsl xdx = 0. The same would happen if A(s) did not depend on x and was strictly positive.
If A(x) does not depend on s we have f‘ | X*A(x)dx = 0, which is for instance the case when
X has jumps with i.i.d. centered sizes.

(i) If, on w, a is continuous at ¢ then a: = aj.

x|<
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(iii) Note that, since our process X is an Ito semimartingale, it has “no fixed times of
discontinuities”, namely P{AX; # 0} = 0. Despite this, point (a) of the theorem is relevant
from the practical point of view, because we only have at hand one specific path {X (), s €
[0, T}, on which at 7 a jump could well have occurred.

Corollary 1 (Contribution of the Drift to T;"). Let D; = fot byds. Under Al, A2, A3(i) and
h2 — 0, if (by)s=0 is ladlag; by # 0; and H;_ > 0, then

T (D) — sgn(by) - cc.
If instead Assumption A3(i) is replaced by either Assumption A3(ii) or Assumption A3(iii)
then the result is in probability.

In fact, from (17) within the proof of the theorem, it follows that Zl'.':l K;A;D ~ bzh, while
> Ki(AiD) ~(H bz)*hA O
If the jump process is represented in the form

Ny
L, = E Cp,
p=1

without compensation, then the drift coefficient a;, = 0, and part (b) of the theorem above does
not apply. However, a.s. the limit behavior of 7" (L) does not change if 7 is a jump time, while
T'(L) — 0 if AL; = 0. This is summarized below.

Corollary 2 (Contribution of the Sum of the Jumps to T"). Let L, = p L C€p- We have
(a) under Al.1 and A — 0, then in restriction to the set where AL; # O we have

T (L) — \/m - sgn(cy);

(b) under Al, A2, A3(i) and h% — 0, if spt(K) = R, then in restriction to the set where
AL; = 0 but Nt > 0 we have

T (L) — 0.

In fact, using the same notation as in the proof of Lemma 1, we obtain the following: a.s.,
if 7 is a jump time, then for small A, from (13),

N
2o Kiper KO

Jou ke KO

If 7 is not a jump time, since Ny > 1 and spt(K) = R then for any p there is a unique interval
of the partition containing the time of the pth jump, and we denote it by [ti,-1,1:,). Now we
focus on min,, |t — §,|, which is strictly positive and can be reached either by one single S,
or, if 7 is the middle point between two consecutive jump times, by two points S > S D, In the
former case, for small A, we have

s ke (e[S
D P -
(L) = =1 P~ i — = K(—E) -sgn(cp) — 0.

\/ZNT Ki,c \/K (r‘—hs£>cz h
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In the latter case we would have |f — Sp, I = |t — Sp,l, and
Nt K {__SB
Zp:l Ki,cp h (CEI + Cﬁz)
Nr 2 i—Sp
\/szl K’pcp \/K(t hL>(Cé] + Céz)

F—8,\ ¢, +c¢
= K( h£> b B . O
[2 2
CE1 + C£2
Note that, in this framework of FA jumps, 7" could provide a test for the presence of a
drift component in the DGP: if a drift f asds is present in X then either |7'| — +/K(0) or

|T7| — oo if not then 7' — 0. We comment on the potential use of 7" as a test for a jump
at 7 in the next Section.

T/ (L) =

Remark 5. The abqve result is consistent Wi_th Theorem 4 in [2]. The Authors consider a
process of type Y 4 J, where Y as in (1) and J; = Ulp-,< is a single jump occurring at time

. . . . P .

7. They analyze T" precisely at the jump time, with the result that 7 — %‘;) -sgn(U). Their

constant K is derived from their definition /Kizg of the test statistic, while in this paper we
t

consider v/ i—’

Within their framework the model contains a non-vanishing Brownian component. When no
jumps occur at 7, the Brownian motion dominates all the other components, thus the specific
contribution of a non-exploding drift and of the jumps are not explicit. It follows that it is not
possible to deduce the asymptotics for 7" from their framework in the limit case when the
Brownian term is absent.

3.2. Infinite activity jumps

When the jumps have infinite activity, it turns out that in restriction to the set where AX7 # 0
(again an event of zero probability), then 77" has the same limit as in the FA jump case. On the
set where AX; = 0, as above, both the numerator and the denominator tend to 0 in probability,
and the freneticism of the activity of the small jumps is crucial in determining the convergence
speeds. Therefore we assume that the jump activity index is a constant «, and we consider a
generalized «-stable process (Assumption IA3), for which the jump activity is wilder when «
is higher. The large jumps are always of FA, their jump activity index is 0 and they do not
contribute to determining the convergence speeds we are interested in. We show that the limit
of T is different when o < 1 (finite variation jumps) or & > 1 (infinite variation jumps). For
sake of simplicity we concentrate on the case of equally spaced observations (Assumption IA2);
further, we add the technical requirement [A1 on the Kernel function, which is satisfied at least
in the Gaussian kernel case.

Assumption IA1 (Kernel). Given a deterministic function ¢ defined on R, we say that K
satisfies 1A1 for ¢ if Al is satisfied and: K is monotonically non-decreasing on R_ and
non-increasing on R, and there exists a deterministic function ¢;, such that as h — 0

&€
K (%)

p(h)

g, — 0, Sh—h — 400 and — 400. @)
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Remark 6. For instance, with ¢ equal to any of the speed functions ¢, (k) or ¥, (h) at (10)
below, with the Gaussian kernel, and with the function

/ 1
en = h,/loglog 7 ®)

the above conditions (7) are satisfied for any o € (0, 2).
Assumption IA2 (Partitions). We take A; = A for all n, foralli =1, ...,n.

Assumption IA3 (Small Jumps). The jump process has the form X = X + X', where

t t
X, :/ / xji(ds,dx), X| :/ / xu(ds, dx),
0 Jixl<1 0 Jix|>1

the compensating measure of the jumps smaller than 1 has the form v(ds, dx) = A(s, x)dxds,
where the, possibly random, intensity A(s, x) is given by

A _g(s,x) A_g(s, x)

As, x) = e Lo<x=1) BES

{—1=<x<0}>
where A, ,A_ > 0, a € (0,2), and 0 < g(s,x) < 1 is a random, progressively measurable,
process defined on §2 x [0, T] x R. Further, g is such that:

if o < 1: there exists r < a < 1 such that flx\sl |x|’1‘;f|"’l(if>dx < C for any (w,s) €
2 x[0,T]; a; = f\Xl<1 xA(s, x)dx is ladlag and satisfies A3 of Section 3.1;

if a > 1 we have /\XI<1 |x| ll;fl(if)dx < C for any (w, s).

Remark 7. (i) About process a. When X is an a-stable Lévy process, or a CGMY process
with a € (0, 1) then Assumption A3 is satisfied, because A does not depend on (w, s) and a;
is a constant.

(i) Examples of processes satisfying IA3. The small jumps of an «-stable process satisfy
IA3 with the constant g(s, x) = 1. We recall that «-stable processes necessarily have a € (0, 2]
and the only 2-stable process is the Brownian motion.

In particular our framework includes cases where X is a subordinated process. For instance,
a y stable subordinator S without drift, has infinite activity and y < 1; if we subordinate
a symmetric B stable process Z with € (0, 2], then the subordinated process X = Zg is
stable with index o = yB € (0, 2) (see [4], p.110). The case where Z is a Brownian motion is
included.

Any subordination generating a jump process with constant jump activity index and which
is writable in a form with A as in Assumption [A3 is included in our framework.

The small jumps of a CGMY process satisfy [A3 with g(s, x) = e‘G"I{Ko} + e‘M"I{DO}.
More generally, if 1 — g(s, x) < C|x|", for all (w, s) and some n > 0, then the assumption is
satisfied for instance in the following cases: if « < 1 and n € (0, 2«), with r = « — n/2; if
o >1and n > o — 1 (for instance n = «/2).

(iii) Assumption IA3 aims to have a constant jump activity index o for X (as defined in [1]
p-2). Such an index is identified by the component ﬁ of the Lévy measure of X, as the
latter conditions prevent g from increasing the jump activity.

Assumption 2 in [1] is similar to IA3, and requires a constant jump activity index as well.
The «-stable process is the prototypical example within both frameworks. Showing some results
for such a process is a crucial first step, because then, with specific technical tools, it is often
possible to extend their validity under the more general Ito SM framework.
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(iv) We obtain the same results if Assumption IA3 is made for the compensated measure of
the jumps smaller than any boundary ¢ > 0 in place of 1.

Notation 3. E;_|[Z] = E[Z|F,_,|]. Foreacha € (0,2) let Z; o, i = 1,2, be random variables

. _ Ai—A_
characterized by f = A TA
E[e'371a] = =151 K| D=y cos(%) A4+ A)(1=iB tan( % )sen(s)) ®
Z2.0( Z O’
=57 2 Ky (Ast AT (S41) | (=) cos( %2
posrng - | @R (YOS 01y,

5§ pa—1 (el
Tt

For each a € (0, 2) let us define on R the speed functions of our interest

h ifa €(0,1),
gy =1 hlogl  ifa=1, Va(h) = he, (10)
he if o € (1,2);

where @y is shown to be the speed (of convergence to 0 on the set where AX; = 0) of the
numerator of T;" and v, the speed of the squared denominator.

Remark 8. The random variable Z; , is «-stable of type S,(c, B,0), with scale parameter
¢ = K lI'(—a)| - |cos (%)| (AL + A_), skewness parameter S and zero shift parameter
(parametrization of [8], thm 14.15).

By contrast, the law of Z, , cannot be stable, in that Z, , is non-negative with positive jump
sizes, so it would have to be 8 = 1 but then the characteristic function of an S, >(c, 1, 0) would
be not compatible with the above Laplace transform. Z, , comes from the leading term of a
squared «-stable random variable in Lemma 5, but does not have the law of a squared «-stable
r.v.

Point (4) within the proof of Lemma 6 shows how Z, , and Z, , are dependent. The Laplace
transform (75) of the joint law of [Zia, Zzﬁa] under P is an exponential of the expression
-C fR[lez(u) + szK(u)]%du, with C > 0, having no linear part in sy, 53, thus in the path
representation of the bivariate random variable there are no drift terms. The law could resemble
a bidimensional «/2-stable, however this is not the case, because it is concentrated on a
parabola (if x, = K(u) then x; = x%) rather than on the unit sphere (see [8], Thm 14.10).

Note that I'(—«) < 0 and cos (ﬂ) > 0 for @ € (0, 1), while I'(—«) > 0 and cos (%) <0
for @ € (1, 2). Thus I'(—a) cos (%3 is negative for all o # 1.

The following theorem provides the asymptotic behavior of the drift burst test statistic 7"
within the pure jump model X.

Theorem 2. (a) Under Assumption Al, 1A3, (4) and h% — 0, with either f(x) = x or
fx)= x2 we still obtain

F'"(X) 5 F(X) = K(©0)f(AX)), Y

having used the notation in (6).
(b) Let the kernel satisfy Al and be such that K% is Lipschitz and: if « < 1 then
K> € L'R), if a > 1 then K'/*> € L'(R). Assume that K satisfies IA1 for both the two

functions @, and Y in (10), and assume 1A2, 1A3, the asymptotics (4) and h% — 0.
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In the case a < 1 assume also that a; # 0.

In the case o =1 let also AL # A_, «/_logK be bounded and log — 0.
Then we have

ifae(,1), T £ —sgn(az) - oo,

t

fa=1, T"L5 —sen(A, —A_)- 0.

t

Ifae(1,2), T cannot diverge.

The latter statement is motivated by the fact that numerator and denominator have the same
speed of convergence to 0.
(¢) Under the assumptions of part (b), in the case o > 1, if AL = A_ then

|Zl,a|

vV ZZ,ot .

Remark 9. (i) Result (a) above implies that there exists a subsequence T;’k such that

we(l,2), |T'Sz,=

T I ax; 20) 2 VKO - sgn(AXp) I ax;-0). In particular, if on a given w we have AX; # 0
then )" — /K(0) - sgn(AX7). However P{AX; # 0} = 0.

(ii) At point (b), in case « < 1 we have a.s. |af| < 00, and the above result is in accordance
with Theorem 1, part (b). If X is glven by the compensated jumps smaller than 1 of an « stable
process with a < 1, then @} = a = —.

(iii) The requirement A+ # A_isin lme with the requirement a* # 0 of the case ¢ < 1 or
of Theorem 1 part (b), and ensures that the drift of X is the leading term at the numerator of
T!.

t Consider the case where « = 1 and the set where AX; = 0. When A, # A_, the numerator
of T" tends to O at speed /1 log % When instead A, = A_ then a.s. the numerator of 7;" tends to
0 at the faster rate . In fact the term determining the speed of the numerator is y ., K. (AKX,
and within the first step of the proof of Lemma 4 we see that the exponent of the characteristic
function loses the term containing sin v — v, and we can apply Lemma 3 with ¢(h) = h, rather
than with ¢(h) = hlog }ll It follows that T;" does not diverge, because by Lemma 5 numerator
and denominator have the same speed.

The same happens for o < 1 when @ = 0 : if also we assume that for any fixed x > 0

we have K(3) < h%, then (by Lemmas 4 and 5) numerator and denominator of 7" have the

same speed h@ and T does not diverge.

(iv) In comparison to (c), the case where @ € (1,2) and A, # A_ requires further
investigation. From the proof of Lemma 6, when A, = A_ we obtain the limit joint Laplace
transform of squared numerator and squared denominator of 7" : since it cannot be factorized
when o < 2, the limits Z; 4, Z, of numerator and squared denominator turn out not to be
independent.

(v) The jumps never cause T;" to explode: when the jumps have FV (@ < 1) or & = 1 then
the explosion is due to the compensator (drift part of X); when the jumps have IV (¢ > 1)
then 77" does not diverge. This proves that the presence of IV jumps in an Ito SM model as
in [A3 cannot make the statistic 7" in [2] explode. This will be even more clear in the next
Section.

(vi) It is not clear whether it is possible to construct confidence intervals for Z, starting

from the Laplace transform of (Z? L Z>.4)- In case, at least under the assumption Ay = A_,
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T!" provides a test for FV jumps (in which case |T}'| — +o00) against & > 1 (in which case
|T7| — Zg), or a test for whether a jump occurred at t (in which case IT"| — K (0)) or did
not occur (either |Tl-”| — 400 or |Tt-”| — Zy).

4. In the presence of a Brownian component

We now come back to the behavior of 7" when Y at (1) contains both a Brownian term
and infinite variation jumps. In [2] it has been proved that in the presence of a Brownian
component, when the jumps have finite variation, corresponding here to the case o < 1, and
there is no drift burst, then Tf” —d> N(0, 1), where AV (0, 1) denotes the law of a standard normal
r.v. The following corollary certifies that the same result also holds when the jumps have infinite
variation, because in any case the Brownian component introduces the leading terms, both at
the numerator and at the denominator of 7.

Corollary 3. Let Y evolve following dY, = b,dt + o0,dW, + dX,, Yy being Fo-measurable,
where {b,},>¢ is a locally bounded and predictable drift process, {0,},;>0 is an adapted, cadlag,
a.s. strictly positive volatility process; {W,},>¢ is a standard Brownian motion and X is a pure-

jump process for which the compensated small jumps are of generalized a-stable type, as in
IA3, with o € [1, 2). Let the assumptions of Theorem 2, part (b), be fulfilled. Then

Yo KiAY

\ Z,r'lzl I(i(AiY)2

It follows that in a SM having constant jump activity index and no drift or volatility bursts,
as covered in this paper, the statistic behaves differently depending on which components the
model contains:

T/ (Y) = L N, 1).

(a) in the presence of a volatility component not vanishing at 7 we have
.15 N, 1)

(b) in the absence of a Brownian component, under IA3 then
- |T¥'| does not diverge if « € (1, 2), for instance |7 4 Zyif AL = A_
T S 4o if a € (0, 1.

As mentioned in the Introduction, tests based on discrete observations are available for
assessing whether in an SM model without drift bursts a Brownian component is needed for a
better explanation of the data. Potentially |7}"| may provide a further test.

5. Practical illustration

In this section we briefly illustrate the different behavior of Tl-” when Y, = o W, + X, has
different features. We first consider the case where we are given n = 252 - 84 evenly spaced
discrete observations of H = 100 simulated paths from the same data generating process.
The step between two consecutive observations is A = 1/(252 % 84), the time horizon is
T =nA =1 year and the Gaussian kernel of Remark 1 is used with bandwidth h = A%%.

The first column on the left in Fig. 1 shows the histograms of the values of 7' when
X, = ZlNz’l Z; is a compound Poisson process (CPP) possibly superposed with a Brownian
motion with different volatilities. The second column shows the histograms of the values of
T when X, = ZlNz‘l Zi—th fIXI<1 xf(x)dx is a compound Poisson process with compensation
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Fig. 1. Histograms of Tt»” under different models Y. First column: first row, ¥ = X = CPP with no drift; second

and third rows, ¥ = X 4+ oW with different volatilities. Second column: first row, ¥ = X = CPPComp, with
drift given by the compensator of the small jumps; second and third rows, ¥ = X + ¢ W. From the third to the
last column: first row, ¥ = X = CGMY model with compensation of the small jumps; second and third rows,
Y=X+oW.n=252x84,A=1/n.

of the jumps smaller than 1 in absolute value (CPPComp) and possibly superposed with a
Brownian motion. For both columns the annual jump intensity is A = 10 and the jump sizes
are i.i.d. Gaussian with law N(—0.1, 0.05%) and density f(x).'

The theoretical findings are clearly visible: the statistic explodes only when Y has no
Brownian component and the drift component (the compensator of the small jumps) is not
null (second column, top plot).

The columns from the third to the last show the histograms of the values of 7" when X is a
one-sided CGMY jump process (only positive jumps) with compensation of the jumps smaller
than 1 and jump intensity A(x) = 0.003 - ;%Ipo, possibly superposed with a Brownian
motion.” In this case too we can visualize the theoretical results: for 0 = 0 when o < 1 (top
row of 3rd to Sth columns) the drift given by the compensator of the small jumps leads 7" to
explode towards —oo, while for « > 1 the statistic displays a different, not symmetric, law.
By contrast, as soon as o # 0 the leading term both at the numerator and at the denominator
of 7' is the Brownian motion, which pushes the statistic close to a Gaussian r.v.

I In order to produce more observations of T”, for each simulated path the statistic is computed on 50 evenly
spaced time instants ¢ within [0,T], as for each ¢ the statistic has the same law.

2 Simulation of the CGMY model is carried out by approximation with a compound Poisson process with jumps
larger than & = 107 and proper intensity, as in [4], Example 6.9.
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Fig. 2. Histograms of 7 under the same models Y as in the previous figure. Now n = 252 x 840 and for CPP
and CGMY jumps A = 1/(252 x 84000), while for CPPComp jumps A = 1/(252 x 8400).

We remark that if we could use higher frequency observations filtered out for microstructure
noises, the asymptotic results would be even more evident, as in Fig. 2, where in order
to highlight the results we set n = 252 x 840, then for CPP and CGMY jumps A =
1/(252 x 84000), while for CPPComp A = 1/(252 x 8400).

6. Multivariate extension

One may wonder whether for a multivariate process it is possible to obtain results similar to
those obtained in the univariate case. This is subject to further research, and we briefly illustrate
the problem.

One could start by analyzing the pure jump model. Let us consider the bivariate jump process
X = (X1, X?®), where the components have constant jump indices «;, . When both X@
satisfy our assumptions, we already know the behavior of the relative statistics Tt-(l)’", Tt-(z)’",
and we would like to know the limit in distribution of the joint (Tl-(l)’", Tt-(z)’"). Depending on
how the marginal statistics covariate, the confidence intervals of the joint law may differ, and
the power of the joint test may be different.
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If both the jump indices are larger than 1, along the lines of this paper, the above-mentioned
limit could be obtained from the convergence in distribution of

2 2
n 1 n 2
(Sh Kax®) s gaxmy (S KidX®) s gaxoy
h2/0¢1 ’ h2/c{1 ’ h2/0t2 ’ h2/0l2

We expect that, at least when A(J? = A(,i), 1= 1,2 as in Lemma 6, the above to have the same
convergence in distribution as

(Z:;l KXAXDP? YL KA X2 S KHAXOPR YL Ki(AiJ?<2>)2>

h2/ot1 ’ h2/0{1 ’ hZ/th ’ h2/a2
(12)

One could start by finding the result for a process X where X = pXV+X©®, with (X1, X®)
a Lévy process with stable marginals and with respective jump indices o, a3, so if p # 0
then o, = max{a, 3}. In this way, X is a linear transformation of (X, X®), so it still
has independent increments and an expression for its characteristic function is available ([4],
p-107). Using the approach of Lemma 5, we now have

(M2 2)y2
E [e_”‘(xl )X ] = /‘2¢(31,B3)(x1,x3) - f(x1, x3)dx1dxs
R

where (B!, B?) is a bivariate centered Gaussian r.v. with variance—covariance matrix % explic-
itly depending on u, u,, p and with characteristic function ®B!, 33)(361, x3), while f(x, x3) is
the joint density of (X il), X (13)). However the above equals

/2 /z VIS oy y3)dyidys - f(x1, x3)dxidoxs
R R

. M . 3)
= /2E[e”"xl sk ]g(yl,ys)dyldys,
R

where g(y;, y3) is the density of the joint law of (B!, B3). Thus we expect that the limit in 7
of the Laplace transform of the 2joint law of (12) can be computed, and thus information on
the asymptotic law of (Tl-(l)’", Tr-( ") can be obtained.

As for a bivariate version ¥ = (Y, Y@), of the complete model, we already know that
in the presence of a Brownian component, the latter dominates all the other parts, thus the
joint asymptotic distribution of (Tt-(l)’", Tl-(z)’") can be reduced to finding the joint asymptotic
distribution of

2 2
((Z,_] K,-A,-g’(l).W(l)) Z:":l Ki(AioD. Wby (Zi:l K[AIG(Z)'W(Z)) Z:,:] K[(A;J(Z).W(z))z)

h ’ h ’ h ’ h

2
i Ki;lAiU»W) _P> Uz'z’

where o.W indicates the Ito integral process of o in d W. But since if

we show that
2 2
(S0 Ko ) (S K20 w)
h ’ h

converges stably to a bivariate r.v. then we can immediately conclude. Again one could consider
W = pWW® 4 W with independent Brownian motions W, W®_ Then we expect the
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result to be obtained using the multidimensional theorem on the stable convergence of triangular
arrays [6].

7. Proofs of Lemma 1 and of the two theorems

Proof of Lemma 1. For fixed w, for any given jump time S, = S,(w) of L and any integer
n, let i,=i,(w) be the right extreme of the unique interval [#;_i, #;) containing S,.
For the fixed o, ZN , Cp 1S a step-wise constant functlon of ¢, so each increment A;L

either is 0, if [#;_, #;) does not contain jump times, or is Z _1 ¢p, if [t;_1, t;) contains some
instants S,. Since the time horizon T is finite and fixed, for sufficiently small A we have
0< AN <1foralli=1,...,n, thus A;L either is 0 or reduces to a single ¢, € R — {0},

and 30, K; f(Zpil c,,) reduces to

Nt
> Ki, f(cp). (13)

p=I

(a) On {AX; = 0}, 7 is a jump time, then it coincides with one of the S,, say S5 = 1,
while, if some other jumps occurred (i.e. Ny > 2), for the other indices p we have AS =
min,.; |S, —f| > 0. For A — 0 we have that, for all p = 1,..., Nr, fiy-1 = Sp, SO

[t—t; -1l
that 7 — liz—1 — 0, and since |t—tl -1l <= 4, < A, we have 2 < 4 5 0, thus

h — h
Ki; f(cp) 5 K(0)f(cp) = K(O)f(AL ).
On the other hand, if Ny > 2, for p # p we have that | — tiy—1l — |t —S,| > AS > 0,

1=t 1l _
thus TF' — +o00, and K;, — 0. So, for p # p, K;, f(c;,) = 0.

In other words, for sufficiently small A, >/, K; f (Zﬁ;llv cp) only contains N7 non-zero

terms, and all of them tend to 0 but one. Only the term for which [#;,_;, ;) contains S; = ¢ has
a non-zero limit, amounting to K(0) f(c5) = K(0) f(ALy).

(b) On {AX; = 0}, 7 is not a jump time, and we have that, for any given w, each
Sp is at positive distance from 7, and again, for sufficiently small A = A(w), we have
Z  Ki, f(Ai,L) Zgi K;, f(cp), which is a sum of Ny terms, where now all the terms

Kip te_nd to 0. In fact, similarly as above, 7,1 — §, but |t —S,| > min, |t —S,| > 0,
thus tipl — +o0. However, since f(AL;) = 0 we can also write Y -_, K; f(A;L) —
K@) f(ALy). |

The following lemma, which is proved in the Appendix, gathers properties of the kernel
function which are used numerous times. Point (1) is similar to point (1) of Lemma A.1 in [7],
but is adapted to the present framework.

Lemma 2. Whatever t € (0, T) is, under (4), the following hold true:
(1) [Lemma A.1 (i) in [7]]. For a sequence of processes b™ bounded by the same constant
C, for any Lipschitz function K (x) with Lipschitz constant Lx and h% — 0 it holds

L R fi A
/ SR (=2 )pds = Y —K<—1>/ bPds = 0, (=
o ho\Th 2 n ), H2

(2) If K is Lipschitz, K € L'(R) and h% — 0 then M —- Koy = fR K(u)du.
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(3) If K? is Lipschitz, has Ky = I K?(x)dx < oo and h% — 0 then Zi = L KPA — Ko).
(4) For a ladlag bounded process b and any density function K (x) on R we have a.s.

1 i—s
f ZK (= )buds > by,
0o h h
(5) If K is Lipschitz, K € L'(R), 4 o= 0 and b™ are processes for which

(i) @.s. sup;_y . SUPserr 1) b — (n) 1—0,
then a.s.

> (= () [ e

i=l i=1 i—1

If the last assumption is replaced by either
(i) SUp;_y o SUPyegy_, 1 1B — B 1 5 0
or
(iii) there exists p > 0 : Vs,u such that |s —u| < A then E[|b™ —bM|] < CA?,
then the above result holds in probability rather than a.s.
(6) If K? is Lipschitz and in L' (R), then under (4) and h% —0

ZZK KA A, ~f K2/ K2dsdu ~ h*Ck,

i=1 j<i

.....

where Cy = [, K*(v) fv+°° K?(w)dwdv > 0.

Proof of Theorem 1. (a) On {AX; # 0}, ¢ is a jump time. We show that a.s.

(la) >}, K; A X — K(0)AX;, ,

Qo) Y, K402 > KO)(AX;)

which are sufficient to conclude.

As for (la), using Lemma | for process L = fo f]R xu(ds, dx), it remains to check that
YK f;’q a,ds 23 0, which is almost immediate. In fact, we have a.s.

- f KA
ZKi/ asds| < (sup/ |x|A(s,x)dx>h . L
i=1 [x=1

_ s h

Since the last factor above tends a.s. to K(;y = 1 we are done.
In order to show (2a) we write Z;’zl K;(A; X)? as

Z K (Z c,,) + Z K (/ti asds)z - 2i K (AXI:V c,,) /ti a,ds. (14)
- i=1 p=1 li—1

By Lemma 1 the first term tends to K(0)(AX 7)?. The second term of (14) similarly as above
tends to 0, because it is bounded from above by

: KA
ZK[ (sup/ le)»(s,x)dx) A? < CAhZT — 0.
i=1 s [x|=1
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The third term in (14) is a negligible mixed term. In fact, for small A it becomes

Nt ip
- ZZ Kipcp/ acds (15)
p=1

lip—1

since on the fixed w only finitely many jumps occurred, and each jump has finite size, the
random number ¢ = max,_i__n; |c,| is finite, further under Assumption Al.1 the kernel K
is bounded, then the latter sum is dominated in absolute value by

Nt
cy 4, sup/ Als, x)dx < CNpA — 0.
[x|=<1

p=I $

Thus (2a) follows and (a) is proved.
(b) On {AX; = 0}, 7 is not a jump time. Within
n N ti
i KiAX =31 K, Ay L =30 Ki [, agds,

as above, the second sum tends a.s. to 0, and now also the first one does, by Lemma 1. The
same happens at the denominator of 7', thus we have a limit form 8, and we look for the
speed at which the two terms of the quotient tend to zero.

For that, note that, by virtue of the assumption that if u(w, R, {s}) # O then fR xu(dx, {s}) #

follows

Xn:KiAiX =Xn:Ki /Zi /
i=1 i=1 ti—1 /|

x|> el

n ti
xu(ds, dx) — Z K; / agds. (16)
i=1 !

i—1

For a sufficiently small A = A(w) the first sum contains the Ny vanishing terms Ki,cp =

K(Hih”_' )cp, the leading of which, when &2 — 0, by Assumption A1.2 are the ones having

r—t,

ihp—l ’ Since for all p we have li,—1 —> Sp, the slowest terms tend to O at speed

the smallest ‘

K (w) In other words, for the given w the first sum in (16) tends to zero at speed
S,

K(52).
Using Lemma 2, points (1) and (4),

1 i 1 t— A
sk [ ads= [ k(5 Jads + 0w (ﬁ> > (), am
i=1 fi-1 0

thus if atf(a)) ?é 0 the last sum in (16) tends to O as —hatf, which, by Assumption Al.2,

—S,
dominates K (IT’*), so the numerator of 77" tends to zero as —ha;.
As for the denominator of 77, from (14) analogously as above we find that the leading

terms of the first sum tend to O at speed K (%{_S‘”); the third sum, a.s., for small A is
as in (15), thus it is bounded in absolute value by C 307 K, |c,|4;,.
asymptotically dominated by CK (W)A <« CK (W) This shows that the third
sum is negligible with respect to the first one.

The second sum Z?=1 K; (ftfil asds)z in (14) is now shown to tend a.s.to 0 at speed
hA - (H ’az);f. For that we proceed based on the following schedule:

The latter is in turn
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2
n t; ~ n
(1b) 27 Y1, Ki (fti_l asds) ~ LY Kia? A
n T
(2b) AL# Y Kial (A}~ [ ;K Halds
(3b) fy 3K Hjajds — (H'a®);,
which proves that the denominator of 7" tends to 0 as

\/K (W) +hAH a2 (18)

However, from Assumption Al.2 it will follow that the latter tends to 0 as ,/hA - (H ’az);.
Then note that

(H'a ) = Hl’_at_KJr + Ht’+at+K > 0,

because at least one between a;_ K and a,+K is non zero, then at least one between a2 K.
and at-2+K is strictly positive, and both H, , H; are strictly positive. Thus it will also follow
that

t+’

_ha,

A 2)* \/7 T - oo«sgn(—a,f),

which will conclude the proof of (b).
Let us now prove (2b), (3b) and then (1b). As for (2b), the difference of the terms at the
two sides is

T n
1 ’ 2 1 E 2 2
/0 EKS‘HvanS — A_h . Kia[i_lAi

:—Z/ K, — K; H/azds—i- Z/ a—aflAA]ds

having subtracted and added ft’_ K H!a’ds for each i: since K is Lipschitz and H' and a are

AZ
g < CA'"‘” — 0. We thus

Mmoo~
T/~ ———

bounded, the first term of the rhs above is dominated by % 3
remain with the second term, which is split as

_Z[ KH a —a? . ds + — Z/ H ——]ag_lds, (19)

where the second sum is
1 li ;o A7, 1 fi , 4,
ZZ/IMK[H T a2 Ids+}—lZ/ti_lK,»[Hs—A],[ ds :
ier® igr®

accounting for the boundedness of K, H’, % and a and for the fact that A,,,, < CA, the latter
display is dominated in absolute value by

C C A;
—mA 4+ — sup H:——‘KiAi,
h h 2(;) selti—y.t) | A
il
<c?.ic H' iz Kidi 0
— sup  su - — =0,
=t p p s A h

iﬂ;,") SE[ti_1.1;)
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having used Lemma 2 part (2). We thus remain with only the first sum in (19), whose absolute
value is dominated by

—ZK sup az—at2 1|A,,

SE[ti—1,1;)

however note that
2 2
sup lag —a; |= sup |a;—a;, \llas+a, | <C sup l|ag—ay_,
SElti—1.1;) SElti—1.1;) SElti—1.1;)
thus the last display is in turn dominated by

n
KA s
Cosup  sup las—ay | ZimKidias g
i=l,...ns€ltj_1,t;) h

which concludes the proof of (2b).
If in place of A3 (i) we assume A3 (ii), clearly the limit above is in probability. If instead
in place of A3 (i) we assume A3 (iii) the first sum in (19) is dealt with as follows.

l n ll , 2 2 C n rl
E [Z ;/ﬁ_] K:H [as - atl__]]ds } - ;Ki fr,_. Ella; — a,_,|ds (20)
C n
— ) KA
23

which tends to 0. Thus again the convergence at (2b) takes place in probability.
(3b) follows from Lemma 2, point (4).

2 2
(1b) Writing, for each i, (flr’_l ans) = (ftfi_l(as —a;_)ds + a;,_, Ai> we obtain

1 & fi
— K,(/ asds> = K; (
Ah ; il Ah Z o]
2 ¢ f 1 < 2 A2
+ T ; Ki/ (as —ay,_pds -a,_, A + iy ;K[a,i_lA

Li—1

A

IA

(@~ ay s e

and, since by (2b) and (3b) Ah YK at ]AZ — (H’a2> # 0, it is sufficient to show that
the first two sums on the right hand side above tend to O. In both cases we use that

1 t 1 li 2
E /til(as —a;_)ds < Z /;l (as — a,H) ds.

It follows that the first of the two sums is

n

1 & 1 [l 1 1 [t
Ah Z ! A Ll(ay i; 1) s A ; A /lil(a‘ 01171) §A4;

I < S KA
<—>Y K; sup lay—a, |*PA7<C sup sup |a;—a, [PE==
Ah ; l»YE“i—lJi) ’ S i=1,.n s€lti_1.1;) * fit h
which, using Lemma 2, part (2), and Assumption A3(i), tends a.s. to O.
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The second sum at the rhs of (21) is

2 &, 1
EZK'K/ (as —a,_)ds -a;, A

Li—

= Ah ZK\/ / — Ay 1 ds ' |ati—l|Ai2

2 A2
las —a;,_,1° - 4;

IA
S
=
- L

=

&
£

Z?—l KiAi a.s.

< C sup sup |ag —ay_,|- = - 0,

i=1,...ns€lti_1.t;) h

which concludes the proof of (1b).

If in place of A3 (i) we assume A3 (ii), clearly the last two limits above are in probability.
If instead in place of A3 (i) we assume A3 (iii) then

1 ¢ I
E [A_h ;KZZ[ (as — alil)zdSAiz] .

i—1

P [ 5
E |:E ;KIZI ‘/t;l |as - ati,l |dS : |al‘,',1 |Al:|

tend to O because they turn out to be bounded exactly as in (20). ]

The proof of Theorem 2 relies heavily on Lemmas 4, 5 and 6 stated below, and the first
two in turn make use of the next Lemma 3. To allow for lean reading, Lemmas from 3 to 6
are proved in the Appendix.

Lemma 3. Let g : R — IC be a deterministic Lebesgue integrable function. Given a
deterministic function ¢ defined on Ry, assume that K satisfies 1Al for . Then for fixed

o > 0, for any s € R, under (4) with h% — 0, we have
(i) if K is Lipschitz and in L'(R) then

>Falf
(ii) if K is Llpschltz and K € L'(R),
n
K4
Z LA ik,
—~ h  m
i=1
(iii) if K2 js Lipschitz and in L'(R), and ¥ € LY(R) is a deterministic function then

n K‘j
Z_lAi/ ¥ 2K;
= h R HENE

(h)‘l

g(v)dv - K(a)/ g(v)dv (22)

— K(])

>1}

g(w)dvdu — K(a/2)~/ W(u)du/ g(v)dv
R R

Lemma 4. Assume that K and satisfies 1A1 for ¢, in (10) and for ¢"(h) = he. Under
1A2, 1A3, (4), A/h* — 0 and if K% is Lipschitz and in L'(R). If « = 1 we also assume that
Klog(K)e L'.
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. . S t; ~
Then, recalling the notation A; X = ftil fx|51 xdji, we have

YL KAX p o Ein ftlfx|<1xdﬂd

ae(0,1): - - —a?; T = Zia  (23)
KA X
a=1&A, #A_: Z'l—“' —(A, — A)Kq), (24)
hlo gh
"KAX
ae(l,2): Z’Z‘—l L 7 (25)

a

Lemma 5. Assume that K satisfies 1A for {,, then 1A2, 1A3, (4), h% — 0; that K*? is
Lipschitz; and if « < 1 then K'/*> € L' (R) 1fa > 1 then K'? € LY(R). In the case o = 1

assume also /K log(K) bounded and Og b — 0. Then
2 i('/;i—l le\<1 xdu,)

ifae(0,1): T 5 Zoan (26)
" KA X)?

ifa=1: Zl:lh%_d) 2 27)
" Ki(AX)?

fae(,y: = KA 4, (28)

Lemma 6. Under Al, 1A2, 1A3 and (4): if x € (1,2), AL = A_ and h% — 0 then

2
<2i=1 KiAiX) Yo Ki(AiX)?
ha ’ ha

(Z] o’ Zz,a)-

Remark 10. Note that under A1 K is bounded and then we also have:

e K? is Lipschitz and in L'(R);

e if K%/? is Lipschitz then K% = (K%/?)? is such;

e for any r > 0: if K'/? € L! then for any s > r/2 also K* = K"?K*~"? e L' ;

efora = 1and r < 1, if K> € L' and v/KlogK is bounded then K logK =
K"2K'2=2 /K logK € L.

Proof of Theorem 2. (a) Since X is a cadlag process, for fixed ¢ € (0,1) we have a.s.
v(w, (&, 11 x [0, T]) < o0, i.e. the jumps occurring on [0, 7] with size larger than ¢ in absolute
value are only finitely many. Define now Ny the a.s. finite number of jumps of X with size
absolute value |AX,| > ¢, and S}, the times of such jumps, p =1, ..., Nz. For any n, for any
p=1, ,N® wecall I, = I the unique interval (t;_;, ;] = (¢/_ 1,t ?] containing S¢, and we
rename its extremes f; -1 = t,s i, = 1. For any ¢ € (0, 1) we split

X,_Xg C* 4+ X'¢,  where X = // xdu,

|x|>¢e

¢ ﬁ/ / xdp, C; i/ / xA(x)dxds,
0 |x|<e 0 [x|e(e, 1]

and we proceed through the following steps.
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(1) For any fixed & € (0, 1), X! is a FA jump process with piece-wise constant paths, so
that, by Lemma 1 we have that, as n — oo, F"(X"¥) &3 F(X'#) with both f(x) = x and
f(x) = x?%, where F(X"®) is finite a.s.

(2) Note that as & — 0 then, for both f(x) = x and f(x) = x2,

F(X"*) = K0)f(AX}*) % F(X) = K(0) f(AX)).
(3) Now we check that

vy > 0, lim lim sup P({|F"(X) — FNXY) > n}) —0. (29)

n—0oQ
The three properties allow to conclude (11) by Proposition 2.2.1 in [6]. We define
as(e) = / xA(s, x)dx, asz(s) = / x2A(s, x)dx.
lx|eCe, 1] lx|<e
Note that a(0) is the process a that we defined in Section 3.1, and that it has finite values only
if X has finite variation jumps (¢ < 1). For proving part (a), note that flx\ c(e] x2A(s, x)dx
is bounded as (w, s) varies, thus that for any fixed ¢ > 0 the processes a(¢) and af(e) are

bounded in absolute value by constants, say A®, depending on ¢, and X respectively. In fact
al(e) < ﬁxl<1xzk(s,x)dx < X and

A(s, x)
lay(e)] < / - "“'—((8 (e )

7-x) &
\//lxe(g : (8 i S) x A((e, 11, 5) < oy (Dy/A((e, 11, 5) < A°.

Case f(x) = x: P<{|F”(X) — PrXL) > n]) is bounded by

(S max-2)) (| Srac- 1)

the first probability is bounded by

I K AR e S KPEA X )
n/2 n/2
n t n
B \/Zizl K2EL[ | [}z ¥2A(s, x)dxds] < \/2.2521 K24,
n/2 - n/2 ’
having used for the first equality that K; A; X¢ are martingale increments. Since under Al we
have K? € L'(R) then, from Lemma 2 point (2), as n — 0o, we have X - Y |_ K?A; ~

Yh — 0, then limsup,,_, ., P<i| S K AXE| > g]) =0 for all & > 0, and

n

hmhmsupP([lZK AXE| > E}) —0.

n—00
i=1
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As for ) !, K; A;C*, we have ‘ Y KA CEl < A°Y Y| K; A, which does not depend
on w and, for fixed ¢, tends a.s. to 0, as n — 00, so again

hmllmsupP([|ZK A Cf| > —}) < hmhmsupP([ASZK A > 5]) =0.

n—00 0 n—00

For the case f(x) = x> we reason similarly. In fact

F'(X) — F'(X"%) = ZK (A XS) —i—ZK (A;C%)>

+2ZK,'<AI'XEA,‘X1’S—A,‘XEA,'CE—A,‘XI’EA,‘CE), (30)
i=1
- \2
and we show that for fixed & each term tends to 0 in probability as n — oo: Y _, K; (A,-X E)
tends to 0 in probability because its L'-norm tends to 0; and, again from Lemma 2 point (2),
Yo KiA; — 0, thus we have
S Ki (AC°) < (A 0 Ki A < (A A 7, Ki A =5 0.

Finally, the double products are all dealt with using the Schwarz inequality, and shown to be
negligible:

| Z KiAZAV| = Xn:\/EAiZ\/EA,-V‘ < Z Ki(AZ)? Z Ki(A V)
i=1 i=1 i=1 i=1

and for each one of the three double products in (30) at least one of the square roots on the
right hand side above tends to 0 in probability, while Y " K;(A; X ") = F"(X!¢) converges
to the finite quantity

F(X"*) = K(0)(AX} %)~

It follows that, for fixed ¢ > 0, F*(X) — F"(X"#%) L 0asn— 00, thus again
lim lim sup P({lF”(X) — FUXbe)| > n}) — im0 = 0.
g U =0
(b) We concentrate on the set {AX; = 0}, having probability 1. On that set both the
numerator and the denominator of 77 tend to 0 in probability: using Lemmas 4 and 5 we
reach the following speeds, as will be explained below:

[ e ifa €(0,1)

> KiAX > —(Ay — ALKy -hlogt, ifa=1and Ay #A_ 31)
: heZi 4. ifae,2)

n | i zea +ormialty, ifae© )

D K(AX)P X W2y, ifa=1 . (32)
i=1 hi Zy if o € (1,2),

It follows that for « € (0, 1) and a* # O then
d —az

T! ~ ! — —sgn(ar) - 0o,
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for « = 1 then

(Ay — AD)K( 1 as

d
T >~ — = log — = —sgn(Ay —A_)-00
2«

= |

while for & € (1,2) numerator and denominator of 7' have the same speed, thus with
probability 1 the statistic 77" cannot diverge.
To obtain (€2)) from Lemma 4, we simply note that a.s.

> K;A; X! has speed K (M) (for the notation see the proof of Theorem 1 after
(16)). Since K (w) — op(hA) by Assumption A1.2, K (M) is negligible with

respect to ¢, (h), for any «.
To obtain (32) from Lemmas 4 and 5 we first note that, similarly as above, Y /_, K;(4A;X')?

tends to zero still at speed K (w) = op(hA). Then
- for @ € (0, 1) the squared denominator of 7" is

t; 2
/ asds
.

ZK(AX)2 ZK /ll/ xdp —i—ZK(

x|<1 i=1 i—1
+ZK,»(AiX1)2—ZZK,/' ayds / f
iz ; |x|<1
n li
—221(;/ asds A; X' +22K / / xd/L AXl' (33)
i=1 li-1 =1

within  the last term, > |, «/Ki(tf’;l flxledu)«/K,-Ain is dominated by

2
\/Z?_l K; (ftfil flx\sl xdu) Vi Ki(A;X1)?, and this is 0p(h%A%), because, by Lemma 5,
2

)
=1 Ki (f'il—l = "d“) d

T — Z5 4, then

. 2
1 Z;:l K; (ft,tl,l flx\Sl xd“) P

1
h 2/ — 0,

(34)

while >'_, K:(A; X')* converges a.s. to zero as K (M> & hA, then as.

Xn:Ki(AiXI)Z

i=1

2
n t _ Z
< Ch.pi-1 2o Ki (f;,-_l jix\sl Xdﬂ) \/K (mmp [t —S,|

hé h

S K (17 fyoxin)

he

>=0P(h%Ai).
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Since a.s. |f;’;l asds| < Asup, fmgl |x|A(s, x)dx, the term > || K; /;[’—l asds A; X' in (33)
tends to 0 as A - K (W) = op(hA); the term

. l f 1 >ie
Z K; asds xdu < C(w)Ah - h«
i=1 fi—1 ti—1 Y x|=1

as said just after (34), the term ) ;_, Ki(A; X" = op(hA); while the speed of
Yo Ki( frl’q asds)? is hA. Thus the display in (33) is asymptotically equivalent to

1 Ki ft:‘—l f\xlsl xdp

. =op(h4);
hao

h& Zs o+ Op (hA) + 0p(h? AT) = hi Zy o + 0p(h3 AZ).

. for @ = 1 we instead split A;X into A;X and A;X' and, using again the Schwarz
inequality, the mixed term within the squared denominator of 7;" is shown to be dominated by

" N2 | & min, |t — S| 31
2 ;Ki (A,»X) Z}:Ki(A,-XIV —0p (h\/K <T)) — op(h3 A7),

Thus

n

2 in |7 — S
S K(AX) 20200+ 0, <K (W)) +op(hiAY) £ W22,

i=1

- for « € (1, 2) we again split A;X into A; X and A; X' and use the Schwarz inequality:

§ 2 iny |7 — S
3k, (A,-X) L hiZoy + Op (K (W)) Y op(hi/AR) L 127,
i=1

(¢) By (31), (32) and Lemma 6 part (c) is proved. O
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Appendix. Proofs of the other lemmas and of Corollary 3.

This Appendix contains the detailed proofs of Lemmas 2, 3, 4, 5 and 6, and of Corollary 3.
Two further lemmas are needed for the proofs of the last four lemmas.
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Proof of Lemma 2. As for (1), recalling from Notation 2 that Ky = K (%), the displayed
left term coincides with

(] m
E Z(Ks — Ki)b"ds,
i=1 vli-1

whose absolute value is dominated by
"\ [ Lg A
Z - ﬁ's —1;i-1|Cds = Oy )
i=1 7li-

(2) By (1) in the special case where 6™ = 1 for all n we have that

%foT K(%)ds + O, (%) = fﬁi Kw)du + O4 (%) — [x K(u)du, where for the last
equality we operated the change ofhva.riable u=(t—ys)/h.
(3) We apply (2). .
(4) For fixed w the term fOT %Kxbsds coincides with [ K (u)b7_p,du, and
h

" KA
# equa]s

i

7
ﬁ K (u)bi_p,du — b}
=T

h

=

0 0
f . KWw)b;_p,du — b;y - / Ku)du
i

R -0

% +00
+ / Kw)b;_p,du — b;_ - / Ku)du
0 0

< [ Vo = b K G+ [ 1 = b g 0K Godu
R b R Th
+ /R(|b,—+|1(_oo’;_TT)(u) b7 a0 K (Wt

the three terms are integrals, in the finite measure on R having intensity K, of bounded
integrands converging to 0 point-wise as & — 0. By the dominated convergence theorem the
three integrals tend to 0 and (4) is proved.

(5) If either (i) or (ii) holds true, the claim follows from the fact that

n 1 ti
Y -k / ™ — b ds
h s i—1
i=1 fi—1

i

i=1,...ns€[t;_1,t;)

" 1 lT—li_
< sup  sup Ibﬁ")—bz@l'Z;—,K( h 1>Ai’
i=1

which tends to O a.s. (respectively, tends to O in P).
If (iii) holds true then

gl

n ] ti

> —K; / b™ — b ds
h s i—1

i=1 li-1

i

1 < i "
} <D K / | E[Ib" — by [1ds,
i=1 1

which in turn is dominated by % YK ,-Al.l 0.
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(6) As for the first relation we have

f KZ/ K’dsdu _ZKZ(Z K2A A = (/ 2/ KZ2dsdu (35)
0

_/<l

~ n 5 ti— ) ' n 2/‘7 5
;:K,./O stsA,)+ Z:K [ Klasa - ZK (ZKA)

Jj<i

Since [~ K2ds =Y i f,t.’;l KZds, the latter term is dominated in absolute value by

KZZ/ K2 — K2|ds A <CZK22/ ’f Is =ty A

J<i J<i

; KA
:CZK?ZTJA,- < CAZ’—+ =0(4)— 0.
i=1 j<i

The right hand side term in (35) equals

n 4 u n 4 ti—1
> / K? f Kldsdu—) / K? f K2dsdu
i=1 Vti-1 0 i=1 Vli-1 0
n 4 ti1 n 4 u
= / (Kf - K,?) / K2dsdu+y_ / K2 / K2dsdu :
i—1 Yli-1 0 i=1 Yli-1 ti—1

using that for any #,_; we have f’ ! szs = hf,” Kz(w)dw < hK(), the first sum is
dominated by

fz
CZ/ lld hK(z):O(A)—)O

f l
Also for the second sum we use that ;" Kids =h [, Kz(w)dw < hK(3), thus the sum
h

is dominated by
n ti T
Z/ K2du - O(h) =f K2du - O(h) = O(h?*) — 0.
i=1 ti—1 0

As for the second relation,

1 T u 1 % f—vh
= K,f/ KZdsdu = —f Kz(v)f KZdsdv
h 0 0 h Ji-r 0

h

; 420
=f Kz(v)f K*(w)dwdv — f Kz(v)/ K*(w)dwdv. O
= v R v

Proof of Lemma 3. (i) Since the difference of the two terms in (22) can be written as

n Ka n Ku
> oA ( [ o / g(v)dv) + /R gy (Z L4~ K<a>>,

i=1 i=1

= (h)
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it is sufficient to show that

"L KA,
Z — gw)dv — | g(v)dv | — 0, (36)
, h o)< Kils! R
i=1 = @(h)
because using then that, similarly as in Lemma 2, (2), Z;’zl @ — K, the proof is

concluded. The absolute value of the expression in (36) is dominated by

K A;
Z [ . g N

Recall that the kernel K satisfies Assumption [A1 for @, in particular there exists a deterministic
function g; such that, as h — 0,

K (%)
@(h)
We split I ={1,2,...,n} =1"UI", where

e
e, — 0, Zh—>+oo and — 4o00.
I = {iel: |lT—l‘,',1| <e&nl, INZ{i el: |lr—li,1| > &}

For i € I’ we have K; > K (%), thus

/ PG y e f k(i) 18N
[v|>

w(h> iel’

IEI’

and the latter tends to 0, because the first factor is dominated by Y ", ——' _ K,, while the
second factor is an integral of |g| on a vanishing region.
On the other hand,

.

o 18IV = Z f HO

zel” o) iel”
and we show that ) K741, 0. First we have
iel” 7 .
KeA -~ Ke (
> =D Lisimends
St—s|>
, h —~ h J, h
iel” i=1 i—1

t
1{i:|t‘—z,~_w>eh}—/ Lii—s>e,)ds |

ti—1

since |t — t;_1|/h > €,/h — o0, and, for all the considered numbers s, |t —s|/h > &,/ h,
then the only involved K[ are such that K < K%(g;/h) — 0; further Ail{,»:|;,,i_]|>5h} —
jz‘_ 1 Iis:i—s|>e,1ds is O for all that intervals [f;_;,#;) but for the two containing ¢ + &, and

t — g. Thus the latter sum is dominated by w -2A — 0, and

hmZ — = hmZ / (s:lf—s|>e,}dS,

iel” ti—
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and using Lemma 2, (1), with b} = Ijs,7_s>¢,), the latter limit coincides with

o

lim
s€(0,T):|T—s|>¢p,

¢h T

= hm‘/‘ii K*w)du +/ K%w)du = 0.

h

t
“h
K )1, e\ du (37)
;T

&
lu>+

(ii)) We have that
n K[
2 7“”{ ik
- Z { Bk ]

and we show that the latter sum has limit 0. With I’ and I” as defined at point (i), we
immediately see that

Z AI{\le,<l

iel’ w(h)

n

 K; K;
— K ~ —A,I — —Al‘
>l] = ; h [ IsIK; >1} izl h

w(h)

}—)0,

in fact if |f —#,_;| < &, then K <‘I_;;”) > K (%"), thus
Kipir LA ZLA
ZT {MK }<Z I{MK (%) 1}_I{MK }Z i
iel’ iel’ = =bf ier

since the first factor tends to 0 and the second one is bounded, the latter product tends to 0.
In order to check that also

K;
> 7A,J{ MK,.q} — 0,

iel” o) =

note that
Z&Ail Z LA = Z “LAT ,
iel” " [%Sl} iel” {‘I_’i71|>8h}

and the latter is shown to tend to O as in (37).
As for (iii), the proof is substantially the same as for (i), we only point out some details. It
is sufficient to prove that

n 2
ZK—iAi / U (u) ZK g(v)dvdu—/ W(u)du/g(v)dv
h R EENELON R R

i=1

n K%
=> —’Ai/ W (u)
il R

g(w)dvdu — 0, (38)
2K;s|
[v]> (p(h) |u]

N\Q

because as in Lemma 2, (3), we have Z; 1 ’ A; = K. The sum in (38) is again split
into the sum of the terms with i € I’ and the sum of the ones with i € I"”: since for i € I’
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2Kils|

k(%
N lul} C {|v] > ( ) |u|}, the absolute value of the first sum is

we have {|v| > )

dominated by

K?
E — Ai/ !I/(u)/ . lg(v)|dvdu,
4 h R 2K(#)m
iel’ o> i lul

() |g(v)|dv — 0 and

oy

where for any u we have [

[v]>

V() f 8@y < CPW € LIR),

here C = fR |g(v)|dv, thus by the dominated convergence theorem the sum over i € I’ tends
to 0. On the other hand,

L A / W (u) T ||g(v)|dvdu<z A [ W(u)du/|g(v)|dv

@(h) iel”

where, as in (37), the first factor tends to O. O

zel”

A useful procedure to extend results for «-stable processes to semimartingales. This
procedure is explained in [5], sec. 12.4, we report it with some adjustments needed in our
framework.

Let us consider a one sided martingale )?f = for f0<x<1 xdipt, t €0, T], where the jump
measure u* has Lévy measure N

Aig(s,x)

+ —
AT(s, x) = x l+a

lo<x<1dx.
In our application X is the component of X involving the positive small jumps.

Since g(s,x) < 1, then A(1 — g(s,x)) > 0 and [Lo<x<1A4(1 — g(s, x))/(x'™)] dx can
represent a Lévy measure. Consider the Skorohod space (£2', F', {F/}icj0.7]) of the cadlag
functions starting from state O at time 0. For any fixed w € {2 we define
A1 —g(s, x)

TTta dxds,

v:j’(w’, ds,dx) = |:xl?—++(110<x<1 — AT (s, x)i| dxds = Ipox<i
and we put on {2’ the unique probability Q, under which the canonical process, that we call
X', is a SM with characteristics (0, 0, véj’) : )?;* = fot Jowrei xdpt, @t =0t - v;j“.

Since v;j' keeps fixed as «’ varies on (2, then X't on ' has independent increments.
Further, v,* is measurable as a function of @, because lo_,<;A(1 — g(s, x)))/(x'**) is
such, then Q,(dw') is a transition probability from ({2, ), to ({2, '), and we can enlarge
(2, F A Fhero.r1, P) to (2, F, {Fdrero. 11 ) where 2 = Ox Q' F = FQF , F, = ]:z®]:,’,
Pldw,dw) = P(dw)Q,(dw'). We extend Xt, X't to 2 by keeping X (w) constant as &’
varies and X *(@’) constant as  varies. In order to simplify notations we keep the same
name for an object originally defined on 2 or on 2’ and which was extended on (2. Only
v/+ undergoes a slight name change in what follows.

The above enlargement turns out to be a very good extension ([6], p.36), which ensures that
X+ and X't are still martingales on 2, with respectlve characteristics

v ((a), o), ds, dx) = AT (s, x)dxds, v ((a), o), ds, dx) = vlj(a}', ds,dx).
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Now, X and X'* turn out not to have common jumps. In fact if at time T we have AX, # 0,
then t depends on w and not on «'. X'* has absolutely continuous characteristics (0, 0, v(/j),
thus it is an Ito SM. But then, since t(w) is fixed on {2/, and X'* cannot have on {2’ fixed
times of discontinuity, thus Af(:(“w) = 0. This implies that the number of jumps of Xt 4+ X+
on any subset of 2 x [0, 7] is the sum of the number of jumps of the two terms on the same
subset, i.e.

v (0, o), ds, dx) = v (. ), ds, dx) + v (0, o), ds. dx)

A
=t Io<x<1dxds

but then X+ X *ison 2 a martingale made of compensated jumps smaller than 1 and having
one sided « stable law. Thus we identify Xt + X "+ with a martingale, say J©, represented by
the compensated small jumps of an a-stable process. In the following we denote by J* either
the compensated small jumps of an «-stable process on {2 or the compensated small jumps of
an a-stable process on 2, P

From one sided to two sided. The model (2) we are dealing with has possibly two sided
small jumps. By applying the same reasoning above also to the side X~ of the process having
negative jumps, we end up with a connection of X = X+ + X~ with a possibly non-symmetric
martingale J = J* + J~ representing the compensated small jumps of an « stable process.
With X’ = X'* + X'~ we obtain

X+X =1, (39)

where

t t t
X, =/ / x(dp—dv), X;:/ / x(dp —dv'), J, =f / x(dp’ —dv’),
0 |x|<1 0 |x|<1 0 [x]<1

v((w, o), ds, dx) = A(s, x)dxds, v’((a), o), ds, dx) = A(s, x)dxds,

v/ (0, '), ds, dx) = 17 (x)dxds,
with A(s, x) as in A3,

Ay(l —g(s, x)) A_(1 —g(s, x))
! —

A (S, .X) - IO<x§1 T + I—l§x<0Ta
)" ( )— 10<x<1 + I—1<x<0

| |1+Ot

The big advantage of this approach is that we now have a useful expression linking
expectations of functionals of J under P and expectations of functionals of X under P (see
Lemma 7). This allows us to firstly prove our results for the small jumps of an « stable process
and then to extend the results to the process in (2).

Lemma 7. Let f, be a sequence of deterministic functionals to be applied to either a process
V on 2 or to a process V on 2, and let g, = gu(», ) a sequence of functionals, possibly
depending on w, to be applied to a process V' on (2’ such that the processes V, V' extended
on 2 satisfy V.=V + V.

Let, for all n, | f,,| and | f,|1g.| be bounded, fn(\_/) = fn(V)g,,(V’) and let

Vo, g,,(V’) 2o,
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Then, denoting E = E P asn — oo, we obtain
tim [ £,(V)] = 1tim £7[ £,(v) ]
Proof. Since f,(V) only depends on @ and not on ',

E[f,(V)] = EP[EC[f,(V)]] = EP[£,(V)E2[1]] = EP[£,(V)].

Then
E[n(N)] - e[ £ V)] = E[#(V) - ()] = E[£()]a(v) - 1]].

Since Vo, g.(V) 2% 1 then g (V') L. 1. In fact, for all n > 0 we have

Pllga(v) —tl>n} = EFLE®U (),
is bounded, thus E Qw[l{lg (v/)71\> }] — 0. However the latter term is also bounded, then

00
ETIE e (v) 1o = 0

]].foranya)l ()1|>}&>Oand

Moreover | f,,(V)l is bounded, thus fn(V) [g,,(V’ ) - 1] LN 0, and is bounded because also

fngn is bounded. Therefore, by the dominated convergence Theorem, the latter display tends
to 0, and the lemma is proved. |

Remark 11. We use this lemma for the second steps of Lemmas _4, 5,~6. For i~nstance f~or
Lemma 5 when o > 1 (Eq. (66)), with the notation in (%9) we have V =J,V = X V=X,

N sy KA w2 - i -
and f,(X) = e s X1 e (A5%) , while g, (0, X') = ¢~ T=1 e (4 Xy?-2s = 1,2/aA XAX

Lemma 8. Letr < o <1 be such that f\Xl<1 |x|"A'(s, x)dx < C for any (w,s) € 2 x [0, T];
and let the kernel satisfy K" € L'(R). Then for all , on £2' we have

Yo K i 1fx|<|xd,u [
he

— 0.

Proof. It is sufficient to show that

‘Z} 1 J ./;, 1 jix\<l 'Xd'u
h&

EQe — 0.

Now note that, due to the fact that r < 1, the left term in the above display is dominated by

¢ /;‘,tl_] ﬁx\slxcjﬂ,) Z] 1Kr [f; ]fx\<1Xd“‘ ]
ha he

EQm

so by [6] (2.1.40), recalling that v/, does not depend on «’, the latter term is dominated by

f,, g XA,
he
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Recalling that dv) = A/ (s, x)dxds, since by assumption le\<1 |x|"Al (s, x)dx < C, the above
display is upper bounded by -

T KjA

p “h'Tw 0. O

Proof of Lemma 4. First step. We start by proving the results when the small jumps of X
are the ones of an « stable process J, i.e. g(t,x) =1 and Mw, s, x) = A(x). In this case for
any 7 we have

Ay — A

l—«

a;=a= / xA(x)dx =
lx|=<1

To distinguish the stable case we replace A X with A;J. We now prove that under the
assumptions of the lemma we have

~ 1; .
Yo Kidid 4 i1 KiJyy Jmzi¥dn” d
h

ifae(0,1) —a and —> Z1q

Q|

h

Y KAT d

ifa=1and A, #A_ — —(A, — A )Kq),

hloghl
) KA d
ifa € (1,2) ZimKidid 4 7
ho
P KiAT

For each fixed @« € (0,2), defined Z, = ot We proceed by showing that the
characteristic functions E[e’*%"] converge to the characteristic function of the limit shown in
the statement of the lemma.

Since J is a Lévy process,

) n KjAjf n KjA;T
E[e"%] = E He” vl | = HE[e” alh) ]
j=1 j=1
K K
no AL | € P 1is sy |adx

=[]
j=1

K; . .
P (’h), the integral at exponent is

With z = s

A, / (e —1—izx)x™"""dx+ A_ / (e =1 —izx) |x|”""“dx (40)
O<x<l1 —1<x<0

1 cos(zx) -1 1 sin(zx) —zX
:(A++A7)\/(; de+l(A+_Ai)/o de. (41)
By changing variable v = |z|x that becomes
o cos(v) — 1 . sin(v) — v
[z [(AL + AD) —— e dv +i(A, — A )sgn(2) ———dv
0<v<z] U 0<v<lz] U
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so that E[e’*?"] is given by

n
j=1

sK: % i v
A W—(;,)‘ (A++A7)f Ik “’sl(fa'dvﬂ(A —A )vgn(v)f 1K SV gy
Galh O<vsgemy °

(42)

In each of the three cases @« < 1, = 1, > 1 the right speed is the ¢,(h) such that the
exponent in the above expression converges to a finite quantity.
In the case « € (0, 1) we have ¢, (h) = h, <W=1 ?"(”) € LY(Ry), while

plta I+a
sK

j sgn( )/ v LS sK 1
0o (h) ‘5"(1 plta h l—a

It follows from (42) that E[e*?"] equals the exponential of

ZA A, A )[/0 » %du%—lﬂsgn(s)/ g s;’f—iz)dvj|
<U§T

sK; AL —A
—i N—L+ ~ -
ZZ h 11—«

Recall that (from [8], Lemma 14.11)

cos@) =1, [ I(=eycos (%), ae(0.hU(.2) (43)
. vlta -3 a=1
7y = ~ICasin(F). e e
(44)
o Sy 4 [0y < oo, ifa =1
0 —ewﬂra'rdr =I(—we ™2, ifae(l,2)
(45)

P el gy = D(—a)e™E,  ifa e (1,2)

Thus, since the two mtegrals in the above exponent of E[e’*?"] are dominated by constants,

Y1 AKT A, —A_
|s|* Z A =|s |"‘T h'™® - 0, and a = fxlslx)»(x)dx = —4—=, we have
. AL AL .
E[est,,] — efls*lfu — e—zsa,

where the limit is the characteristic function of the constant random variable —a.
If we do not compensate the small jumps and only consider

t
> i Ki fr,-,l fmsl xdp’
n— hl/e ’

then

E[eizf,i’;l 1= xduj] — oA 1@ —Drdx

. sK;
thus, with z = ;,1_/3’

n
E[eiSYn] — l_leAflxlfl(elzx—l)k(x)dx,
j=1
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and each integral at exponent differs from expression (41) because the last term —zx/x!*®

there is absent here. Thus E[e’*™] coincides with

nA‘

(A++A7)f SIK; O gyti(A, —A_)sgn(s) [ SIK; S10) gy
O<v< A v 0<vs— v
fo nl/e (46)

hl/ot

and by Lemma 3 (i) we have
- cos(v) — 1 To
————dv = K I'(—a)cos (7) ,

Ol
_f
h BT

" K¢ sin(v) Ta
ZTJ /U bk, pita ——dv = —KI'(— oz)sm( 2)
: hé

Thus

E[eisy” ] |s\°‘K(a) I'(—a) ((A+ +A_) cos(%)—i sgn(s) (A —A_) sin(%)) )

by collecting (A, + A_)cos (%) and recalling that 8 = m and that I'(—a) cos (5%) < 0,

we obtain that the above display coincides with E [eisZ1. a] having used notation (9).
If o =1, with g, (h) = hlog/ and z; = Z r, from (42) we have

Izl _ X z in(v)—
ezj=,A\Zj|[(A++A_)fOJ ”Si%dvﬂ(AJ;A_)sgn(z,-)fof “"i#du]

E[e'*%n] = 47)

The exponent above is
> AK; 1AL + A )/lllogJ}l COS(v)— cos) =1, .
h log%

|s|K ;

T sin(v) — v
is(A, — A,)/’”"gﬁ —————dv
0

v2

which is shown to tend to —is(A; — A_)K(y) : the first integrand C‘”f}#]wo is in L1(R), thus,
applying Lemma 3 (i) we obtain that
\le

|s |Z (A +A )/mog% Cos(v) cosw) =1y, o,

The second 1ntegra1 is written as

17l sin(v) — v Usin(v) — v 121 sin(v)
/(; le}]zj|<l+|:‘/(; Tdv‘l‘ﬁ 1)2 dv—log(Iz,l):| Ile|>l

(48)

where (sin(v) — v)/v? € L'((0, 1)), and S“;‘;Hve(l,m) € L'(R). Note that if s = 0 we directly
find that E[e’*%"] = 1, we thus only concentrate on a fixed s # 0. We have that

1
dvl\Zj\Sl +/
0
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sin(v) — v sin(v) — v

|s|K ;

Yo AK; (i

i=1 j hlog L

== 7 / 08 Jy dv
0

hlog%

v2 v?
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C. Mancini
Z;_IAKJ.Z/’I sin(v) — v 1 Z VAK; ¢
h 0 v? log ; h log + '
and
IsIK j
AK oo L C " AK;
Zj 1 /hlgh Sln(v)dvl|zj|>1 1 Zj_l J 0.
hlog i z 1 v? log 5 h
Finally, recalling that K is bounded (by IA1),
K:
—is(A, — A Z log 1 E) 10 e ) = —is(A, — ADKq,
hlog hlog + i A |
h h hlog%

since within

Z’}=1 K;A 1 1
W [log(lsl) +log (K;) + log(}—l) —log <10g Z)} 1{ sk >1}
lzlugﬁ

the first two terms are bounded in absolute value by

1 " IKilog(KH)A CY"_ K;A
|:ZJ_1| jlog(K )l " Z];ll j :|_)07

log % h

the third term converges by Lemma 3 (i):

n K]
ZTAI IsIK ; o - K(l);
j=1 hlog%

and the fourth one

" K; log (log L
Z_JAI Islk ol %h)_>0
h i1y logy

j=1 hlog%

Thus the statement is proved.
If o € (1, 2) we can directly use the relations in (45) In fact, from (40), where z; = s (pK(h)

K;
SW’ we change variable v = |z;|x in the first integral, while in the second one we firstly
change in y = —x, then in v = |z;|y, and we reach

(49)

i1 gfvseni) — 1 — v - sgn(z;)
j
|Z]| |:A+ f v1+a d1)+

I2jl g=ivsgn(z)) _ 1 4 iy . sgn(z])
A—/(; plta :

I-0 € L'(R), and g its complex conjugate, the above equals

eV—1—iv

With g(v) = T
‘Zjl _ Izl
lz;1* <A+ / W0 + 8 <odv + A_ / gW)lz;-0 + (W) <0 dv)
0 0

thus
SK/'

« Ij1 _ il o
| [1zj>0lo " ApsWHA_ZW) dvti; <o fy7 AL RW+A_g()d

n
E[eiszn] — ezj:l A
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. 1 .
With ¢,(h) = he, by Lemma 3 (i), the exponent

s|* >0 AKY

Izl lzjl
Y [Ipo/ A gv)+A_gv)dv + 1.v<of A g(v) + Ag(v)dv}
0 0

tends to

51K (=) (Lo (A,e7™8 + 4% ) 4 Lo (A, ™8 + A_e7"8)).
By developing and simplifying, the above expression becomes

—Is|K @) ¢ (1 — iBtan (%) sgn(s)) ,

where ¢ = —I'(—a) cos ("%) (AL+A)), 8= ﬁi;ﬁ: , the statement is proved and the first step
concluded.

Second step. We come back to the small jumps of X, as described at Assumption [IA3. Also
for X we look at the characteristic functions of the quantities in the statement of Lemma 4,
and at their asymptotic behavior. Now we employ (39) and show that the contribution from X’
is negligible, because X’ has jump activity index less than «.

On the enlarged space (f) F, {Ft}iero.)s P) we have

E[fn(j)] =E—,|: Zj l“hl/aA J:| —E|:€Z/ llbhl/aA X Zj luhl//aAjX/:|

= E[fi(®)gu(X)] = E7 [ f(OE®[8,(R)1]

- n e KiA g - n o KioA g
where f,(X) = o=t 18T AiX gn(X)) = == 5@ 2% and we recall that the Lévy measure
v’((a), ), ds, dx) of X’, given in (39), does not depend on w'.
Case « > 1 : under IA3, X’ has FV, since fOT Jooq 1XIA (s, x)dxds < oo, thus

lx|=<1

- KJ Qw v/ .

Z l/a <Zhl/aE UAIX H .
: j_

by (2.1.36) in [6] with p = 1, and using A3 the latter is dominated by

, SNKGA
Czhl/a/ /<IIX|)»(s,x)dx_CZlTh =0

thus, for any fixed w, Z” I zshl/a A; X' tends to 0 in probability wrt Q,, so g,(X") 2¢ | and
we can apply Lemma 7 and conclude that

T TR
lim EP |:ezj—1”hl/JaAjX] =limE|: PRy ,1/aA Ji|
n

n

Since under P the process J is a-stable, the first step of this proof applies, thus
hmE|: 2] 1“h‘/o‘ -j:| =E [eiszm]

where Z,, has under P the same law as Z; , under P, so
E [eisi,v‘,] = E [¢"71],
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It follows that

limE”[ S 577/ & X] = E" ["71e],

n

and (25) is proved.
Case o = 1 : now the fact that

n K
EQ0 Z fAX <CZ // |x|k'(s,x)dx§CZ#A,
|x|<1 j=1

allows to state that for any w

n

K; ~

E J AAX/&)()’
hlog L™/

j=1 1108y

and again, for any o, g,,(f(’) e 1, so by Lemma 7 we have

S K‘ ~
Yh_is AiX _| X is A;J
. = ai J . j=1 [ 2J . _
lim EP|: hlog 7 =limE |e log 3, = ¢ isA+—AIK
n

n

and (24) is proved.

If o € (0, 1), the jumps of X, J and X’ have FV and we can separately deal with the not
compensated small jumps and the compensator. Further, now the jump activity index of X', by
IA3,is o’ <.

Let us first consider the not compensated jumps: defining V = fo f\x|<l xdu on {2 and
analogously V on 2 and V' on 2, we have

B[17)] = £ [Z i T | 2 B [,

0 K
where [ [xdp stands for f,tflf‘x|<IXdM, fu(V) = ei=t Byt S g g (V) =
i1 Ixl=

w i Ki g
o=t Bt J S’ Using that /iXI<1 |x|"A'(s, x)dx < C (Assumption IA3) and K" € L'(R)
(assumption of Lemma 4), by Lemma 8 we obtain that for all @

K; ti ,
(V) = ezﬁ:l 8l f’jj—l Ji<1 % 2oy
so, by Lemma 7 and the first step of this proof,
n L — n Kij J .
lifln EP |:er1 IS T7a ffxdu:| _ li;nE [eZ“ IS Ta [ xdp :| —E [e”z'=“]

and the second part of (23) is proved.
We now analyze the first part of (23) directly for X. Since we just proved that, on {2,

ZJ 1 hl/a ffXdH —> Z 4, then

" Kj l—l " Kj P
szfxdﬂzha .Zlhl/a//xdﬂ—)O.
J= J=
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On the other hand we have f f <1

xA(x, v)dxdv = fltf . a,dv, and a, satisfies A3, thus by
J—
Lemma 2, parts (1) and (4), We have

2 h /;] 1f|x\<1x)»(x vydxdv

% — az,
therefore
wak= [ [ e :
— — xdu — xA(x, v)dxdv] — —ar,
z:: h z:: R N ixl<1 '
and also the first part of (23) is done. U

Proof of Lemma 5. First step: the case where X is a-stable on (2, we name it J. We show

- Ki(fi | [y xd)? " KA T
that the Laplace transforms of either ” ‘f‘ =l when @ < 1, or % when

o > 1, converge to the Laplace transform of the limit shown in the statement of this lemma
(see [3], theorem 6.6.3 for the properties of the Laplace transforms limit). For that, since the law
density of J is not available in explicit form, we are going to use the characteristic function as
follows. For a r.v. U on R with law density u(x) and for a given v > 0, it is possible to compute

2 2 . . 2 .. . ;
E [e‘”U ] = fR e " u(x)dx by interpreting e~"*" as the characteristic function E [¢*Y] of a

=
N"’

, and

Gaussian random variable W, with mean 0, variance o2 = 2v and density ¢(x) =

ﬁ

to obtain E [e’”Uz] only using the characteristic function of U. In fact

El:e—vUz:I Z/e—uxzu(x)dx:/E[eixw]u(x)dx
R
://eixz¢(z)dz u(x)dx = /¢(Z)/eixzu(x)dx dz = /¢(Z)E[eizU]dZ.

We will apply this in the following way: v = v; = w (h) and:
-whena <1, U =U; = f 1fx|<IXdH“ and E[e?Vi] = oAz e -1 M),
-whena €[1,2), U =U; = 4; J_f " Jij<1 Xd i and
E[ezzUJ] — eAfmile " —1—izr Mdr).

Then

E[e”Uf]dz, (50)

- o] 1 2o

j=1 j=1

with aj2 = 2v;. The latter display, with u = =, becomes
J

l_[/ 7 ’"f“Uj]du. (51)
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i =1 Ki( X<xd)
Case o € (0, 1). Let V,, = jf, | Jej<1 xdie

, then, with s > 0, v; = sK; /¥, > 0 and

Ve ()
o0; = /2v;
2
n 772 " _MT io;ur
E[e*"] = E[e" Zi=1 YY) = 1‘[/ i/z_ ceA e 7T 1A g, (52)
jo1 /R V2T

Similarly as when from (40) we obtained (42) and then (46), with z =
oju = ,/2v; - u here, we have

. o eos(w) —1 sin(w)
e — 1 Mdr) =oflul*(A, + A ) e TiPsgn(u) dw
<1 0 v v

h, /,1 ' there replaced by

| 14+a
ojlul
=0} |ul® / fuw)dw = o7 |ul*g;(u), (33)
0

then we are left with

L
2

—sVn _ . A(r‘.’\u|°‘gj(u)
1= n / o T,

By developing ¢’ = >, >k_]"’ we obtain [_, (1 + ngn)) -
‘ k
%d T s > -t Heursw),
u+ o;lu Yo (w)du + u
R V2 R /27 b 2 Kl

k>2

(54)
We are now going to show that

(cl) Vj= 1,...,n,9§") — 0 and max;_
€@ Y 10" <M <oo
() Y 19}")

where M does not depend on n, and

#1671 =0

a 1 1
0= S72QK(O[/2)(A+ + Ai)[‘ (a; ) ﬁf(—o{)cos (7-[705) < 0.

That allows to conclude ([3], lemma at p.199) that

Ele =TT (1+6") - ¢,

J=1

which is the Laplace transform of the law of the Z,, in the notations, and the stated result
follows.
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Let us now evaluate the numbers 0;"). Denoted

9(")

e

uz oju -1 1
- / o - Actu (AL + A / | [COS(w) +iﬁsm(w)}dwd”
Ry 0

Ao |ul*gju)du (55)

m wlte w1+rx
2
_u oi(—u)
e 2 o o J cos(w)—1 _ sin(w)
+/R\/E-Aaj(—u) (A++A_)/O |: e —t,Bwl dwdu,
(56)
by changing variable y = —u, the second integral in du becomes
2
e T Aoy (A, + A )f"/'y cos(w) — 1 Igsm(w)d J
VAYe _ w
B, 27 jy A+ 0 wlte wlte y

by renaming u the variable y of the latter integral, in (56) the sin function simplifies, and we
obtain

95"3_ / ——Aotu“(Ay + A )/ %dwdu. (57)
Js R+ o

We preliminarily show that
(cd) Y160 -0
@) Y |9]<"> 0" — 0.

2

is in L'(R) for any integer k, with

u2 oK— k 1
/ 62|u|°‘kdu=2k21F<a + > (58)
Ry 2

As for (c4), using the notation in (53), Lemma 3 (iii), (43) and (58) and with o; = ,/2v; =

V2 1// (h) we have that )} = 19]("1) coincides with

o 2
" e_MT o« " KA e_MT ojlul
Aa‘?‘/ |ul%g(u)du = s32% ! |u|°‘/ F(w)dwdu
; Ik V27 ! ; h Jr V21 0

2

P KA —- jlul _1
=528y L 2(A++A7)/ i/?w’/ %dvdu—ﬂé’ (59)
Ry 0

Jj=1

As for (c5), since for all j =1,...,n, |g;ju)| < Cfm leostw)=1] 'Sin(w)l dw < o0, gj(u)

wlta

() _

is bounded uniformly in j and u, thus we have that ) "} i=110; (")| is dommated by

Ak (Ca]‘?‘|u|“)k

ZZ/\/_ - du:ZZCk< ) 22—1!(2“"21F<°‘k2+1>,

j=1 k>2 j=1 k>2

(60)
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where the term s2 within o ; has been included into C, because s is fixed. Since the kernel K
is bounded, the above is dominated by

A\ AN 2% gk 4]
<Z> n;(ﬁ) = F( > > (61)

Since for large n we have A/h < 1, in the series above, for sufficiently small A and large &,
we have

a1 C éf(%)_ C éak_‘_a_l_llﬂ(akgafl)

ac  k+lhoD(E) ktTh 2 D)
C Aak+a+1 C A(k

< - < —_ =

k+1hn 2 k+1h\2

+1 CA 1
<C— <1,
h

because 0 < o < 1 and for large k the argument of the Gamma function is positive, so the
function is increasing. Thus by the quotient criterion the series is absolutely convergent, and

(61)is O (h%), therefore it tends to 0, and (c5) is verified.

u2

It follows that, since 9( 2 Ao“ fR f |u|®g;(u)du, where a < CK(g—ﬁ and g;(u) is

uniformly bounded, thus |6]('f)| < CA /h uniformly in j, and

A A
max 0" < max 8" — 0(’” max [0%)] < " — 9(”) c==o0
Jmax [0/ < max 16 |+ max 16| < Z| |+c &

and thus tends to 0, which solves (c1).
As for (c2), using again Lemma 3 (iii), we have that Z;=1 |01(.f’1) | is dominated by

vt 2\S|K

Zam/ U (u)|gj(u)ldu < CZ K A/ U(u )/ | f(w)ldw du — C,

thus using also that (60) is O(A/h?) we reach

S = e -0l + Z 091 < c S +C <M.
j=1 j=1

Finally (c3) follows directly from (c4) and (c5).

7 . " iAi~2 .
Case o €[1,2). Let now V, = %, then, with v; = sK; /¥, > 0,

Ele™"] = Ele” =" = Hf
j=1"F
The integral in A(dr) is given by

1 .
cos(ojur)—1 sin(ojur) — ojur
/O Ay +A)— T T, —A)—— o ——dr =

2
_u o
e 2 Aflr‘<|emjl”—l—iajur Mdr) g,
2

sin(w) —

i dw—o u]* g (u).

o ojlul cos(w)
aj|u| / (A, +A_ w—+1(A —A_)sgn(u)
0
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Thus

—sV, MT Ao ul®gj(u)
" = ce i du
-1/ %

» k
_1_[ 1+Z/J_.(Aaj|uli!gj(u)) T

k>1 j=1

2
Again, we show that 9(") I € \/21 ¥|u|*g;(u)du turns out to be the leading term of 91(-"),

and that the conditions (c1) to (c5) above are satisfied also for é;"), which allows to conclude
the proof. Note that for any « € [1, 2), similarly as from (55) to (57),

w2

e 7 (let
6" =2 : Aa‘."u"‘/ (A, +A)
j,1 R, /— J o +

which is the same expression as 9("]) in (57), thus Z i1 0(") coincides exactly with the left part
of the last line in (59). By Lemma 3 (111) using (58) and the relations in (43) we obtain that
for o = 1 then }!_, %) — 6 = —s22%" /T K(ay2(Ay + AT (%), while for a € (1,2)
then )} i1 5"1) — 0, and a condition of type (54) is fatlsﬁed in any case.

As for (c5), we need to bound differently |9;") — 9](.71)| in the two cases « = 1, a € (1, 2).

If « = 1, splitting as in (48), we write

cos(w) — 1
wlte

dwdu,

. ailul cos(w) — 1 . ojlul gin(w) — w
giu)y= (A, +A7)/0 wa—l—l(AJr —Af)sgn(u)/o walangl

. Usin(w) — w oilul sin(w)
+ i(A, — A )sgn(u) |:[0 wa +[ 2 dw — log (O'jlul)i| Iojjul>1>

where log (o;u|) = 4 log (2s) + 1 log (K;) + log (+) + log (|ul), thus
1
giw)=2L;(u)—i(A, — A )sgn(u) [ log (K;) + log <E) + log(|u|)] Lojju)>1,

where £;(u) is uniformly bounded in j and u. Using that |u log(|u])| < |u|21|u‘>1 +%IO<‘,,|<1,
then for any triplet of positive quantities A, A, A3 with A = A} + A, + Az, we have

jul“ [4 + g ull]" < uf*2* [A* + | log Jull"] = 2 (Jul* A" + (lu log Jul)) =

Zk(|u|kAk e C)") < 8"(|u|"(A’f + AL+ A Ck).

Thus
H 2 k
- - Ak K e 1
(n) (n) k J
0. —6; 52 —C"— |u| [C-i—llog H—]og( ) \loglull] du
J J.1 = hk R / ( ) h
% 2

ak L K; i k kooky kf 1 2% k

Skézﬁc T-Z/R JTT[MC +u|10g( i)+ utlog (Z)Jru +C]du:

similarly as above,
k k
Ak K2 —”2 Ak 2 [(7 -& A2
ch_k_j e/— “du = 22 k2_/ : ”kdu=0<_2)’
k=2 ht kU Jr, V2m h =2 =kl Jry V27 h
580
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C. Mancini

k 2 k
ANk K? -4 A2 Ak K? A2
ch__l € u2kdu=0 i ch__JZO =)
h* k! Ry V21 h? P h* k! h?

k=2
since VK| log(K)| is bounded, also

(1 1on () 1)

k K:|log(K;)|

ZA_Ck ! ! ¢ Zukdu:0<—>.
h* k! R, /27 h?

k>2

Finally,

Fﬂhr 2

nlgm _ g Atog(}) 50
thus >, ‘Qj -0, = —= | = 0, and (c5) for 6, is proved.
Thus (cl1), (c2) and (c3) for 51(.") follow analogously as for 9;")

If o € (1,2), due to (45), g;(u) is uniformly bounded in j and u, thus ) ‘9(") om
2 — 0, and (c5) is done. From (c4) and (c5) then the

dealt exactly as in (60), thus it is O h% R
ove, and now the proof of the first step is complete

properties (cl) to (c3) again follow as a

Second step. We use (39). @ € (0, 1) :
[ B } E[£(V)ga(V)],

E[f,(V]=E
(63)

where

K; 1
it 2
=1 2a (ftj,l Sivj<1 xdi)
9

2
K K; 15
(ft, 1f|x\<1)‘"“) RPN S N L R N/

(V) =e

n
h2/ot

gV =e
We are going to apply Lemma 7, so it is sufficient we check that for all w, g,(w, V') = 1

We start by showing that
(64)

2
Z—zj / xdp Lo,
— he tj—1 Jlxl=<1

In fact we pick y € (% ) so ¥ < 1 and we can say

n K. t
o[8[ f )] <5 Lo
j=1 he tj—1 Jlx|=1

moreover 2y < | and we can apply (2.1.40) in [6] and upper bound with

—EQ«[// x| A/ (s, x)dxdsj|
|x|<1

j= lh“
581
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Since 2y > r it follows from IA3 that f\Xl<1 |x|?” M'(s, x)dx < C, and then the above is upper
bounded by -

c Z =¥ 0,
since Zy /o < 1. Thus (64) is proved. From it we obtain that for all w

n . .

K; [U g o
Z 2/Ja / / xdu/ / xdp Le 0,
pri TN 1jo1 Jixl=1

because, with [ [ understanding flt/_j_l le\ 1

(e | [ = [ (] o) £ (] o)

so for all w the above display tends to 0 in Q,,-probability, and thus g,(V") Ze 1. We now can
apply Lemma 7 to (63) and obtain

S 2 i .
EP [eﬂlz,a] — limE |:es Yo h12</]a (f/xd"]) ] =limE” |:es Zj=1 ;,IZ(/Ja(fJXdM)Zi| ’

J
h2/a

n

which concludes the proof of (26).
o =1: we have

E[f.(D] = E[ o e (437 } E [ £,(5)8,(X))] (66)

where

(4; X/) —2s AjXAX

/ 1 ,2/0(

fn(X‘uv) = e / 1 hZ/a( J ) gn(X/) - €7S ?=| h2/a

and again we show that for all w, gn(f(’) % and apply Lemma 7. Since r < 1,

7 r
K: ~\2 n Kz ~ |
Ow J / J Ow Y/
E ; - (A, ) < > E [A]X ] (67)
n K% n K%A
=C) rA=cC —hT =0
j=1 j=1

Further, for all w

Z@AJ-X\/%AJX’ < Z%(A,f()z Z%(Ajf(/)z%;o. (68)
j=I j=

By Lemma 7 we obtain

n K; 2
EP [87322,0!] — hmE |:e_5‘2j1 ﬁ(Ajj) :| — llmEP[ J lh2/o(( J ) ]

n

which concludes the proof of (27).
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o > 1 : consider again (66), and repeat a similar reasoning as above. We have
n K. N2 .
P (A jx’) 2 . (69)
j=1 h=

In fact we pick y € (%, %), so that the conditions we need below are ensured: K? € L!(R);
2y €(1,2); 1 =2y /a > 0. Since y < 1, we obtain

14
n n Y
Ki /. o)\2 K’
E® Z—h; (AfX/) SZ_hLVEQw ‘
o j:1 o

j=1

~ 2y
! } . (70)

Since 2y € (1 2) we can apply (2.1.36) in [6] and upper bound with

—EQ‘" / / Ix |2 A/ (s, x)dxds
= lha lx|<1

Since 2y > 1 then f X P (s, x)dx < f

by

ki< ki<l [x|A/(s, x)dx < C, and the above is bounded

C Z CpiTe s,

Simllarly as in (68), from (69) it follows that for all w

- K] /
Z}hz/AXAX—>O (71)
J
Again, Lemma 7 applies to (66), and gives
n K; ~
E" [e7 %] =lim E [E—sz,»l hZ/a(Af’)z} = lim EP[ s E5 jafe (4%) ]

n

which concludes the proof of (28). O

Proof of Lemma 6. First step: X is an « stable process, and we name it J = J+J', where
J=/ fm<1 xdp, J' = [ flx\>l xdu. We write A;J = A;A+ A- B, where A is self-similar,
and B is a constant:

t
Ay i/ /xd,&, B i/ xA(x)dx < o0,
0 JR |x|>1

and proceed through the following steps:
(1) due to the negligibility of the contribution of the terms AB and A;J!, we show that a.s.

i KA\ Y KiAAN? iz Ki (AiJ> Zz 1 Ki (A A>
hl = hl s hg 7 (72)
After that, it is sufficient to prove the convergence in distribution of
(EL xiaa) T K4y
he ha
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(2) We develop

(Zl’.’le,»A,«A>2 Z;’ZI(K,-AiA)Z >

i i,j=1l.ni#j KinAiAAJ'A
2 - 2 + 2
ha he h«
. i KiKiAjAA;A P e . .
and we show that, since A, = A_ then % — 0, so the stated limit in distribution
ha

is the same as for

2
Zi:l(KiAiA) S Ki(AiA)
hZ ’ hZ

(3) Again by the negligibility of the contribution of the terms AB and A;J', we show that

27=1(KiAiA)2 N ZL(K:'AJ)Z Yo Ki(AiA)2 XK (Aif)2

Y R W ;P
then we only have to deal with
A2
n ~
Lict (KiAiJ) i KAy
ha ’ ha
(4) For s, 5o > 0 we show that as n — 400
Z:"’:l(KiAij)z foy Ki(a7)?
. 1 Z -2 2 —512% -7 .
Ly(s1,8) =E |e he he - E[e 1¥1a™2 2’“] = Loo(s1, 52),

which concludes the proof of the first step.

Let us start by (1). We proceed through 5 small substeps. The first asymptotic equality to be
shown follows immediately after substep (1.1), while the second one follows after (1.5), from
(1.2) and (1.5). Subgteps (1.3), (1.4’1) are needed to conclude the validity of (1.5).

(1.1) We have Lizi If’AB = BZ":;’K"AhI’é — 0. From this we obtain
ho
YKAT Y KAA
ha ha '

and the first relation at (722)2follows.
(1.2) It holds Zi=1%14"5" _ p22ic
ha
(1.3) We show here that
ho
larger in absolute value than 1 occurred, then for all n we have A;J I'= 0 for all i, then for

all n we have % = 0, and the limit is 0. By contrast, for the paths where some big
jumps occurred, recalling that P{AJ;1 # 0} = 0, for the convergence in distribution stated in
the lemma we can focus on those @ where there is no big jump at ¢. For any fixed w such that

AJl-l = 0, using the notation at the proof of Lemma 1, part (b), and recalling that J! has FA

|KiAé

h h

Y KA
1

W& — 0.

—P> 0. Note that a.s., if on [0, 7] no jumps with size
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jumps and that min,, | — S, | is a fixed quantity, then

miny, [f—Sp|
Yo KAt K( K ,,)

ha h

minp [1—Sp
h

by assumption K ( ‘) = o(h), and since o > 1 then h = o(hé), thus the above display

tends a.s. to 0, as stated.

(1.4) We now show that Z=15124 4 7 14 fact
ha
SIUKAA Y KAT Y KATY Y K AB
T a T Y 79

and by (1.1), (1.3) and Lemma 4 we have the stated convergence in distribution.
" | K;AjAAB P
P e

(1.5) We show that =< — 0,. In fact
hao
Y KiAAAB _ BZLl K AA A =t
ha B ha h
and we apply (1.4).
At this point the second relation at (72) follows from
Yo Ki(Aigy? Y Ki(AiA)? N > K A*B? +22;’:1 K, A;AAB
ha ha ha ha
(1.2) and (1.5).
As for (2), for any n > 0 we have

1 1
| E i KZA,AK]AJA| | E i -Kl‘AaAlinAaAlﬂ
P JUFE] hz >pb=rp JUFE] h; >,

’

’

where, by selfsimilarity, each A; A has the same distribution as AéAl, and since A;A and
A;A are independent, A;AA;A < A%Al,-AU, where Ay;, A, are independent copies of Aj.

Now, as in [5], we localize the space {2 in such a way that, on any considered stochastic
interval, process A has bounded jumps. Namely, for any M > 0 we take Ty (w) such that

for any + < T); we have |AA,(w)|] < M. Since A has jumps in R, then a.s. Ty —P> +00 as
M — oo (a.s. Ty(w) is increasing with M, then the sequence has a limit. If the limit was
L(w) < oo then |AAy)(@)| > M for any M, thus |AA ) (w)| = +00). In this way the second
moment of A7, is finite, and we write the above display as
1 1
[ i KiAew Ay K A Ay
P 2
1 1
|2 0 iz KiAw ALK A Ay
P 2
the first term is dominated by P {T); < 1} which tends to 0 as M — oo, while the second one
is dominated by

n 2 2
1 (Zil D KinA“AliA1j>
Iy, 51

_2E n2

>nsTM§1]+

>n,TM>1}:

n
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On {Ty > 1} the variables Ay;, A;; have jumps bounded by M, and, since A, = A_, the
compensator of the big jumps (the jumps bigger than 1 in absolute value) is null. Thus, on
{Ty > 1}, Ay;, Ay can be written as copies of A = fol flx\<M xdji, and the above display is
bounded from above by

n 2+ 7 2
1 <Zi=1 D KinA“AliA1j>

—E =
n? ha

n 4 n n
1 Dic Zj:j;éi KIZK/ZA‘” E[A%iA%j]_"_

n? ha

4 - _ - -
1 N Zi,j’[,m;(i,j)?g((’m) AEK:' KjKEKmE[AliAlelKAlm]
i he ’

where N = n Z';j jH((m=12=1) Z;’;: j, and within each term Aliﬁllﬁlgﬁlm at least one
increment is raised to power 1 only. Since for i # j the variables Ay;, A;; are independent,
have the same law and are centered, the second term in the above display is 0, while in the
first term E[A%lﬁ%j] = EZ[A%] = C < o0, so we remain with

4 4
CZ?:l >z KiKG A= _ CZ?:l > KEKGA? A\ 2
ha h? h ’
by Lemma 2, point (6), since 4/a > 2, the latter term tends to 0 as n — 0.
As for (3), firstly note that it is sufficient to show the second asymptotic equality, because

the first one can be dealt with in the same way with K 12 in place of K;.
Secondly, given the asymptotic equality in (72), right side, it is sufficient to show that

Yo Ki (AiJ>2 _ Yo Ki (Aij>2 N 22;’11 K,-Ag,'fA,'Jl N Yo Ki (AZ‘JI)2

ha 2 he he
N
K (A,J)
~ T.
Now, similarly as for (1.3), a.s.
Z?:l K; (AiJ])z K? <_minp:lwhNT Vlspl)
h; ~ hg — 0,

thus also

Y VK ATV AT i Ki<Aij)2 > i Ki(AiJI)Z
hi = hi he

— 0,

because by Lemma 5 the first factor converges in distribution.
As for (4), we have

N\ le[.2+.r2Ki (Aj)z n .
Ly(s1,82) =E|e —=1 w2 ! = 1_[ E [e‘”f(A"J) ] ,
i=1
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L2 .
having set u; = ”K;IZ%K’ > 0. The above display is the same as in (50), with u; in
oK . o T (51 K2457K) T .
place of v; = }1%, A;J in place of U; and (0;)* = Qu;)2 = w in place of
(0))* = (v j)% = (2”;-" 2 Thus (51) applies, and proceeding similarly as in the proof of

Lemma 5 for the case @ > 1, we obtain that the above display coincides with the last term in
(62), i.e.

n

n
[TE[e @] =TT (1+d")
i=1 j=1
where within each

w2

i — a0 [ e [l a0 g
SR Ty A T

we have to plug in the value of o; which is pertinent here. Since

" T
Z o d o h o
ZAaia ~21 / [s1K; +52Kr]77r =22 / T[lez(u) + 5 Kw)]2du
i=1 0 77T
tends to 22 Jals1 K2(u) + 52K (u)]2 du then, similarly as for Lemma 3, part (iii), we have that
Yo 91(,’;) tends to
a—1

o 2 o 27 a+1 ) . JT_(X
2-22/R[s11< 0+ 52K @ du - ——1 (—2 ) (A, + A a)cos( 2)

and, similarly as in Lemma 5,

ﬁ (1 + éf’”) x~ ﬁ (1 + éi(,nl)) — ¥ = Loo(s1, 52), (75)

j=1 j=1

20{
0=—A,+A)I
The function L, is the Laplace transform of a probability law (because L(0,0) = 1 and
the function is continuous at (0,0)), and we see that it is the one of a proper joint law having
marginals Zia and Z, 4. In fact, with s, = 0 we have

o+ 1

I'(—a)cos (H)f[s K*(u) + $:K ()3 du
2 2 ) J ? '

2% (A, +A (2 ) (- za K201 d
TR (25L) P—aycos(%2) fulsi K2 "L (s1.0)

X kA
=1limL,(s;,0) =limE | "' w2/ :
n n

i=1
B2/« - : hl/a

Z:'l=1(KiAii)2 "\{ ( " KiAij
converges in distribution to Z % o

2
) , as we saw above at (2), and, by Lemma 4, the latter term
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On the other hand, with s; = 0 we have

2% (A +A (2 ) (- ) [l K2 d
evE A tA) (2) (meeos(5F) fals2 K] ' = L£0(0, 52)

X K4 D)?
=lmL,(0,5,) =imE | e >
n n
n . Y
and, by Lemma 5, Zi:‘;# 4 Z.4- Thus Lo, describes a specific joint law of (Z7 ,, Z2.4).

Second step. Let us now consider a process X as in [A3. Again we refer to (39) and use
that J = X + X’ is a Levy stable process on f2. Since the contribution of X' is negligible then
we have

(Zi;l KiAiX)z S Ki(AX)?

(Z?:l KiAif()z > Ki(Ai X)?

d
he ’ he - he he
We now show that
o KiAXKAX
Zt,}.t;éj 1= J=J _P>0 (76)

he

Firstly, the processes J = J +J', B, A mentioned at point (2) of the first step are now an a-
stable process, the compensator the big jumps, and a self-similar «-stable process on (2. Thus,
by point (2) of the first step,

Yigie Kidid KA T X s KiAiA KjAA 2
ha ha
However now A;J = A; X + A; X', thus the left side above is

KA X' KA X

Zi,j:i;ﬁj KiAiJ KjAjj _ Zi,j:i;éj KiAif(KjAjf( Zi,j:i;ﬁj
hé - hé " he
Zi.j:i;éj KiAif(/KjAjf( Zi,j:i;éj KiAif(KjAjf(/
+ W + P )

and we show that the last 3 terms tend to O in P-probability, therefore also the first one
necessarily does. The process X’ has finite variation and on (2’ has independent increments,

thus for any w we have E 2 [lA,-)N(’Ajf(ﬂl: EQo [|A,-)~(/|] EQo [|AJ-)~(’|] < A%C, where C
is independent on w by IA3 when o > 1, therefore

ou [ 1 X ips AKX KA K| Xijiry KiKGEC ['AiX’AJ‘X/q
E h; < h;

Zi,j:i;tj K; KjAzhz,;

<C i a — 0.
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Thus
E'Zﬂﬁm&x&4x|—EPE%|ZW#&&X&¢X|
2 - 2
ha hO(
i KK A?
<E” [C—Z’*“#th ! h2‘§:| - 0.

As for the mixed products, we split Zi’j:i# KiA,-f(KjAjf(’/h% into

- ' - "
Zi,j:i;éj KA XK; fz/_] fmgl xdu' Zi,j:i;éj KA XK, fzjj_] f|x\§1 xd)!
hg — hg : ()

the second term

~ n I ~ t;
Y KiAX Zj:l K, fzjj,l flx\fl xd) B YL KPAX fz,-,l flxlfl xdi'

ha ha ha hu
has absolute value dominated by
cliz KiA | YL KAX) AC YL KPAX 5
h ha hi hi ’

because K is bounded, 1/a < 1, and the last factors of the two terms converge in P-distribution
by Lemma 4 with kernel either K or K 2 and thus also in P- distribution. Similarly, the first
term of (77)

n t; / ~ n i ’ v
21:1 Kj l‘jj_l fIX\fl Xdu’ L/,l Zz"lzl KiAiX Zi:l Klz ,/;:71 fMSl Xd/-’L AIX
1 hae T - 2

ho/ I’l"‘ ha

tends to 0 in P-probability, because X’ has jump index o’ < 1 < a, by Lemma 4 we know
P
Yo Kj il Sz v " KA X
Jj=1"7 ’/—ll Ix|<1 and P it i

ho h

that converge in P-distribution, while A/ ~1/* — (;

moreover

i v 1 i ’ ~
Y kP S Sz xdi AiX i Kiz(ft,-_l Jixj<1 Xdi)? 2 o [Y KFHAX)?
e = " T

which tends to 0 in P-probability by Lemma 5 with K2 in place of K.
From (76) it follows that

\2
(Zizl K,A,X) S Ki(AX)?
h# L hE

i

Yo KHAX)? Y Ki(AX)
hi ’ hi '
It remains to show the generalization of point (4) at the first step. From there we know that,
since J is « stable on {2, then as n — oo,

n SIKI.Z-HQKI-

E [fn(j)] = L,(s1,8) = E |:€_ =t (Aij)2:| — Loo(51, 52).
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On the other hand,

s K} 453K,

r 7 = UL LI _ n 22
E I:fn(J):I =FE |:€Z’r'l=1 2 (Al :| =F |:e izt — e (AiX)7

51 Ki2+s2Ki

72;; o I:(AiX/)2+2AiXAiX/:| - ~ ~
e T = B[ 11(Dg(X)].

Similarly as in (69) and (71), naming z; = lel-z + 5, K;, we have
. <i 512 Qo . Zi = ~, P
Z hz/a(AiX) = 0 and Z mAiXA,-X =0,

i=1 i=1

then g,,(f(’) £ and by Lemma 7

~ o RNV e - ~
lim £° [ £,(%)] = lim £ |:e Yl (A } = lim £ [ (1)) = Losts1. ) 0

Proof of Corollary 3. Let us split ¥ = Y’ + X, where ¥/ = ¥ + fot byds + fo’ o dW, + X/,
then 77" equals

i KAY SKAY +Y KAX
\/Zj?:] Ki(A;Y)? \/Z;’:1 Ki(A Y24+ 30 Ki(AX?+23 0 K AYAX
with S, = Y1, Ki(A;Y")?, the above equals

Y KAy + I KiAiX

N o : (78)
\/1 + it Ksin(ﬂif()2 + 22?:1 Kisfiy/Aif(

and we show that the last display tends to A(0, 1) in distribution.

In fact first of all note that with probability 1 there is no jump at 7, and when AX; = 0 the
leading term of S, is Y_i_; Ki(f," byds + [ o,dW;)* ~ h(o?); ([7], Theorem 2.7) because
Y Ki(AX ) ~ K (M5l — o(A). Thus, with probability 1, S, ~ .

Then, the first quotient of the numerator at (78) tends in distribution to a standard Gaussian
r.v. because Y’ has finite variation jumps, so the result in [2] applies. We now show that all
the other terms tend to O.

If € (1,2), by Lemma 4, 7| K;A; X tends to 0 at speed h'/% < h'/2, thus the second
quotient at numerator in (78) tends to 0; by Lemma 5 the second term at denominator

Yo K AP ki
Sn
and the third one

Z:';l KiAiY/AiX < Z:‘l:] Ki(Ai)}y\/ Sn hml
Sn - Sy
If instead o = 1, the second quotient at the numerator of (78) is
1 Kl' A,Xv hlo 1
Zt:l ~ g h N O,
VS Vh

-0

— 0.
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the second term at denominator
S Ki(AX)? N ﬁ N
Sy h
and the third one

S K AYAX - Y Ki(AXPYS, h
Sn - Sn ﬁ

— 0. O
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