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Abstract

We consider the test statistic devised by Christensen, Oomen and Renò in 2020 to obtain insight
nto the causes of flash crashes occurring at particular moments in time in the price of a financial
sset. Under an Ito semimartingale model containing a drift component, a Brownian component and
nite variation jumps, it is possible to identify when the cause is a drift burst (the statistic explodes) or
therwise (the statistic is asymptotically Gaussian). We complete the investigation showing how infinite
ariation jumps contribute asymptotically. The result is that the jumps never cause the explosion of the
tatistic. Specifically, when there are no bursts, the statistic diverges only if the Brownian component is
bsent, the jumps have finite variation and the drift is non-zero. In this case the triggering is precisely
he drift. We also find that the statistic could be adopted for a variety of tests useful for investigating
he nature of the data generating process, given discrete observations.

2023 The Author. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

On a filtered probability space (Ω ,F , {Ft }t∈[0,T ], P) and on a fixed time horizon T > 0,
we consider a càdlàg Ito semimartingale (SM)

dYt = bt dt + σt dWt + d X t , t ∈ [0, T ], (1)

Y0 being F0-measurable, modeling the evolution in time of the price of a financial asset. The
drift process {bt }t≥0 and the volatility process {σt }t≥0 are progressively measurable processes
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having paths with finite right limits and left limits (làdlàg); any path of σ is non-negative;
Wt }t≥0 is a standard Brownian motion and X is a pure-jump process represented as the sum
f its compensated small jumps plus the sum of the not-compensated big jumps,

X t =

∫ t

0

∫
|x |≤1

xµ̃(ds, dx) +

∫ t

0

∫
|x |>1

xµ(ds, dx), t ∈ [0, T ], (2)

where µ(ds, dx) is a random jump measure defined on (Ω × [0, T ] ×R) and endowed with a
compensator of type ν(ds, dx) = λ(s, x)dxds, where λ(s, x) is random, and µ̃ = µ− ν is the
compensated measure. Formal conditions on the components of Y are given in Section 2.

For fixed t̄ ∈ (0, T ), we focus on the asymptotic behavior of

T n
t̄
.
=

∑n
i=1 Ki∆i Y√∑n
i=1 Ki (∆i Y )2

, (3)

here: for any integer n > 0, {ti = t (n)
i , i = 1, . . . , n} gives a non-random partition of [0, T ];

∆i Y
.
= Yti − Yti−1; Ki = K

( t̄−ti−1
h

)
; K : R → R+ is a continuous kernel function and h is a

bandwidth parameter. We are interested in the framework where

n → +∞ while h → 0 in such a way that nh → +∞, (4)

nd we assume that the partition does not differ asymptotically significantly from the equally
paced partition, as explained below.

The statistic T n
t̄ is devised in [2], where an Ito SM is considered to model the price evolution

of a financial asset. Christensen, Oomen and Renò wished to test whether a sudden large
movement of the asset price at a particular time t̄ (flash crash) is due to a drift burst, i.e. a local
explosion of the drift coefficient around t̄ . They were particularly interested in understanding
whether a flash crash occurring at t̄ is more compatible with an explosion (burst) at t̄ of the
Brownian coefficient (the volatility) or with an explosion at t̄ of the drift coefficient. Thus
heir test statistic was intended to compare the magnitudes of σt̄ and bt̄ , and T n

t̄ is given by
h times the ratio of the two kernel-based estimators b̂t̄

.
=

1
h

∑n
i=1 Ki∆i Y of the drift and

ˆ t̄
.
=
( 1

h

∑n
i=1 Ki (∆i Y )2

) 1
2 of the volatility at t̄ . Under the null hypothesis of either no drift

ursts, or the occurrence of bursts with the one in drift smaller than the one in volatility, the
tatistic is asymptotically normal, while, under a given class of alternative models including
ursts, T n

t̄ is shown to explode when there is a burst in the drift larger than a burst in the
volatility.

However in their framework the values assumed by the volatility process are always strictly
ositive and only finite variation (FV) jumps are considered, and it is natural to wonder what
ole infinite variation (IV) jumps would play within T n

t̄ , for instance whether the explosion
observed in the empirical implementation of the statistic on finite samples may be due to a
jump component of IV, possibly present in the data generating process (DGP). Or, how the
statistic would behave if the DGP did not contain any Brownian components. Therefore we
expand the analysis on the asymptotic behavior of T n

t̄ , under the hypothesis of no bursts, when
Y also contains IV jumps and/or does not contain the Brownian motion, and we complete the
picture given in [2].

Three elements are crucial for this analysis. First, separately measuring the contribution of
the jump component X of the model is necessary because we need to know the exact speed
of convergence of each term involving the increments ∆i X so as to be able to decide which
erms in T n are leading when considering the complete model. For this reason our first step is
t̄
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to illustrate the behavior of T n
t̄ for a pure jump model. After that the behavior in the complete

ramework will be an immediate consequence. Note however that, as pure jump models exist
nd are currently used for financial asset prices, the analysis of the statistic within the first step
ramework is also important in itself.

Second, in the pure jump framework it turns out that the behavior of T n
t̄ is different in the

wo cases where t̄ is or is not a jump time. In fact, denoting by ∆X t̄ the size of the jump that
ossibly occurred at t̄ , the numerator tends (ω-wise if the jumps have FA, in probability if they
ave IA) to K (0)∆X t̄ , and the denominator to

√
K (0) · |∆X t̄ |. Thus if ∆X t̄ ̸= 0 the statistic

as a well defined finite limit, otherwise both numerator and denominator tend to 0 and, as
oon as T n

t̄ is defined, the limit is determined by the dominant terms.
Third, the contribution of the jump terms is essentially determined by the freneticism of the

umps, and for this reason we deal with processes X with constant jump activity index α on
× [0, T ]. When σ ≡ 0 the asymptotic distribution of the statistic is substantially different

epending on whether the jumps have finite or infinite variation. In the former case (α < 1),
s well as when α = 1, we obtain the explosion of T n

t̄ , while if α > 1 then
⏐⏐T n

t̄

⏐⏐ does not
xplode, as numerator and denominator tend to 0 at the same speed, which depends on the
agnitude of α.
To get an insight into how things are going, let us consider the simple case when ∆i Y =

∆ + σ∆i W + ∆i J , with constant drift and volatility coefficients, a symmetric α-stable
évy jump process J and evenly spaced observations, where ∆

.
= T/n. If σ ̸= 0 the

hree components have the following different magnitude orders: a∆ = O(∆), σ∆i W =

OP (
√
∆),∆i J d

= ∆
1
α J1: while for any α ∈ (0, 2) we obtain ∆

1
α ≪

√
∆, the term a∆ is

ominated or dominates ∆
1
α depending on whether α > 1 or α < 1, respectively. It is thus

asy to convince ourselves that if σ ̸= 0 then the Brownian component gives the leading term
oth of ∆i Y and of (∆i Y )2, and since under our assumptions we have

∑n
i=1 Ki∆/h → 1, we

btain
∑n

i=1 Kiσ
2(∆i W )2/h

P
→ σ 2 (see also Lemma 3 in [2]), and that

∑n
i=1 Kiσ∆i W/

√
h is

symptotically Gaussian (as in the proof of Theorem 1 there). Thus under the null of no drift
r volatility bursts, even in the presence of IV jumps T n

t̄ is asymptotically Gaussian.
Let us now deal with the case of σ = 0, when the model is of the pure jump type

and with drift: we have
∑n

i=1 Ki∆i Y =
∑n

i=1 Ki a∆ +
∑n

i=1 Ki∆i J and
∑n

i=1 Ki (∆i Y )2
=∑n

i=1 Ki a2∆2
+ 2a∆

∑n
i=1 Ki∆i J +

∑n
i=1 Ki (∆i J )2. It turns out that when α < 1 the sum

n
i=1 Ki a∆ dominates all the other sums at both numerator and denominator of T n

t̄ , while for
> 1 the jumps always dominate. More in detail, when α < 1 and

∑n
i=1 Ki a∆ dominates,

denoting by ≃ that two expressions have the same limit and by
d
≃ that they have the same limit

in distribution, we obtain
∑n

i=1 Ki (a∆) ≃ ah, while
∑n

i=1 Ki (a∆)2
≃ a2h∆. Since h

∆
→ ∞,

hen |T n
t̄ | → +∞.

For the case α > 1 when the jump component dominates, for sake of simplicity we illustrate
the case where the kernel function is given by a continuous approximation of the indicator
I
{|x |≤

1
2 }

. The jump contribution is as follows:∑n
i=1 Ki∆i J ≃

∑
ti−1∈[t̄− h

2 ,t̄+
h
2 ] ∆i J ≃ Jt̄+ h

2
− Jt̄− h

2

d
≃ h

1
α J1,

and

∑n
i=1 Ki (∆i J )2

≃
∑

ti−1∈[t̄− h
2 ,t̄+

h
2 ](∆i J )2

≃(
J h − J h

)2
−
∑

h h ∆ J∆ J
d
≃
(
J h − J h

)2 d
≃ h

2
α J 2,
t̄+ 2 t̄− 2 i ̸=k: ti−1,tk−1∈[t̄− 2 ,t̄+ 2 ] i k t̄+ 2 t̄− 2 1
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thus the numerator and the denominator of |T n
t̄ | tend to 0 at the same speed h

1
α , and the statistic

annot diverge.
More generally, our results are that, on the set where ∆X t̄ = 0, if a non-zero Brownian

term is present in the model Y then, under the no-burst hypothesis, T n
t̄ never explodes: it is

asymptotically normal, whatever the jump activity index, because the Brownian terms dominate
all the others at numerator and denominator. The conclusion is that a flash crash cannot be
explained by infinite variation jumps, i.e.: in the presence of a Brownian component in the
model, a drift b which is exploding in relation to the volatility is the only case in which T n

t̄
explodes. This happens precisely because the numerator asymptotically behaves as

√
hbt̄ while

the denominator approaches σt̄ .
By contrast, the IV jumps happen to dominate any other term only when σ ≡ 0 and α > 1,

ut then they contribute by the same amount both to the numerator and the denominator, and
he statistic cannot explode.

Note that in the absence of the Brownian component and when the jumps have finite varia-
ion then the drift of Y bursts in relation to the zero volatility, and consistently |T n

t̄ | explodes.
The finite activity jump case (the simplest case of FV jumps) is dealt with under more

general conditions for the choice of partitions and for the jump sizes. For the infinite activity
case, on the other hand, we assume evenly spaced observations and that the small jumps have
constant jump activity index α. In the latter framework we first analyze the case where the
compensated small jumps are the ones in a (not necessarily symmetric) α-stable Lévy process,

e denote them J̃ . In this way we can study the asymptotic behavior for the characteristic
unctions of numerator and squared denominator of the statistic separately, and, when α > 1
nd the jump sizes have symmetric law, also for the characteristic function of the joint law of
quared numerator and squared denominator. We provide closed form expressions for the limit
haracteristic functions. Subsequently the results are extended to more general jump processes

X with jump index α. In fact, under our assumptions we can split the compensated small jumps
X̃ into the sum J̃ + X̃ ′ of the ones in an α-stable model plus those in a residual process X̃ ′ with

lower jump activity index, and we show that the contribution of X̃ ′ does not substantially
hange the results which hold for the α-stable case.

Actually, T n
t̄ could be exploited for many different tests. Assuming model (1) we firstly

check whether the distribution of T n
t̄ is plausibly Gaussian. In case, the DGP contains a BM,

therwise it is an SM only containing jumps, compensator of the small jumps, and possibly
further drift component: if the distribution of

⏐⏐T n
t̄

⏐⏐ does not collapse to a constant and does
not explode the DGP has IV jumps, if

⏐⏐T n
t̄

⏐⏐ → ∞ then the DGP has FV jumps, but no jumps
occurred at t̄ ; if |T n

t̄ | →
√

K (0) then a jump occurred at t̄ . Assessment of whether through T n
t̄

e can further distinguish FA from IA jumps is ongoing.
The rest of the paper is organized as follows: Section 2 sets out details of the model

onsidered and provides some notation; Section 3 analyzes the behavior of T n
t̄ for the pure

jump SM X . In particular, Section 3.1 deals with the case of finite activity jumps: the necessary
assumptions are established and the first main theorem is stated; Section 3.2 deals with the case
of infinite activity jumps: further assumptions are made and the second main result of the paper
is stated. Section 4 shows the behavior of T n

t̄ for the complete SM model (1), possibly including
infinite variation jumps. Section 5 briefly illustrates the theoretical results from simulated
data, and Section 6 discusses a possible extension of the results to a multivariate framework.
Section 7 includes the proof of our first lemma, the statements of other five necessary lemmas
and the proofs of the theorems. The statements of two further lemmas, the proofs of the second
to eighth lemmas and of the corollary to Theorem 2 are shown in theAppendix.
538
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2. Setting

We start by introducing our setting and some notation. We assume that model (1) further
atisfies the following conditions: λ(ω, s, x), from Ω×R+×R to R, is progressively measurable

(i.e.
∫

A λ(s, x)dx is a progressively measurable process for any Borel subset A of R); when
X has FV jumps, we also require that the process

as
.
=

∫
|x |≤1

xλ(s, x)dx

is làdlàg; if µ(ω, {s},R) ̸= 0 then
∫
R xµ({s}, dx) ̸= 0.

The làdlàg condition of the paths of b and σ required after (1) ensures that no bursts
occur, in drift nor in volatility; the measurability condition for λ is required to make the two
processes

∫ t
0

∫
|x |≤1 xµ̃(ds, dx) and

∫ t
0

∫
|x |>1 xλ(s, x)dxds well-defined. When X has FV jumps,

the compensator of the small jumps is given by
∫ t

0 asds. The last requirement simply means
that if a jump occurs at s then its size is non-zero.

Notation 1. K+

.
=
∫

+∞

0 K (u)du, K−

.
=
∫ 0
−∞

K (u)du. For any làdlàg random process b,

b⋆t̄
.
= bt̄− · K+ + bt̄+ · K−. (5)

After defining ∆ = ∆n =
T
n and ∆max = ∆max,n = maxi=1..n |ti − ti−1| we assume that

∆max ≤ C∆

or a fixed constant C , which means that the partition should not differ too much, asymptot-
cally, from the equally spaced partition. The framework (4), under which we look for our
symptotic results, means that ∆ → 0 and ∆

h → 0.
As mentioned in the Introduction, in the presence of the Brownian part in the model, in

estriction to the set where ∆X t̄ = 0 the contribution of the jumps turns out always to be
egligible. To illustrate this, we start by analyzing the jump contribution in the pure jump
odel (2), then return to the general model in Section 4.

. Pure jump model

Within the framework in (2) note that for fixed t̄ ∈ (0, T ) the statistic T n
t̄ of our interest is

well-defined when the denominator is non-zero. As will be clear from the proofs of Lemma 1
and Theorem 2 (part a), this is the case at least when X jumps at t̄ or when X has IA jumps
and in any small interval some jumps occur. When no jumps occur at t̄ and X has FA jumps,
he statistic is well-defined at least when a⋆t̄ ̸= 0 (see (18)).

As mentioned in the Introduction, for a fixed ω it turns out that the behavior of T n
t̄ is

different in the two cases where t̄ is or is not a jump time, and the asymptotic distribution
of the statistic is substantially different depending on whether the jumps have finite or infinite
variation. We tackle the finite activity jump case first, while the infinite activity case is dealt
with in Section 3.2.

Notation 2. C always indicates a constant. Within the algebraic expressions we retain the
constant C even where the two sides of an equality yield different constants. Given two functions
f, g, then f (h) ≃ g(h) indicates that limh→0 f (h) = limh→0 g(h), while f (h) ∼ g(h) indicates
hat limh→0

f (h)
g(h) = C, f (h) ≪ g(h) indicates asymptotic negligibility of f w.r.t. g, i.e.

lim f (h)
= 0. Given two sequences T n,U n of random variables, T n d

≃ U n means that
h→0 g(h)
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they have the same limit in distribution. Recall that ∆X t indicates the size of the jump that
possibly occurred at t (in our framework ∆X t = 0 iff µ(ω, {t},R) = 0); Ks

.
= K

(
t̄−s

h

)
. For

ny α > 0, K(α)
.
=
∫
R K α(u)du. R+ = (0,+∞), R− = (−∞, 0). µ(ds, dx), µ̃(ds, dx) can

e abbreviated using dµ, dµ̃, respectively.

.1. Finite activity jumps

We now consider the case where
∫ T

0

∫
R 1ν(ds, dx) =

∫ T
0

∫
R λ(s, x)dxds < ∞ a.s. Hence

e obtain a.s.∫ t

0
|as |ds ≤

∫ t

0

∫
|x |≤1

|x |λ(s, x)dxds ≤

∫ t

0

∫
R
λ(s, x)dxds < ∞,

o X can be written as

X t =

∫ t

0

∫
R

xµ(ds, dx) −

∫ t

0

∫
|x |≤1

xλ(s, x)dxds.

he latter term −
∫ t

0

∫
|x |≤1 xλ(s, x)dxds = −

∫ t
0 asds is a random drift component. On the other

and
∫ t

0

∫
R xdµ coincides with

∑Nt
p=1 cp for any t ∈ [0, T ], where N is the process counting

he finitely many jumps, occurring at some random times S1(ω), . . ., SNT (ω)(ω) on [0, T ], and
p = cp(ω) .=

∫
R xµ({Sp}, dx) = c(ω, Sp, x p) is the random finite size of the jump at Sp. Thus

e also can write X as

X t =

Nt∑
p=1

cp −

∫ t

0
asds .

= L t −

∫ t

0
asds.

Note that while, for any s, |as | < ∞, a.s., in general the drift process a could not be
niformly bounded in (ω, s).

ssumption A1 (Kernel Function).

1.1 K : R → R+ is a Lipschitz continuous function with Lipschitz constant L K and satisfies

lim
x→+∞

K (x) = 0, lim
x→−∞

K (x) = 0 and
∫
R K (x)dx = 1.

1.2 K satisfies the following:
· if |a| < |b| then K ( b

h ) ≪ K ( a
h )

· for any fixed x ̸= 0, K ( x
h ) ≪ h∆, as h → 0, under (4).

emark 1. (i) The Gaussian kernel K (x) =
e−

x2
2

√
2π

satisfies Assumption A1 for instance with

h = ∆γ with γ ∈ (0, 1). This is the case if for instance h = kn∆ with kn = C∆−
1
2 .

(ii) To know how T n
t̄ behaves asymptotically if the kernel is an indicator function, our results

can be used where the kernel is a Lipschitz continuous approximation of the indicator function.

Assumption A2 (Partitions of [0, T ]). After defining

H (n)
t

.
=

1
∆

∑
∆2

i ,
ti ≤t
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we assume that:
· for any t ∈ (0, T ] the limn→+∞ H (n)

t
.
= Ht > 0 exists and is finite,

· H is Lebesgue differentiable in (0, T ) except for a finite and fixed number m ≥ 0 of points
1, . . ., τm , and H ′ is bounded,

· if I (n)
H = {i : ∃k, τk ∈ [ti−1, ti )}, then sup

{i ̸∈I (n)
H }

sups∈[ti−1,ti ) |H
′
s −

∆i
T/n | → 0, as n → ∞.

Remark 2. The previous Assumption A2 is similar to Assumption 2.2 in [7] but less restrictive.
When we have equally spaced observations all the ∆i coincide with T

n and H ′
≡ 1. When

he observations are more (less) concentrated around t , we have Ht < 1 (Ht > 1).
Note that, where it is defined, H ′

≥ 0, however if for example n · mini ∆i → C > 0 then
H ′ > 0.

As an example, consider the sequence of partitions where the length of the first [n/2]
ntervals [ti−1, ti ) is 2Φ and the length of the remaining n − [n/2] is Φ. Then Φ =

T
n

1
1+[ n

2 ] 1
n

nd, for any t ∈ (0, T ], Ht =
4t
3 It≤τ1 + ( 4T

9 +
2t
3 )It>τ1 where τ1 = 2T/3. This function H is not

ifferentiable at τ1, so m = 1 and for any n, I (n)
H is the only i for which [ti−1, ti ) contains τ1.

urther, the interval [ti−1, ti ) for which i ∈ I (n)
H is the first interval with length Φ. As for the third

ondition in Assumption A2, for any n if ti−1 ≤ τ1 < ti then sups∈[ti−1,ti ) |H
′
s −

∆i
T/n | → 2/3,

ut if both ti−1, ti are on the same side of τ1 (thus i /∈ I (n)
H ) then sups∈[ti−1,ti ) |H

′
s −

∆i
T/n | → 0.

Further, sup
{i ̸∈I (n)

H }
sups∈[ti−1,ti ) |H

′
s −

∆i
T/n | = |

4
3 −

2
1+[ n

2 ] 1
n
| → 0, and Assumption A2 is satisfied.

ssumption A3 (Jump Intensity and Sizes). For the process as =
∫
|x |≤1 xλ(s, x)dx one of the

ollowing conditions holds true:
(i) a.s. supi=1,...,n sups∈[ti−1,ti ) |as − ati−1 | → 0;

(ii) supi=1,...,n sups∈[ti−1,ti ) |as − ati−1 |
P

→ 0;

(iii) there exists ρ > 0 : ∀s, u such that |s − u| ≤ ∆ then E[|as − au |] ≤ C∆ρ .

emark 3. (i) The above requires regularity of the paths of the drift coefficient a. For instance,
f a path as(ω) is continuous, then on [0, T ] it is uniformly continuous in s, and (i) is satisfied.

(ii) If a.s. λ(s, x) is bounded in x and, for any x , λ(s, x) is continuous in s, then, in this
ramework of finite activity jumps, A3 (i) is satisfied.

(iii) If λ does not depend on s then at reduces to the finite r.v. a ≡
∫
|x |≤1 xλ(x)dx for any

, and trivially all the three conditions (i)–(iii) are satisfied. For instance A3 is satisfied if X
as jumps with identically distributed Gaussian sizes.

(iv) Condition (ii) of A3 amounts to saying that the sequence of processes
G(n)

s
.
=
∑n

i=1(as − ati−1 )Is∈[ti−1,ti ) tends to 0 ucp.
(v) Condition (iii) is similar to a requirement given in Assumption 2.1 in [7].

The following definition helps to focus on the asymptotic behavior of T n
t̄ , recall that

hroughout the paper t̄ ∈ (0, T ) is fixed. Given a deterministic function f (x) we set

Fn(X ) .=
n∑

i=1

Ki f (∆i X ). (6)

ith f (x) = x we obtain the numerator of T n
t̄ , with f (x) = x2 the squared denominator.

ote that here we are only interested in the r.v. Fn(X ) (rather than in a process), which is
omputed using all the increments ∆ X with t from t to t . The next lemma describes the
i i 1 n
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asymptotic behavior of Fn(X ), and is used in the proofs of both Theorems 1 and 2. It is proved
n Section 7.

emma 1. If a.s. λ([0, T ] × R) < ∞ and L .
=
(∫ t

0

∫
R xµ(ds, dx)

)
t≥0, then under (4), if K

s continuous at 0 and limx→±∞ K (x) = 0, then for any real function f (x) continuous on R
e have

Fn(L)
a.s.
→ F(L) .= K (0) f (∆L t̄ ).

From the lemma, the limit of T n
t̄ is almost immediately obtained for the paths ω on which

X t̄ ̸= 0. On the other hand, for the ωs where ∆X t̄ = 0 both the numerator and the
enominator of T n

t̄ tend to 0, and we need some work to catch the leading terms.
Recall that in the case where t̄ is not a jump time, if the drift in X is absent T n

t̄ (X ) may
ot be defined. This is the case for instance when NT = 0; or when NT ≥ 1 but the support of

K is bounded. If e.g. K (x) is a Lipschitz continuous approximation of I
{|x |≤

1
2 }

, for sufficiently
mall h then both

∑n
i=1 Ki∆i X = 0 and

∑n
i=1 Ki (∆i X )2

= 0, thus T n
t̄ (X ) is not defined. Note

hat it is always true that if
∑n

i=1 Ki (∆i X )2
= 0 then also

∑n
i=1 Ki∆i X = 0.

The behavior of T n
t̄ in this framework is as follows:

heorem 1. Under model (2), conditions (4) and ∆
h2 → 0,

(a) If K satisfies Assumption A1.1 and a.s. sups∈[0,T ]

∫
|x |≤1 |x |λ(s, x)dx < +∞, then a.s.

T n
t̄ I{∆X t̄ ̸=0} →

√
K (0) · sgn(∆X t̄ )I{∆X t̄ ̸=0}.

(b) Under Assumptions A1, A2 and A3(i) and if (as)s≥0 is làdlàg then the following holds
rue a.s.: if a⋆t̄ ̸= 0 and H ′

t̄± > 0, then in restriction to the set where ∆X t̄ = 0 but NT > 0,

T n
t̄ → sgn(−a⋆t̄ ) · ∞,

where a⋆ is defined as in (5).
If, within (b), Assumption A3(i) is replaced by either Assumption A3(ii) or Assump-

ion A3(iii) then the result is in probability.

emark 4. (i) a⋆t̄ is a weighted sum of at̄+ and at̄−, the values of the drift component of X at
he left and the right of t̄ . If a⋆t̄ = 0 then at̄− · K+ = −at̄+ · K− and we have a symmetry in the

drift coefficient values before and after t̄ . In this case the drift of X has no impact on T n
t̄ , the

behavior of the statistic is only determined by the jumps, and T n
t̄ does not explode anymore

(as in Corollary 2).
The symmetry in the drift coefficient values means a symmetry of the law (on R) of the

sizes of the jumps that can occur before t̄ with respect to the ones after. In fact, when for
instance K is symmetric, the condition a⋆t̄ (ω) = 0 means that lims→t̄−

∫
|x |≤1 xλ(ω, s, x)dx =

− lims→t̄+
∫
|x |≤1 xλ(ω, s, x)dx . If λ was a strictly positive constant, then we would obtain∫

|x |≤1 xdx = 0. The same would happen if λ(s) did not depend on x and was strictly positive.
If λ(x) does not depend on s we have

∫
|x |≤1 xλ(x)dx = 0, which is for instance the case when

X has jumps with i.i.d. centered sizes.
¯ ⋆
(ii) If, on ω, a is continuous at t then at̄ = at̄ .

542



C. Mancini Stochastic Processes and their Applications 163 (2023) 535–591

I
o
f

f

(iii) Note that, since our process X is an Ito semimartingale, it has “no fixed times of
discontinuities”, namely P{∆X t̄ ̸= 0} = 0. Despite this, point (a) of the theorem is relevant
from the practical point of view, because we only have at hand one specific path {Xs(ω), s ∈

[0, T ]}, on which at t̄ a jump could well have occurred.

Corollary 1 (Contribution of the Drift to T n
t̄ ). Let Dt =

∫ t
0 bsds. Under A1, A2, A3(i) and

∆
h2 → 0, if (bs)s≥0 is làdlàg; b⋆t̄ ̸= 0; and H ′

t̄± > 0, then

T n
t̄ (D) → sgn(b⋆t̄ ) · ∞.

If instead Assumption A3(i) is replaced by either Assumption A3(ii) or Assumption A3(iii)
then the result is in probability.

In fact, from (17) within the proof of the theorem, it follows that
∑n

i=1 Ki∆i D ≃ b⋆t̄ h, while∑n
i=1 Ki (∆i D)2

≃ (H ′b2)⋆t̄ h∆. □
If the jump process is represented in the form

L t =

Nt∑
p=1

cp,

without compensation, then the drift coefficient as ≡ 0, and part (b) of the theorem above does
not apply. However, a.s. the limit behavior of T n

t̄ (L) does not change if t̄ is a jump time, while
T n

t̄ (L) → 0 if ∆L t̄ = 0. This is summarized below.

Corollary 2 (Contribution of the Sum of the Jumps to T n
t̄ ). Let L t =

∑Nt
p=1 cp. We have

(a) under A1.1 and ∆
h2 → 0, then in restriction to the set where ∆L t̄ ̸= 0 we have

T n
t̄ (L) →

√
K (0) · sgn(ct̄ );

(b) under A1, A2, A3(i) and ∆
h2 → 0, if spt(K ) = R, then in restriction to the set where

∆L t̄ = 0 but NT > 0 we have

T n
t̄ (L) → 0.

In fact, using the same notation as in the proof of Lemma 1, we obtain the following: a.s.,
if t̄ is a jump time, then for small ∆, from (13),

T n
t̄ (L) =

∑NT
p=1 Ki p cp√∑NT

p=1 Ki p c2
p

≃
K (0)ct̄√
K (0)c2

t̄

=

√
K (0) · sgn(ct̄ ).

f t̄ is not a jump time, since NT ≥ 1 and spt(K ) = R then for any p there is a unique interval
f the partition containing the time of the pth jump, and we denote it by [ti p−1, ti p ). Now we
ocus on minp |t̄ − Sp|, which is strictly positive and can be reached either by one single Sp

or, if t̄ is the middle point between two consecutive jump times, by two points Sp1
, Sp2

. In the
ormer case, for small ∆, we have

T n
t̄ (L) =

∑NT
p=1 Ki p cp√∑NT

p=1 Ki p c2
p

≃

K
(

t̄−Sp

h

)
cp√

K
(

t̄−Sp

h

)
c2

p

=

√
K
( t̄ − Sp

h

)
· sgn(cp) → 0.
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In the latter case we would have |t̄ − Sp1
| = |t̄ − Sp2

|, and

T n
t̄ (L) =

∑NT
p=1 Ki p cp√∑NT

p=1 Ki p c2
p

≃

K
(

t̄−Sp

h

)
(cp1

+ cp2
)√

K
(

t̄−Sp

h

)
(c2

p1
+ c2

p2
)

=

√
K
( t̄ − Sp

h

) cp1
+ cp2√

c2
p1

+ c2
p2

→ 0. □

Note that, in this framework of FA jumps, T n
t̄ could provide a test for the presence of a

drift component in the DGP: if a drift
∫

asds is present in X then either |T n
t̄ | →

√
K (0) or

|T n
t̄ | → ∞; if not then T n

t̄ → 0. We comment on the potential use of T n
t̄ as a test for a jump

at t̄ in the next Section.

Remark 5. The above result is consistent with Theorem 4 in [2]. The Authors consider a
process of type Y + J̄ , where Y as in (1) and J̄t = U I0<τ≤t is a single jump occurring at time
τ . They analyze T n precisely at the jump time, with the result that T n

τ

P
→

√
K (0)
K2

·sgn(U ). Their

onstant K2 is derived from their definition
√

h
K2

b̂t̄
σ̂t̄

of the test statistic, while in this paper we

onsider
√

h b̂t̄
σ̂t̄

.
Within their framework the model contains a non-vanishing Brownian component. When no

umps occur at t̄ , the Brownian motion dominates all the other components, thus the specific
ontribution of a non-exploding drift and of the jumps are not explicit. It follows that it is not
ossible to deduce the asymptotics for T n

t̄ from their framework in the limit case when the
rownian term is absent.

.2. Infinite activity jumps

When the jumps have infinite activity, it turns out that in restriction to the set where ∆X t̄ ̸= 0
again an event of zero probability), then T n

t̄ has the same limit as in the FA jump case. On the
et where ∆X t̄ = 0, as above, both the numerator and the denominator tend to 0 in probability,
nd the freneticism of the activity of the small jumps is crucial in determining the convergence
peeds. Therefore we assume that the jump activity index is a constant α, and we consider a
eneralized α-stable process (Assumption IA3), for which the jump activity is wilder when α
s higher. The large jumps are always of FA, their jump activity index is 0 and they do not
ontribute to determining the convergence speeds we are interested in. We show that the limit
f T n

t̄ is different when α < 1 (finite variation jumps) or α > 1 (infinite variation jumps). For
ake of simplicity we concentrate on the case of equally spaced observations (Assumption IA2);
urther, we add the technical requirement IA1 on the Kernel function, which is satisfied at least
n the Gaussian kernel case.

ssumption IA1 (Kernel). Given a deterministic function ϕ defined on R+, we say that K
satisfies IA1 for ϕ if A1 is satisfied and: K is monotonically non-decreasing on R− and
non-increasing on R+ and there exists a deterministic function εh such that as h → 0

εh → 0,
εh

→ +∞ and
K
(
εh
h

)
→ +∞. (7)
h ϕ(h)
544



C. Mancini Stochastic Processes and their Applications 163 (2023) 535–591

t

A

A

t
w

Ω

R
w
i

I
a

a
a
s
i

i

M
s
α

p

Remark 6. For instance, with ϕ equal to any of the speed functions ϕα(h) or ψα(h) at (10)
below, with the Gaussian kernel, and with the function

εh
.
= h

√
log log

1
h

(8)

he above conditions (7) are satisfied for any α ∈ (0, 2).

ssumption IA2 (Partitions). We take ∆i = ∆ for all n, for all i = 1, . . . , n.

ssumption IA3 (Small Jumps). The jump process has the form X = X̃ + X1, where

X̃ t =

∫ t

0

∫
|x |≤1

xµ̃(ds, dx), X1
t =

∫ t

0

∫
|x |>1

xµ(ds, dx),

he compensating measure of the jumps smaller than 1 has the form ν(ds, dx) = λ(s, x)dxds,
here the, possibly random, intensity λ(s, x) is given by

λ(s, x) =
A

+
g(s, x)

x1+α
I{0<x≤1} +

A
−

g(s, x)
|x |

1+α
I{−1≤x<0},

where A
+
, A

−
> 0, α ∈ (0, 2), and 0 ≤ g(s, x) ≤ 1 is a random, progressively measurable,

process defined on Ω × [0, T ] × R. Further, g is such that:
if α ≤ 1: there exists r < α < 1 such that

∫
|x |≤1 |x |

r 1−g(s,x)
|x |1+α dx ≤ C for any (ω, s) ∈

× [0, T ]; as =
∫
|x |≤1 xλ(s, x)dx is làdlàg and satisfies A3 of Section 3.1;

if α > 1 we have
∫
|x |≤1 |x |

1−g(s,x)
|x |1+α dx ≤ C for any (ω, s).

emark 7. (i) About process a. When X is an α-stable Lévy process, or a CGMY process
ith α ∈ (0, 1) then Assumption A3 is satisfied, because λ does not depend on (ω, s) and as

s a constant.
(ii) Examples of processes satisfying IA3. The small jumps of an α-stable process satisfy

A3 with the constant g(s, x) ≡ 1. We recall that α-stable processes necessarily have α ∈ (0, 2]
nd the only 2-stable process is the Brownian motion.

In particular our framework includes cases where X is a subordinated process. For instance,
γ stable subordinator S without drift, has infinite activity and γ < 1; if we subordinate
symmetric β stable process Z with β ∈ (0, 2], then the subordinated process X = ZS is

table with index α = γβ ∈ (0, 2) (see [4], p.110). The case where Z is a Brownian motion is
ncluded.

Any subordination generating a jump process with constant jump activity index and which
s writable in a form with λ as in Assumption IA3 is included in our framework.

The small jumps of a CGMY process satisfy IA3 with g(s, x) ≡ e−Gx I{x<0} + e−Mx I{x>0}.
ore generally, if 1 − g(s, x) ≤ C |x |

η, for all (ω, s) and some η > 0, then the assumption is
atisfied for instance in the following cases: if α < 1 and η ∈ (0, 2α), with r = α − η/2; if
≥ 1 and η > α − 1 (for instance η = α/2).
(iii) Assumption IA3 aims to have a constant jump activity index α for X (as defined in [1]

.2). Such an index is identified by the component 1
|x |1+α of the Lévy measure of X , as the

latter conditions prevent g from increasing the jump activity.
Assumption 2 in [1] is similar to IA3, and requires a constant jump activity index as well.

The α-stable process is the prototypical example within both frameworks. Showing some results
for such a process is a crucial first step, because then, with specific technical tools, it is often
possible to extend their validity under the more general Ito SM framework.
545



C. Mancini Stochastic Processes and their Applications 163 (2023) 535–591

t

N
c

F

w

(

s
b
s
r

t
−

r
a
p

f

w

T

h

f

(iv) We obtain the same results if Assumption IA3 is made for the compensated measure of
he jumps smaller than any boundary c > 0 in place of 1.

otation 3. Ei−1[Z ] = E[Z |Fti−1 ]. For each α ∈ (0, 2) let Z i,α , i = 1, 2, be random variables
haracterized by β =

A+−A−

A++A−
,

E[eis Z1,α ] = e−|s|αK(α)|Γ (−α) cos( απ2 )|·(A++A−)(1−iβ tan( απ2 )sgn(s)); (9)

Z2,α ≥ 0,

E[e−s Z2,α ] =

⎧⎨⎩ e
−s

α
2 ·

2α√
π

K(α/2)(A++A
−

)Γ
(
α+1

2

)
|Γ (−α) cos( πα2 )|, α ∈ (0, 1) ∪ (1, 2)

e−s
α
2 ·2α−1√

πK(α/2)(A++A
−

)Γ
(
α+1

2

)
, α = 1.

or each α ∈ (0, 2) let us define on R+ the speed functions of our interest

ϕα(h) .=

⎧⎨⎩
h if α ∈ (0, 1),
h log 1

h if α = 1,
h

1
α if α ∈ (1, 2);

ψα(h) .= h
2
α , (10)

here ϕα is shown to be the speed (of convergence to 0 on the set where ∆X t̄ = 0) of the
numerator of T n

t̄ and ψα the speed of the squared denominator.

Remark 8. The random variable Z1,α is α-stable of type Sα(c, β, 0), with scale parameter
c = K(α) |Γ (−α)| ·

⏐⏐cos
(
απ
2

)⏐⏐ (A+ + A−), skewness parameter β and zero shift parameter
parametrization of [8], thm 14.15).

By contrast, the law of Z2,α cannot be stable, in that Z2,α is non-negative with positive jump
izes, so it would have to be β = 1 but then the characteristic function of an Sα/2(c, 1, 0) would
e not compatible with the above Laplace transform. Z2,α comes from the leading term of a
quared α-stable random variable in Lemma 5, but does not have the law of a squared α-stable
.v.

Point (4) within the proof of Lemma 6 shows how Z1,α and Z2,α are dependent. The Laplace
ransform (75) of the joint law of

[
Z2

1,α, Z2,α
]

under P is an exponential of the expression
C
∫
R[s1 K 2(u) + s2 K (u)]

α
2 du, with C > 0, having no linear part in s1, s2, thus in the path

epresentation of the bivariate random variable there are no drift terms. The law could resemble
bidimensional α/2-stable, however this is not the case, because it is concentrated on a

arabola (if x2 = K (u) then x1 = x2
2 ) rather than on the unit sphere (see [8], Thm 14.10).

Note that Γ (−α) < 0 and cos
(
πα
2

)
> 0 for α ∈ (0, 1), while Γ (−α) > 0 and cos

(
πα
2

)
< 0

or α ∈ (1, 2). Thus Γ (−α) cos
(
πα
2

)
is negative for all α ̸= 1.

The following theorem provides the asymptotic behavior of the drift burst test statistic T n
t̄

ithin the pure jump model X .

heorem 2. (a) Under Assumption A1, IA3, (4) and ∆
h2 → 0, with either f (x) = x or

f (x) = x2 we still obtain

Fn(X )
P

→ F(X ) .= K (0) f (∆X t̄ ), (11)

aving used the notation in (6).
(b) Let the kernel satisfy A1 and be such that K α/2 is Lipschitz and: if α ≤ 1 then

K r/2
∈ L1(R), if α > 1 then K 1/2

∈ L1(R). Assume that K satisfies IA1 for both the two
unctions ϕ and ψ in (10), and assume IA2, IA3, the asymptotics (4) and ∆

→ 0.
α α h2
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In the case α < 1 assume also that a⋆t̄ ̸= 0.
In the case α = 1 let also A+ ̸= A−,

√
K log K be bounded and ∆

h2 log2 1
h → 0.

Then we have

if α ∈ (0, 1), T n
t̄

P
→ −sgn(a⋆t̄ ) · ∞,

if α = 1, T n
t̄

P
→ −sgn(A+ − A−) · ∞.

If α ∈ (1, 2), T n
t̄ cannot diverge.

The latter statement is motivated by the fact that numerator and denominator have the same
speed of convergence to 0.

(c) Under the assumptions of part (b), in the case α > 1, if A+ = A− then

α ∈ (1, 2), |T n
t̄ |

d
→ Zα

.
=

|Z1,α|√
Z2,α

.

emark 9. (i) Result (a) above implies that there exists a subsequence T nk
t̄ such that

T nk
t̄ I{∆X t̄ ̸=0}

a.s.
→

√
K (0) · sgn(∆X t̄ )I{∆X t̄ ̸=0}. In particular, if on a given ω we have ∆X t̄ ̸= 0

hen T nk
t̄ →

√
K (0) · sgn(∆X t̄ ). However P{∆X t̄ ̸= 0} = 0.

(ii) At point (b), in case α < 1 we have a.s. |a⋆t̄ | < ∞, and the above result is in accordance
with Theorem 1, part (b). If X̃ is given by the compensated jumps smaller than 1 of an α stable
process with α < 1, then a⋆t̄ ≡ a =

A+−A−

1−α
.

(iii) The requirement A+ ̸= A− is in line with the requirement a⋆ ̸= 0 of the case α < 1 or
f Theorem 1 part (b), and ensures that the drift of X is the leading term at the numerator of

T n
t̄ .

Consider the case where α = 1 and the set where ∆X t̄ = 0. When A+ ̸= A−, the numerator
f T n

t̄ tends to 0 at speed h log 1
h . When instead A+ = A− then a.s. the numerator of T n

t̄ tends to
0 at the faster rate h. In fact the term determining the speed of the numerator is

∑n
i=1 Ki∆i X̃ ,

and within the first step of the proof of Lemma 4 we see that the exponent of the characteristic
function loses the term containing sin v− v, and we can apply Lemma 3 with ϕ(h) = h, rather
than with ϕ(h) = h log 1

h . It follows that T n
t̄ does not diverge, because by Lemma 5 numerator

and denominator have the same speed.
The same happens for α < 1 when a⋆t̄ = 0 : if also we assume that for any fixed x > 0

we have K ( x
h ) ≪ h

2
α , then (by Lemmas 4 and 5) numerator and denominator of T n

t̄ have the
same speed h

1
α and T n

t̄ does not diverge.
(iv) In comparison to (c), the case where α ∈ (1, 2) and A+ ̸= A− requires further

nvestigation. From the proof of Lemma 6, when A+ = A− we obtain the limit joint Laplace
ransform of squared numerator and squared denominator of T n

t̄ : since it cannot be factorized
hen α < 2, the limits Z1,α, Z2,α of numerator and squared denominator turn out not to be

ndependent.
(v) The jumps never cause T n

t̄ to explode: when the jumps have FV (α < 1) or α = 1 then
he explosion is due to the compensator (drift part of X ); when the jumps have IV (α > 1)
hen T n

t̄ does not diverge. This proves that the presence of IV jumps in an Ito SM model as
n IA3 cannot make the statistic T n

t̄ in [2] explode. This will be even more clear in the next
ection.

(vi) It is not clear whether it is possible to construct confidence intervals for Zα starting
rom the Laplace transform of (Z2 , Z ). In case, at least under the assumption A = A ,
1,α 2,α + −
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T n
t̄ provides a test for FV jumps (in which case |T n

t̄ | → +∞) against α > 1 (in which case
T n

t̄ | → Zα), or a test for whether a jump occurred at t̄ (in which case |T n
t̄ | →

√
K (0)) or did

ot occur (either |T n
t̄ | → +∞ or |T n

t̄ | → Zα).

. In the presence of a Brownian component

We now come back to the behavior of T n
t̄ when Y at (1) contains both a Brownian term

and infinite variation jumps. In [2] it has been proved that in the presence of a Brownian
component, when the jumps have finite variation, corresponding here to the case α < 1, and
there is no drift burst, then T n

t̄
d

→ N (0, 1), where N (0, 1) denotes the law of a standard normal
r.v. The following corollary certifies that the same result also holds when the jumps have infinite
variation, because in any case the Brownian component introduces the leading terms, both at
the numerator and at the denominator of T n

t̄ .

orollary 3. Let Y evolve following dYt = bt dt + σt dWt + d X t , Y0 being F0-measurable,
here {bt }t≥0 is a locally bounded and predictable drift process, {σt }t≥0 is an adapted, càdlàg,
.s. strictly positive volatility process; {Wt }t≥0 is a standard Brownian motion and X is a pure-
ump process for which the compensated small jumps are of generalized α-stable type, as in

IA3, with α ∈ [1, 2). Let the assumptions of Theorem 2, part (b), be fulfilled. Then

T n
t̄ (Y ) =

∑n
i=1 Ki∆i Y√∑n
i=1 Ki (∆i Y )2

d
→ N (0, 1).

It follows that in a SM having constant jump activity index and no drift or volatility bursts,
s covered in this paper, the statistic behaves differently depending on which components the
odel contains:

a) in the presence of a volatility component not vanishing at t̄ we have
· T n

t̄
d

→ N (0, 1)

b) in the absence of a Brownian component, under IA3 then
· |T n

t̄ | does not diverge if α ∈ (1, 2), for instance |T n
t̄ |

d
→ Zα if A+ = A−

· |T n
t̄ |

P
→ +∞ if α ∈ (0, 1].

As mentioned in the Introduction, tests based on discrete observations are available for
ssessing whether in an SM model without drift bursts a Brownian component is needed for a
etter explanation of the data. Potentially |T n

t̄ | may provide a further test.

. Practical illustration

In this section we briefly illustrate the different behavior of T n
t̄ when Yt = σWt + X t has

different features. We first consider the case where we are given n = 252 · 84 evenly spaced
discrete observations of H = 100 simulated paths from the same data generating process.
The step between two consecutive observations is ∆ = 1/(252 ∗ 84), the time horizon is
T = n∆ = 1 year and the Gaussian kernel of Remark 1 is used with bandwidth h = ∆0.45.

The first column on the left in Fig. 1 shows the histograms of the values of T n
t̄ when

X t =
∑Nt

i=1 Z i is a compound Poisson process (CPP) possibly superposed with a Brownian
otion with different volatilities. The second column shows the histograms of the values of
n ∑Nt

∫

Tt̄ when X t = i=1 Z i − tλ

|x |≤1 x f (x)dx is a compound Poisson process with compensation

548



C. Mancini Stochastic Processes and their Applications 163 (2023) 535–591

a

a

m
r
e
B
o

Fig. 1. Histograms of T n
t̄ under different models Y . First column: first row, Y ≡ X = CPP with no drift; second

nd third rows, Y = X + σW with different volatilities. Second column: first row, Y ≡ X = CPPComp, with
drift given by the compensator of the small jumps; second and third rows, Y = X + σW . From the third to the
last column: first row, Y ≡ X = CGMY model with compensation of the small jumps; second and third rows,
Y = X + σW . n = 252 × 84,∆ = 1/n.

of the jumps smaller than 1 in absolute value (CPPComp) and possibly superposed with a
Brownian motion. For both columns the annual jump intensity is λ = 10 and the jump sizes
re i.i.d. Gaussian with law N (−0.1, 0.052) and density f (x).1

The theoretical findings are clearly visible: the statistic explodes only when Y has no
Brownian component and the drift component (the compensator of the small jumps) is not
null (second column, top plot).

The columns from the third to the last show the histograms of the values of T n
t̄ when X is a

one-sided CGMY jump process (only positive jumps) with compensation of the jumps smaller
than 1 and jump intensity λ(x) = 0.003 ·

e−x

x1+α Ix>0, possibly superposed with a Brownian
otion.2 In this case too we can visualize the theoretical results: for σ = 0 when α < 1 (top

ow of 3rd to 5th columns) the drift given by the compensator of the small jumps leads T n
t̄ to

xplode towards −∞, while for α > 1 the statistic displays a different, not symmetric, law.
y contrast, as soon as σ ̸= 0 the leading term both at the numerator and at the denominator
f T n

t̄ is the Brownian motion, which pushes the statistic close to a Gaussian r.v.

1 In order to produce more observations of T n
t̄ , for each simulated path the statistic is computed on 50 evenly

spaced time instants t̄ within [0,T], as for each t̄ the statistic has the same law.
2 Simulation of the CGMY model is carried out by approximation with a compound Poisson process with jumps

larger than ε = 10−4 and proper intensity, as in [4], Example 6.9.
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Fig. 2. Histograms of T n
t̄ under the same models Y as in the previous figure. Now n = 252 × 840 and for CPP

nd CGMY jumps ∆ = 1/(252 × 84000), while for CPPComp jumps ∆ = 1/(252 × 8400).

We remark that if we could use higher frequency observations filtered out for microstructure
oises, the asymptotic results would be even more evident, as in Fig. 2, where in order
o highlight the results we set n = 252 × 840, then for CPP and CGMY jumps ∆ =

/(252 × 84000), while for CPPComp ∆ = 1/(252 × 8400).

. Multivariate extension

One may wonder whether for a multivariate process it is possible to obtain results similar to
hose obtained in the univariate case. This is subject to further research, and we briefly illustrate
he problem.

One could start by analyzing the pure jump model. Let us consider the bivariate jump process
X = (X (1), X (2)), where the components have constant jump indices α1, α2. When both X (i)

atisfy our assumptions, we already know the behavior of the relative statistics T (1),n
t̄ , T (2),n

t̄ ,
nd we would like to know the limit in distribution of the joint

(
T (1),n

t̄ , T (2),n
t̄

)
. Depending on

ow the marginal statistics covariate, the confidence intervals of the joint law may differ, and
he power of the joint test may be different.
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If both the jump indices are larger than 1, along the lines of this paper, the above-mentioned
imit could be obtained from the convergence in distribution of⎛⎜⎝

(∑n
i=1 Ki∆i X (1)

)2

h2/α1
,

∑n
i=1 Ki (∆i X (1))2

h2/α1
,

(∑n
i=1 Ki∆i X (2)

)2

h2/α2
,

∑n
i=1 Ki (∆i X (2))2

h2/α2

⎞⎟⎠ .
e expect that, at least when A(i)

+ = A(i)
− , i = 1,2 as in Lemma 6, the above to have the same

onvergence in distribution as(∑n
i=1 K 2

i (∆i X̃ (1))2

h2/α1
,

∑n
i=1 Ki (∆i X̃ (1))2

h2/α1
,

∑n
i=1 K 2

i (∆i X̃ (2))2

h2/α2
,

∑n
i=1 Ki (∆i X̃ (2))2

h2/α2

)
.

(12)

ne could start by finding the result for a process X where X (2)
= ρX (1)

+X (3), with
(
X (1), X (3)

)
Lévy process with stable marginals and with respective jump indices α1, α3, so if ρ ̸= 0

hen α2 = max{α1, α3}. In this way, X is a linear transformation of
(
X (1), X (3)

)
, so it still

as independent increments and an expression for its characteristic function is available ([4],
.107). Using the approach of Lemma 5, we now have

E
[
e−u1(X (1)

1 )2
−u2(X (2)

1 )2
]

=

∫
R2
ϕ(B1,B3)(x1, x3) · f (x1, x3)dx1dx3

here (B1, B3) is a bivariate centered Gaussian r.v. with variance–covariance matrix Σ explic-
tly depending on u1, u2, ρ and with characteristic function ϕ(B1,B3)(x1, x3), while f (x1, x3) is
he joint density of (X (1)

1 , X (3)
1 ). However the above equals∫

R2

∫
R2

eiy1x1+iy3x3 g(y1, y3)dy1dy3 · f (x1, x3)dx1dx3

=

∫
R2

E
[
eiy1 X (1)

1 +iy3 X (3)
1

]
g(y1, y3)dy1dy3,

here g(y1, y3) is the density of the joint law of (B1, B3). Thus we expect that the limit in n
f the Laplace transform of the joint law of (12) can be computed, and thus information on
he asymptotic law of (T (1),n

t̄ , T (2),n
t̄ ) can be obtained.

As for a bivariate version Y = (Y (1), Y (2)), of the complete model, we already know that
n the presence of a Brownian component, the latter dominates all the other parts, thus the
oint asymptotic distribution of

(
T (1),n

t̄ , T (2),n
t̄

)
can be reduced to finding the joint asymptotic

istribution of⎛⎜⎝
(∑n

i=1 Ki∆iσ
(1).W (1)

)2

h
,

∑n
i=1 Ki (∆iσ

(1).W (1))2

h
,

(∑n
i=1 Ki∆iσ

(2).W (2)
)2

h
,

∑n
i=1 Ki (∆iσ

(2).W (2))2

h

⎞⎟⎠ ,
here σ.W indicates the Ito integral process of σ in dW . But since

∑n
i=1 Ki (∆iσ.W )2

h
P

→ σ 2
t̄ , if

e show that⎛⎜⎝
(∑n

i=1 Ki∆iσ
(1).W (1)

)2

h
,

(∑n
i=1 Ki∆iσ

(2).W (2)
)2

h

⎞⎟⎠
onverges stably to a bivariate r.v. then we can immediately conclude. Again one could consider

W (2)
= ρW W (1)

+ W (3) with independent Brownian motions W (1),W (3). Then we expect the
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result to be obtained using the multidimensional theorem on the stable convergence of triangular
arrays [6].

7. Proofs of Lemma 1 and of the two theorems

Proof of Lemma 1. For fixed ω, for any given jump time Sp = Sp(ω) of L and any integer
, let i p= i p(ω) be the right extreme of the unique interval [ti−1, ti ) containing Sp.

For the fixed ω,
∑Nt

p=1 cp is a step-wise constant function of t , so each increment ∆i L
ither is 0, if [ti−1, ti ) does not contain jump times, or is

∑∆i N
p=1 cp, if [ti−1, ti ) contains some

nstants Sp. Since the time horizon T is finite and fixed, for sufficiently small ∆ we have
0 ≤ ∆i N ≤ 1 for all i = 1, . . . , n, thus ∆i L either is 0 or reduces to a single cp ∈ R − {0},
and

∑n
i=1 Ki f

(∑∆i N
p=1 cp

)
reduces to

NT∑
p=1

Ki p f (cp). (13)

(a) On {∆X t̄ = 0}, t̄ is a jump time, then it coincides with one of the Sp, say S p̄
.
= t̄ ,

while, if some other jumps occurred (i.e. NT ≥ 2), for the other indices p we have ∆S .
=

minp ̸= p̄ |Sp − t̄ | > 0. For ∆ → 0 we have that, for all p = 1, . . . , NT , ti p−1 → Sp, so

that t̄ − ti p̄−1 → 0, and since |t̄ − ti p̄−1| ≤ ∆i p ≤ ∆, we have
|t̄−ti p̄−1|

h ≤
∆
h → 0, thus

Ki p̄ f (c p̄) → K (0) f (c p̄) = K (0) f (∆L t̄ ).
On the other hand, if NT ≥ 2, for p ̸= p̄ we have that |t̄ − ti p−1| → |t̄ − Sp| ≥ ∆S > 0,

hus
|t̄−ti p−1|

h → +∞, and Ki p → 0. So, for p ̸= p̄, Ki p f (cp) → 0.

In other words, for sufficiently small ∆,
∑n

i=1 Ki f
(∑∆i N

p=1 cp

)
only contains NT non-zero

erms, and all of them tend to 0 but one. Only the term for which [ti−1, ti ) contains S p̄ = t̄ has
non-zero limit, amounting to K (0) f (c p̄) = K (0) f (∆L t̄ ).
(b) On {∆X t̄ = 0}, t̄ is not a jump time, and we have that, for any given ω, each

Sp is at positive distance from t̄ , and again, for sufficiently small ∆ = ∆(ω), we have
NT
p=1 Ki p f (∆i p L) =

∑NT
p=1 Ki p f (cp), which is a sum of NT terms, where now all the terms

Ki p tend to 0. In fact, similarly as above, ti p−1 → Sp but |t̄ − Sp| ≥ minp |t̄ − Sp| > 0,

hus
|t̄−ti p−1|

h → +∞. However, since f (∆L t̄ ) = 0 we can also write
∑n

i=1 Ki f (∆i L) →

K (0) f (∆L t̄ ). □

The following lemma, which is proved in the Appendix, gathers properties of the kernel
unction which are used numerous times. Point (1) is similar to point (1) of Lemma A.1 in [7],
ut is adapted to the present framework.

emma 2. Whatever t̄ ∈ (0, T ) is, under (4), the following hold true:
(1) [Lemma A.1 (i) in [7]]. For a sequence of processes b(n) bounded by the same constant

, for any Lipschitz function K (x) with Lipschitz constant L K and ∆
h2 → 0 it holds∫ T

0

1
h

K
( t̄ − s

h

)
b(n)

s ds −

n∑
i=1

1
h

K
( t̄ − ti−1

h

) ∫ ti

ti−1

b(n)
s ds = Oa.s.

(
∆

h2

)
(2) If K is Lipschitz, K ∈ L1(R) and ∆

→ 0 then
∑n

i=1 Ki∆i
→ K =

∫
K (u)du.
h2 h (1) R
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(3) If K 2 is Lipschitz, has K(2) =
∫
R K 2(x)dx < ∞ and ∆

h2 → 0 then
∑n

i=1 K 2
i ∆i

h → K(2).
(4) For a làdlàg bounded process b and any density function K (x) on R we have a.s.∫ T

0

1
h

K
( t̄ − s

h

)
bsds → b⋆t̄ .

(5) If K is Lipschitz, K ∈ L1(R), ∆
h2 → 0 and b(n) are processes for which

(i) a.s. supi=1,...,n sups∈[ti−1,ti ) |b
(n)
s − b(n)

ti−1 | → 0,
then a.s.

n∑
i=1

1
h

K
( t̄ − ti−1

h

)
b(n)

ti−1∆i ≃

n∑
i=1

1
h

K
( t̄ − ti−1

h

) ∫ ti

ti−1

b(n)
s ds.

f the last assumption is replaced by either
(ii) supi=1,...,n sups∈[ti−1,ti ) |b

(n)
s − b(n)

ti−1 |
P

→ 0
or
(iii) there exists ρ > 0 : ∀s, u such that |s − u| ≤ ∆ then E[|b(n)

s − b(n)
u |] ≤ C∆ρ ,

then the above result holds in probability rather than a.s.
(6) If K 2 is Lipschitz and in L1(R), then under (4) and ∆

h2 → 0

n∑
i=1

∑
j<i

K 2
i K 2

j ∆ j∆i ≃

∫ T

0
K 2

u

∫ u

0
K 2

s dsdu ≃ h2CK ,

here Ck
.
=
∫
R K 2(v)

∫
+∞

v
K 2(w)dwdv > 0.

roof of Theorem 1. (a) On {∆X t̄ ̸= 0}, t̄ is a jump time. We show that a.s.
(1a)

∑n
i=1 Ki∆i X → K (0)∆X t̄ ,

(2a)
∑n

i=1 Ki (∆i X )2
→ K (0)

(
∆X t̄

)2
,

which are sufficient to conclude.
As for (1a), using Lemma 1 for process L =

∫
·

0

∫
R xµ(ds, dx), it remains to check that

n
i=1 Ki

∫ ti
ti−1

asds
a.s.
→ 0, which is almost immediate. In fact, we have a.s.⏐⏐⏐⏐⏐

n∑
i=1

Ki

∫ ti

ti−1

asds

⏐⏐⏐⏐⏐ ≤

(
sup

s

∫
|x |≤1

|x |λ(s, x)dx
)

h ·

∑n
i=1 Ki∆i

h
.

ince the last factor above tends a.s. to K(1) = 1 we are done.
In order to show (2a) we write

∑n
i=1 Ki (∆i X )2 as

n∑
i=1

Ki

(∆i N∑
p=1

cp

)2
+

n∑
i=1

Ki

(∫ ti

ti−1

asds
)2

− 2
n∑

i=1

Ki

(∆i N∑
p=1

cp

) ∫ ti

ti−1

asds. (14)

By Lemma 1 the first term tends to K (0)(∆X t̄ )2. The second term of (14) similarly as above
tends to 0, because it is bounded from above by

n∑
Ki

(
sup

s

∫
|x |λ(s, x)dx

)2
∆2

i ≤ C∆h
∑n

i=1 Ki∆i

h
→ 0.
i=1 |x |≤1
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The third term in (14) is a negligible mixed term. In fact, for small ∆ it becomes

− 2
NT∑
p=1

Ki p cp

∫ i p

ti p−1

asds : (15)

ince on the fixed ω only finitely many jumps occurred, and each jump has finite size, the
andom number c̄ .

= maxp=1,...,NT |cp| is finite, further under Assumption A1.1 the kernel K
s bounded, then the latter sum is dominated in absolute value by

C
NT∑
p=1

∆i p sup
s

∫
|x |≤1

λ(s, x)dx ≤ C NT∆ → 0.

Thus (2a) follows and (a) is proved.
(b) On {∆X t̄ = 0}, t̄ is not a jump time. Within∑n

i=1 Ki∆i X =
∑NT

p=1 Ki p∆i p L −
∑n

i=1 Ki
∫ ti

ti−1
asds,

as above, the second sum tends a.s. to 0, and now also the first one does, by Lemma 1. The
same happens at the denominator of T n

t̄ , thus we have a limit form 0
0 , and we look for the

speed at which the two terms of the quotient tend to zero.
For that, note that, by virtue of the assumption that if µ(ω,R, {s}) ̸= 0 then

∫
R xµ(dx, {s}) ̸=

0, for the fixed ω we have |c| .
= minp=1,...,NT |cp| > 0, and we can write

∑n
i=1 Ki∆i X as

ollows
n∑

i=1

Ki∆i X =

n∑
i=1

Ki

∫ ti

ti−1

∫
|x |>|c|

xµ(ds, dx) −

n∑
i=1

Ki

∫ ti

ti−1

asds. (16)

or a sufficiently small ∆ = ∆(ω) the first sum contains the NT vanishing terms Ki p cp =

K
(

t̄−ti p−1
h

)
cp, the leading of which, when h → 0, by Assumption A1.2 are the ones having

he smallest
⏐⏐⏐ t̄−ti p−1

h

⏐⏐⏐. Since for all p we have ti p−1 → Sp, the slowest terms tend to 0 at speed

K
(

minp=1,..,NT |t̄−Sp |

h

)
. In other words, for the given ω the first sum in (16) tends to zero at speed

K
(

t̄−Sp

h

)
.

Using Lemma 2, points (1) and (4),

1
h

n∑
i=1

Ki

∫ ti

ti−1

asds =

∫ T

0

1
h

K
( t̄ − s

h

)
asds + Oa.s.

(
∆

h2

)
→ a⋆t̄ (ω), (17)

thus if a⋆t̄ (ω) ̸= 0 the last sum in (16) tends to 0 as −ha⋆t̄ , which, by Assumption A1.2,

dominates K
(

t̄−Sp

h

)
, so the numerator of T n

t̄ tends to zero as −ha⋆t̄ .
As for the denominator of T n

t̄ , from (14) analogously as above we find that the leading

erms of the first sum tend to 0 at speed K
(

minp |t̄−Sp |

h

)
; the third sum, a.s., for small ∆ is

s in (15), thus it is bounded in absolute value by C
∑NT

p=1 Ki p |cp|∆i p . The latter is in turn

symptotically dominated by C K
(

minp |t̄−Sp |

h

)
∆ ≪ C K

(
minp |t̄−Sp |

h

)
. This shows that the third

um is negligible with respect to the first one.

The second sum
∑n

i=1 Ki

(∫ ti
ti−1

asds
)2

in (14) is now shown to tend a.s. to 0 at speed
′ 2 ⋆
h∆ · (H a )t̄ . For that we proceed based on the following schedule:
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(1b) 1
∆h

∑n
i=1 Ki

(∫ ti
ti−1

asds
)2

≃
1

∆h

∑n
i=1 Ki a2

ti−1
∆2

i

(2b) 1
∆h

∑n
i=1 Ki a2

ti−1
∆2

i ≃
∫ T

0
1
h Ks H ′

sa2
s ds

(3b)
∫ T

0
1
h Ks H ′

sa2
s ds → (H ′a2)⋆t̄ ,

which proves that the denominator of T n
t̄ tends to 0 as√

K
(

minp |t̄ − Sp|

h

)
+ h∆(H ′a2)⋆t̄ . (18)

owever, from Assumption A1.2 it will follow that the latter tends to 0 as
√

h∆ · (H ′a2)⋆t̄ .
hen note that

(H ′a2)⋆t̄ = H ′

t̄−a2
t̄−K+ + H ′

t̄+a2
t̄+K− > 0,

ecause at least one between at̄−K+ and at̄+K− is non zero, then at least one between a2
t̄−K+

and a2
t̄+K− is strictly positive, and both H ′

t̄+, H ′

t̄− are strictly positive. Thus it will also follow
that

T n
t̄ ≃

−ha⋆t̄√
h∆(H ′a2)⋆t̄

≃ −

√
h
∆

a⋆t̄√
(H ′a2)⋆t̄

→ ∞ · sgn
(
−a⋆t̄

)
,

which will conclude the proof of (b).
Let us now prove (2b), (3b) and then (1b). As for (2b), the difference of the terms at the

two sides is∫ T

0

1
h

Ks H ′

sa2
s ds −

1
∆h

n∑
i=1

Ki a2
ti−1

∆2
i

=
1
h

n∑
i=1

∫ ti

ti−1

[
Ks − Ki

]
H ′

sa2
s ds +

1
h

n∑
i=1

∫ ti

ti−1

Ki

[
H ′

sa2
s − a2

ti−1

∆i

∆

]
ds,

aving subtracted and added
∫ ti

ti−1
Ki H ′

sa2
s ds for each i : since K is Lipschitz and H ′ and a are

ounded, the first term of the rhs above is dominated by C
h

∑n
i=1

∆2
i

h ≤ C ∆max
h2 → 0. We thus

emain with the second term, which is split as

1
h

n∑
i=1

∫ ti

ti−1

Ki H ′

s

[
a2

s − a2
ti−1

]
ds +

1
h

n∑
i=1

∫ ti

ti−1

Ki

[
H ′

s −
∆i

∆

]
a2

ti−1
ds, (19)

where the second sum is
1
h

∑
i∈I (n)

H

∫ ti

ti−1

Ki

[
H ′

s −
∆i

∆

]
a2

ti−1
ds +

1
h

∑
i ̸∈I (n)

H

∫ ti

ti−1

Ki

[
H ′

s −
∆i

∆

]
a2

ti−1
ds :

ccounting for the boundedness of K , H ′,
∆i
∆

and a and for the fact that ∆max ≤ C∆, the latter
isplay is dominated in absolute value by

C
h

m∆ +
C
h

∑
i ̸∈I (n)

H

sup
s∈[ti−1,ti )

⏐⏐⏐H ′

s −
∆i

∆

⏐⏐⏐Ki∆i ,

≤ C
∆

h
+ C sup

(n)
sup

s∈[ti−1,ti )

⏐⏐⏐H ′

s −
∆i

∆

⏐⏐⏐∑n
i=1 Ki∆i

h
a.s.
→ 0,
i ̸∈IH
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having used Lemma 2 part (2). We thus remain with only the first sum in (19), whose absolute
value is dominated by

C
h

n∑
i=1

Ki sup
s∈[ti−1,ti )

|a2
s − a2

ti−1
|∆i ,

however note that

sup
s∈[ti−1,ti )

|a2
s − a2

ti−1
| = sup

s∈[ti−1,ti )
|as − ati−1 ||as + ati−1 | ≤ C sup

s∈[ti−1,ti )
|as − ati−1 |

hus the last display is in turn dominated by

C sup
i=1,...,n

sup
s∈[ti−1,ti )

|as − ati−1 | ·

∑n
i=1 Ki∆i

h
a.s.
→ 0,

hich concludes the proof of (2b).
If in place of A3 (i) we assume A3 (ii), clearly the limit above is in probability. If instead

n place of A3 (i) we assume A3 (iii) the first sum in (19) is dealt with as follows.

E

[
1
h

⏐⏐⏐⏐⏐
n∑

i=1

∫ ti

ti−1

Ki H ′

s

[
a2

s − a2
ti−1

]
ds

⏐⏐⏐⏐⏐
]

≤
C
h

n∑
i=1

Ki

∫ ti

ti−1

E[|as − ati−1 |]ds (20)

≤
C
h

n∑
i=1

Ki∆
1+ρ

which tends to 0. Thus again the convergence at (2b) takes place in probability.
(3b) follows from Lemma 2, point (4).

(1b) Writing, for each i ,
(∫ ti

ti−1
asds

)2
=

(∫ ti
ti−1

(as − ati−1 )ds + ati−1∆i

)2
we obtain

1
∆h

n∑
i=1

Ki

(∫ ti

ti−1

asds
)2

=
1
∆h

n∑
i=1

Ki

(∫ ti

ti−1

(as − ati−1 )ds
)2

(21)

+
2
∆h

n∑
i=1

Ki

∫ ti

ti−1

(as − ati−1 )ds · ati−1∆i +
1
∆h

n∑
i=1

Ki a2
ti−1

∆2
i ,

nd, since by (2b) and (3b) 1
∆h

∑n
i=1 Ki a2

ti−1
∆2

i →

(
H ′a2

)⋆
t̄

̸= 0, it is sufficient to show that
the first two sums on the right hand side above tend to 0. In both cases we use that

1
∆i

∫ ti

ti−1

(as − ati−1 )ds ≤

√
1
∆i

∫ ti

ti−1

(
as − ati−1

)2
ds.

t follows that the first of the two sums is

1
∆h

n∑
i=1

Ki

( 1
∆i

∫ ti

ti−1

(as − ati−1 )ds
)2
∆2

i ≤
1
∆h

n∑
i=1

Ki
1
∆i

∫ ti

ti−1

(as − ati−1 )2ds∆2
i

≤
1
∆h

n∑
i=1

Ki sup
s∈[ti−1,ti )

|as − ati−1 |
2∆2

i ≤ C sup
i=1,...,n

sup
s∈[ti−1,ti )

|as − ati−1 |
2
∑n

i=1 Ki∆i

h
,

which, using Lemma 2, part (2), and Assumption A3(i), tends a.s. to 0.
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The second sum at the rhs of (21) is

2
∆h

n∑
i=1

Ki
1
∆i

∫ ti

ti−1

(as − ati−1 )ds · ati−1∆
2
i

≤
2
∆h

n∑
i=1

Ki

√
1
∆i

∫ ti

ti−1

(
as − ati−1

)2
ds · |ati−1 |∆

2
i

≤
C
∆h

n∑
i=1

Ki

√
sup

s∈[ti−1,ti )
|as − ati−1 |

2
· ∆2

i

≤ C sup
i=1,...,n

sup
s∈[ti−1,ti )

|as − ati−1 | ·

∑n
i=1 Ki∆i

h
a.s.
→ 0,

hich concludes the proof of (1b).
If in place of A3 (i) we assume A3 (ii), clearly the last two limits above are in probability.

f instead in place of A3 (i) we assume A3 (iii) then

E

[
1
∆h

n∑
i=1

Ki
1
∆i

∫ ti

ti−1

(as − ati−1 )2ds∆2
i

]
,

E

[
2
∆h

n∑
i=1

Ki
1
∆i

∫ ti

ti−1

|as − ati−1 |ds · |ati−1 |∆
2
i

]
end to 0 because they turn out to be bounded exactly as in (20). □

The proof of Theorem 2 relies heavily on Lemmas 4, 5 and 6 stated below, and the first
wo in turn make use of the next Lemma 3. To allow for lean reading, Lemmas from 3 to 6
re proved in the Appendix.

emma 3. Let g : R → I C be a deterministic Lebesgue integrable function. Given a
eterministic function ϕ defined on R+, assume that K satisfies IA1 for ϕ. Then for fixed
> 0, for any s ∈ R, under (4) with ∆

h2 → 0, we have
(i) if K α is Lipschitz and in L1(R) then

n∑
i=1

K α
i

h
∆i

∫
|v|≤

Ki |s|
ϕ(h)

g(v)dv → K(α)

∫
R

g(v)dv (22)

(ii) if K is Lipschitz and K ∈ L1(R),
n∑

i=1

Ki

h
∆i I

{
|s|Ki
ϕ(h) >1}

→ K(1)

(iii) if K α/2 is Lipschitz and in L1(R), and Ψ ∈ L1(R) is a deterministic function then
n∑

i=1

K
α
2

i

h
∆i

∫
R
Ψ (u)

∫
|v|≤

√
2Ki |s|
ϕ(h) |u|

g(v)dvdu → K(α/2) ·

∫
R
Ψ (u)du

∫
R

g(v)dv

emma 4. Assume that K and satisfies IA1 for ϕα in (10) and for ϕ(1)
α (h) .

= h
1
α . Under

IA2, IA3, (4), ∆/h2
→ 0 and if K α is Lipschitz and in L1(R). If α = 1 we also assume that

K log(K ) ∈ L1.
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a

Then, recalling the notation ∆i X̃ =
∫ ti

ti−1

∫
|x |≤1 xdµ̃, we have

α ∈ (0, 1) :

∑n
i=1 Ki∆i X̃

h
P

→ −a⋆t̄ ;

∑n
i=1 Ki

∫ ti
ti−1

∫
|x |≤1 xdµ

h
1
α

d
→ Z1,α (23)

α = 1 & A+ ̸= A− :

∑n
i=1 Ki∆i X̃

h log 1
h

d
→ −(A

+
− A

−
)K(1), (24)

α ∈ (1, 2) :

∑n
i=1 Ki∆i X̃

h
1
α

d
→ Z1,α. (25)

emma 5. Assume that K satisfies IA1 for ψα , then IA2, IA3, (4), ∆
h2 → 0; that K α/2 is

ipschitz; and if α ≤ 1 then K r/2
∈ L1(R), if α > 1 then K 1/2

∈ L1(R). In the case α = 1
ssume also

√
K log(K ) bounded and

∆ log2 1
h

h2 → 0. Then

if α ∈ (0, 1) :

∑n
i=1 Ki (

∫ ti
ti−1

∫
|x |≤1 xdµ)2

h
2
α

d
→ Z2,α, (26)

if α = 1 :

∑n
i=1 Ki (∆i X̃ )2

h2
d

→ Z2,α, (27)

if α ∈ (1, 2) :

∑n
i=1 Ki (∆i X̃ )2

h
2
α

d
→ Z2,α, (28)

emma 6. Under A1, IA2, IA3 and (4): if α ∈ (1, 2), A+ = A− and ∆
h2 → 0 then⎛⎜⎝

(∑n
i=1 Ki∆i X

)2

h
2
α

,

∑n
i=1 Ki (∆i X )2

h
2
α

⎞⎟⎠ d
→ (Z2

1,α, Z2,α).

emark 10. Note that under A1 K is bounded and then we also have:
• K 2 is Lipschitz and in L1(R);
• if K α/2 is Lipschitz then K α

= (K α/2)2 is such;
• for any r > 0: if K r/2

∈ L1 then for any s > r/2 also K s
= K r/2 K s−r/2

∈ L1.;
• for α = 1 and r < 1, if K r/2

∈ L1 and
√

K log K is bounded then K log K =

K r/2 K 1/2−r/2
√

K log K ∈ L1.

roof of Theorem 2. (a) Since X is a càdlàg process, for fixed ε ∈ (0, 1) we have a.s.
ν(ω, (ε, 1]× [0, T ]) < ∞, i.e. the jumps occurring on [0, T ] with size larger than ε in absolute
alue are only finitely many. Define now N ε

T the a.s. finite number of jumps of X with size
bsolute value |∆X p| > ε, and Sεp the times of such jumps, p = 1, . . . , N ε

T . For any n, for any
p = 1, . . . , N ε we call Ip = I εp the unique interval (ti−1, ti ] = (tεi−1, tεi ] containing Sεp, and we
ename its extremes ti p−1 = tiεp−1, ti p = tiεp . For any ε ∈ (0, 1) we split

X t = X̃ ε
t − Cε

t + X1,ε
t , where X1,ε

t
.
=

∫ t

0

∫
|x |>ε

xdµ,

X̃ ε
t
.
=

∫ t

0

∫
|x |≤ε

xdµ̃, Cε
t
.
=

∫ t

0

∫
|x |∈(ε,1]

xλ(x)dxds,

nd we proceed through the following steps.
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Σ

(1) For any fixed ε ∈ (0, 1), X1,ε is a FA jump process with piece-wise constant paths, so
hat, by Lemma 1 we have that, as n → ∞, Fn(X1,ε)

a.s.
→ F(X1,ε) with both f (x) = x and

f (x) = x2, where F(X1,ε) is finite a.s.
(2) Note that as ε → 0 then, for both f (x) = x and f (x) = x2,

F(X1,ε) = K (0) f (∆X1,ε
t̄ )

a.s.
→ F(X ) = K (0) f (∆X t̄ ).

(3) Now we check that

∀η > 0, lim
ε→0

lim sup
n→∞

P
({

|Fn(X ) − Fn(X1,ε)| > η
})

= 0. (29)

The three properties allow to conclude (11) by Proposition 2.2.1 in [6]. We define

as(ε) .=
∫

|x |∈(ε,1]
xλ(s, x)dx, σ 2

s (ε) .=
∫

|x |≤ε

x2λ(s, x)dx .

ote that a(0) is the process a that we defined in Section 3.1, and that it has finite values only
f X has finite variation jumps (α < 1). For proving part (a), note that

∫
|x |∈(ε,1] x2λ(s, x)dx

s bounded as (ω, s) varies, thus that for any fixed ε > 0 the processes as(ε) and σ 2
s (ε) are

ounded in absolute value by constants, say Aε, depending on ε, and Σ respectively. In fact
2
s (ε) ≤

∫
|x |≤1 x2λ(s, x)dx ≤ Σ and

|as(ε)| ≤

∫
|x |∈(ε,1]

|x |
λ(s, x)

λ
(
(ε, 1], s

)dxλ
(
(ε, 1], s

)
≤

√∫
|x |∈(ε,1]

|x |
2 λ(s, x)
λ
(
(ε, 1], s

)dx λ
(
(ε, 1], s

)
≤ σs(1)

√
λ
(
(ε, 1], s

)
≤ Aε.

Case f (x) = x : P
({

|Fn(X ) − Fn(X1,ε)| > η
})

is bounded by

P
({

|

n∑
i=1

Ki∆i X̃ ε
| >

η

2

})
+ P

({
|

n∑
i=1

Ki∆i Cε
| >

η

2

})
:

he first probability is bounded by

∥
∑n

i=1 Ki∆i X̃ ε
∥L2

η/2
=

√∑n
i=1 K 2

i E[(∆i X̃ ε)2]

η/2

=

√∑n
i=1 K 2

i E[
∫ ti

ti−1

∫
|x |≤ε

x2λ(s, x)dxds]

η/2
≤

√
Σ ·

∑n
i=1 K 2

i ∆i

η/2
,

aving used for the first equality that Ki∆i X̃ ε are martingale increments. Since under A1 we
have K 2

∈ L1(R) then, from Lemma 2 point (2), as n → ∞, we have Σ ·
∑n

i=1 K 2
i ∆i ≃

h → 0, then lim supn→∞ P
({

|
∑n

i=1 Ki∆i X̃ ε
| >

η

2

})
= 0 for all ε > 0, and

lim
ε→0

lim sup
n→∞

P
({

|

n∑
Ki∆i X̃ ε

| >
η

2

})
= 0.
i=1

559



C. Mancini Stochastic Processes and their Applications 163 (2023) 535–591

a
t∑

n

a
r
t

n
r

As for
∑n

i=1 Ki∆i Cε, we have
⏐⏐⏐∑n

i=1 Ki∆i Cε

⏐⏐⏐ ≤ Aε
∑n

i=1 Ki∆i , which does not depend
on ω and, for fixed ε, tends a.s. to 0, as n → ∞, so again

lim
ε→0

lim sup
n→∞

P
({

|

n∑
i=1

Ki∆i Cε
| >

η

2

})
≤ lim

ε→0
lim sup

n→∞

P
({

Aε
n∑

i=1

Ki∆i >
η

2

})
= 0.

For the case f (x) = x2 we reason similarly. In fact

Fn(X ) − Fn(X1,ε) =

n∑
i=1

Ki

(
∆i X̃ ε

)2
+

n∑
i=1

Ki (∆i Cε)
2

+ 2
n∑

i=1

Ki

(
∆i X̃ ε∆i X1,ε

− ∆i X̃ ε∆i Cε
− ∆i X1,ε∆i Cε

)
, (30)

nd we show that for fixed ε each term tends to 0 in probability as n → ∞:
∑n

i=1 Ki

(
∆i X̃ ε

)2

ends to 0 in probability because its L1-norm tends to 0; and, again from Lemma 2 point (2),
n
i=1 Ki∆i → 0, thus we have∑n

i=1 Ki (∆i Cε)2 ≤ (Aε)2
∑n

i=1 Ki∆
2
i ≤ (Aε)2 ∆max

∑n
i=1 Ki∆i

a.s.
→ 0.

Finally, the double products are all dealt with using the Schwarz inequality, and shown to be
egligible:⏐⏐⏐ n∑

i=1

Ki∆i Z∆i V
⏐⏐⏐ =

⏐⏐⏐ n∑
i=1

√
Ki∆i Z

√
Ki∆i V

⏐⏐⏐ ≤

√ n∑
i=1

Ki (∆i Z )2

√ n∑
i=1

Ki (∆i V )2

nd for each one of the three double products in (30) at least one of the square roots on the
ight hand side above tends to 0 in probability, while

∑n
i=1 Ki (∆i X1,ε)2

= Fn(X1,ε) converges
o the finite quantity

F(X1,ε) = K (0)(∆X1,ε
t̄ )2.

It follows that, for fixed ε > 0, Fn(X ) − Fn(X1,ε)
P

→ 0 as n → ∞, thus again

lim
ε→0

lim sup
n→∞

P
({

|Fn(X ) − Fn(X1,ε)| > η
})

= lim
ε→0

0 = 0.

(b) We concentrate on the set {∆X t̄ = 0}, having probability 1. On that set both the
umerator and the denominator of T n

t̄ tend to 0 in probability: using Lemmas 4 and 5 we
each the following speeds, as will be explained below:

n∑
i=1

Ki∆i X
d
≃

⎧⎨⎩
−a⋆t̄ h, if α ∈ (0, 1)
−(A+ − A−)K(1) · h log 1

h , if α = 1 and A+ ̸= A−

h
1
α Z1,α, if α ∈ (1, 2)

; (31)

n∑
i=1

Ki (∆i X )2 d
≃

⎧⎪⎨⎪⎩
h

2
α Z2,α + oP (h

3
2 ∆

1
2 ), if α ∈ (0, 1)

h2 Z2,α, if α = 1
h

2
α Z2,α, if α ∈ (1, 2),

. (32)

It follows that for α ∈ (0, 1) and a⋆t̄ ̸= 0 then

T n
t̄

d
≃

−a⋆t̄√
h

2
α−2 Z2,α + oP

(√
∆
) → −sgn(a⋆t̄ ) · ∞,
h
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t

w

for α = 1 then

T n
t̄

d
≃ −

(A+ − A−)K(1)√
Z2,α

log
1
h

a.s.
→ −sgn(A+ − A−) · ∞

while for α ∈ (1, 2) numerator and denominator of T n
t̄ have the same speed, thus with

probability 1 the statistic T n
t̄ cannot diverge.

To obtain (31) from Lemma 4, we simply note that a.s.∑n
i=1 Ki∆i X1 has speed K

(
minp |t̄−Sp |

h

)
(for the notation see the proof of Theorem 1 after

16)). Since K
(

minp |t̄−Sp |

h

)
= oP (h∆) by Assumption A1.2, K

(
minp |t̄−Sp |

h

)
is negligible with

espect to ϕα(h), for any α.
To obtain (32) from Lemmas 4 and 5 we first note that, similarly as above,

∑n
i=1 Ki (∆i X1)2

ends to zero still at speed K
(

minp |t̄−Sp |

h

)
= oP (h∆). Then

· for α ∈ (0, 1) the squared denominator of T n
t̄ is

n∑
i=1

Ki (∆i X )2
=

n∑
i=1

Ki

(∫ ti

ti−1

∫
|x |≤1

xdµ
)2

+

n∑
i=1

Ki

(∫ ti

ti−1

asds

)2

+

n∑
i=1

Ki (∆i X1)2
− 2

n∑
i=1

Ki

∫ ti

ti−1

asds
∫ ti

ti−1

∫
|x |≤1

xdµ

− 2
n∑

i=1

Ki

∫ ti

ti−1

asds ∆i X1
+ 2

n∑
i=1

Ki

(∫ ti

ti−1

∫
|x |≤1

xdµ
)
∆i X1

: (33)

within the last term,
∑n

i=1
√

Ki

(∫ ti
ti−1

∫
|x |≤1 xdµ

)√
Ki∆i X1 is dominated by√∑n

i=1 Ki

(∫ ti
ti−1

∫
|x |≤1 xdµ

)2√∑n
i=1 Ki (∆i X1)2, and this is oP (h

3
2 ∆

1
2 ), because, by Lemma 5,

∑n
i=1 Ki

(∫ ti
ti−1

∫
|x |≤1 xdµ

)2

h2/α
d

→ Z2,α , then

h
1
α−1

√∑n
i=1 Ki

(∫ ti
ti−1

∫
|x |≤1 xdµ

)2

h2/α
P

→ 0, (34)

hile
∑n

i=1 Ki (∆i X1)2 converges a.s. to zero as K
(

minp |t̄−Sp |

h

)
≪ h∆, then a.s.

h
1
α

√∑n
i=1 Ki

(∫ ti
ti−1

∫
|x |≤1 xdµ

)2

h
2
α

√ n∑
i=1

Ki (∆i X1)2

≤ Ch · h
1
α−1

√∑n
i=1 Ki

(∫ ti
ti−1

∫
|x |≤1 xdµ

)2

h
2
α

√
K
(

minp |t̄ − Sp|

h

)
= oP (h

3
2 ∆

1
2 ).
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Since a.s. |
∫ ti

ti−1
asds| ≤ ∆ sups

∫
|x |≤1 |x |λ(s, x)dx , the term

∑n
i=1 Ki

∫ ti
ti−1

asds ∆i X1 in (33)

ends to 0 as ∆ · K
(

minp |t̄−Sp |

h

)
= oP (h∆); the term

n∑
i=1

Ki

∫ ti

ti−1

asds
∫ ti

ti−1

∫
|x |≤1

xdµ ≤ C(ω)∆h · h
1
α−1

∑n
i=1 Ki

∫ ti
ti−1

∫
|x |≤1 xdµ

h
1
α

= oP (h∆);

s said just after (34), the term
∑n

i=1 Ki (∆i X1)2
= oP (h∆); while the speed of

n
i=1 Ki (

∫ ti
ti−1

asds)2 is h∆. Thus the display in (33) is asymptotically equivalent to

h
2
α Z2,α + OP (h∆)+ oP (h

3
2 ∆

1
2 ) = h

2
α Z2,α + oP (h

3
2 ∆

1
2 ).

· for α = 1 we instead split ∆i X into ∆i X̃ and ∆i X1 and, using again the Schwarz
nequality, the mixed term within the squared denominator of T n

t̄ is shown to be dominated by

2

√ n∑
i=1

Ki

(
∆i X̃

)2

√ n∑
i=1

Ki (∆i X1)2 = OP

(
h

√
K
(

minp |t̄ − Sp|

h

))
= oP (h

3
2 ∆

1
2 ).

hus
n∑

i=1

Ki

(
∆i X

)2 d
≃ h2 Z2,α + OP

(
K
(

minp |t̄ − Sp|

h

))
+ oP (h

3
2 ∆

1
2 )

d
≃ h2 Z2,α.

· for α ∈ (1, 2) we again split ∆i X into ∆i X̃ and ∆i X1 and use the Schwarz inequality:
n∑

i=1

Ki

(
∆i X

)2 d
≃ h

2
α Z2,α + OP

(
K
(

minp |t̄ − Sp|

h

))
+ oP (h

1
α

√
∆h)

d
≃ h

2
α Z2,α.

(c) By (31), (32) and Lemma 6 part (c) is proved. □
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Appendix. Proofs of the other lemmas and of Corollary 3.

This Appendix contains the detailed proofs of Lemmas 2, 3, 4, 5 and 6, and of Corollary 3.

Two further lemmas are needed for the proofs of the last four lemmas.
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w

t
i
t

w

w

Proof of Lemma 2. As for (1), recalling from Notation 2 that Ks = K
(

t̄−s
h

)
, the displayed

eft term coincides with
n∑

i=1

∫ ti

ti−1

1
h

(Ks − Ki )b(n)
s ds,

hose absolute value is dominated by

n∑
i=1

∫ ti

ti−1

L K

h2 |s − ti−1|Cds = Oa.s.

(
∆

h2

)
.

(2) By (1) in the special case where b(n)
≡ 1 for all n we have that

∑n
i=1 Ki∆i

h equals
1
h

∫ T
0 K

(
t̄−s

h

)
ds + Oa.s.

(
∆
h2

)
=
∫ t̄

h
t̄−T

h
K (u)du + Oa.s.

(
∆
h2

)
→

∫
R K (u)du, where for the last

equality we operated the change of variable u = (t̄ − s)/h.
(3) We apply (2).

(4) For fixed ω the term
∫ T

0
1
h Ksbsds coincides with

∫ t̄
h

t̄−T
h

K (u)bt̄−hudu, and

⏐⏐⏐⏐⏐
∫ t̄

h

t̄−T
h

K (u)bt̄−hudu − b⋆t̄

⏐⏐⏐⏐⏐ ≤

⏐⏐⏐⏐⏐
∫ 0

t̄−T
h

K (u)bt̄−hudu − bt̄+ ·

∫ 0

−∞

K (u)du

⏐⏐⏐⏐⏐
+

⏐⏐⏐⏐⏐
∫ t̄

h

0
K (u)bt̄−hudu − bt̄− ·

∫
+∞

0
K (u)du

⏐⏐⏐⏐⏐
≤

∫
R

|bt̄−hu − bt̄+| I( t̄−T
h ,0](u)K (u)du +

∫
R

|bt̄−hu − bt̄−| I(0, t̄
h ](u)K (u)du

+

∫
R

(
|bt̄+|I(−∞, t̄−T

h )(u) + |bt̄−|I( t̄
h ,+∞)(u)

)
K (u)du :

he three terms are integrals, in the finite measure on R having intensity K , of bounded
ntegrands converging to 0 point-wise as h → 0. By the dominated convergence theorem the
hree integrals tend to 0 and (4) is proved.

(5) If either (i) or (ii) holds true, the claim follows from the fact that⏐⏐⏐⏐⏐
n∑

i=1

1
h

Ki

∫ ti

ti−1

b(n)
s − b(n)

ti−1ds

⏐⏐⏐⏐⏐
≤ sup

i=1,...,n
sup

s∈[ti−1,ti )
|b(n)

s − b(n)
ti−1 |

n∑
i=1

1
h

K
( t̄ − ti−1

h

)
∆i ,

hich tends to 0 a.s. (respectively, tends to 0 in P).
If (iii) holds true then

E

[⏐⏐⏐⏐⏐
n∑

i=1

1
h

Ki

∫ ti

ti−1

b(n)
s − b(n)

ti−1ds

⏐⏐⏐⏐⏐
]

≤
1
h

n∑
i=1

Ki

∫ ti

ti−1

E[|b(n)
s − b(n)

ti−1 |]ds,

hich in turn is dominated by C ∑n K ∆
1+ρ

→ 0.
h i=1 i i
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S

T

d

A

i

A

P

(6) As for the first relation we have∫ T

0
K 2

u

∫ u

0
K 2

s dsdu −

n∑
i=1

K 2
i

(∑
j<i

K 2
j ∆ j

)
∆i =

(∫ T

0
K 2

u

∫ u

0
K 2

s dsdu (35)

−

n∑
i=1

K 2
i

∫ ti−1

0
K 2

s ds∆i

)
+

⎛⎝ n∑
i=1

K 2
i

∫ ti−1

0
K 2

s ds∆i −

n∑
i=1

K 2
i

(∑
j<i

K 2
j ∆ j

)
∆i

⎞⎠ .
ince

∫ ti−1
0 K 2

s ds =
∑

j<i

∫ t j
t j−1

K 2
s ds, the latter term is dominated in absolute value by

n∑
i=1

K 2
i

∑
j<i

∫ t j

t j−1

|K 2
s − K 2

j |ds∆i ≤ C
n∑

i=1

K 2
i

∑
j<i

∫ t j

t j−1

|s − t j−1|

h
ds∆i

≃ C
n∑

i=1

K 2
i

∑
j<i

∆2
j

h
∆i ≤ C∆

∑n
i=1 K 2

i ∆i

h
= O(∆) → 0.

he right hand side term in (35) equals
n∑

i=1

∫ ti

ti−1

K 2
u

∫ u

0
K 2

s dsdu −

n∑
i=1

∫ ti

ti−1

K 2
i

∫ ti−1

0
K 2

s dsdu

=

n∑
i=1

∫ ti

ti−1

(
K 2

u − K 2
i

) ∫ ti−1

0
K 2

s dsdu +

n∑
i=1

∫ ti

ti−1

K 2
u

∫ u

ti−1

K 2
s dsdu :

using that for any ti−1 we have
∫ ti−1

0 K 2
s ds = h

∫ t̄
h

t̄−ti−1
h

K 2(w)dw ≤ hK(2), the first sum is

ominated by

C
n∑

i=1

∫ ti

ti−1

|u − ti−1|

h
du · hK(2) = O(∆) → 0.

lso for the second sum we use that
∫ u

ti−1
K 2

s ds = h
∫ t̄−ti−1

h
t̄−u

h
K 2(w)dw ≤ hK(2), thus the sum

s dominated by
n∑

i=1

∫ ti

ti−1

K 2
u du · O(h) =

∫ T

0
K 2

u du · O(h) = O(h2) → 0.

s for the second relation,

1
h2

∫ T

0
K 2

u

∫ u

0
K 2

s dsdu =
1
h

∫ t̄
h

t̄−T
h

K 2(v)
∫ t̄−vh

0
K 2

s dsdv

=

∫ t̄
h

t̄−T
h

K 2(v)
∫ t̄

h

v

K 2(w)dwdv →

∫
R

K 2(v)
∫

+∞

v

K 2(w)dwdv. □

roof of Lemma 3. (i) Since the difference of the two terms in (22) can be written as
n∑ K α

i

h
∆i

(∫
Ki |s|

g(v)dv −

∫
g(v)dv

)
+

∫
g(v)dv

(
n∑ K α

i

h
∆i − K(α)

)
,

i=1 |v|≤
ϕ(h) R R i=1
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c

R

a

a

∫
t

it is sufficient to show that
n∑

i=1

K α
i ∆i

h

(∫
|v|≤

Ki |s|
ϕ(h)

g(v)dv −

∫
R

g(v)dv

)
→ 0, (36)

because using then that, similarly as in Lemma 2, (2),
∑n

i=1
Kαi ∆i

h → K(α), the proof is
oncluded. The absolute value of the expression in (36) is dominated by

n∑
i=1

K α
i ∆i

h

∫
|v|>

Ki |s|
ϕ(h)

|g(v)|dv.

ecall that the kernel K satisfies Assumption IA1 for ϕ, in particular there exists a deterministic
function εh such that, as h → 0,

εh → 0,
εh

h
→ +∞ and

K
(
εh
h

)
ϕ(h)

→ +∞.

We split I .
= {1, 2, . . . , n} = I ′

∪ I ′′, where

I ′
= {i ∈ I : |t̄ − ti−1| ≤ εh}, I ′′

= {i ∈ I : |t̄ − ti−1| > εh}.

For i ∈ I ′ we have Ki ≥ K
(
εh
h

)
, thus∑

i∈I ′

K α
i ∆i

h

∫
|v|>

Ki |s|
ϕ(h)

|g(v)|dv ≤

∑
i∈I ′

K α
i ∆i

h

∫
|v|>

K
(
εh
h

)
|s|

ϕ(h)

|g(v)|dv,

nd the latter tends to 0, because the first factor is dominated by
∑n

i=1
Kαi ∆i

h → Kα , while the
second factor is an integral of |g| on a vanishing region.

On the other hand,∑
i∈I ′′

K α
i ∆i

h

∫
|v|>

Ki |s|
ϕ(h)

|g(v)|dv ≤

∑
i∈I ′′

K α
i ∆i

h

∫
R

|g(v)|dv,

nd we show that
∑

i∈I ′′

Kαi ∆i
h → 0. First we have⏐⏐⏐⏐⏐∑

i∈I ′′

K α
i ∆i

h
−

n∑
i=1

K α
i

h

∫ ti

ti−1

I{s:|t̄−s|>εh }ds

⏐⏐⏐⏐⏐
≤

n∑
i=1

K α
i

h

⏐⏐⏐⏐⏐∆i I{i :|t̄−ti−1|>εh } −

∫ ti

ti−1

I{s:|t̄−s|>εh }ds

⏐⏐⏐⏐⏐ :

since |t̄ − ti−1|/h > εh/h → ∞, and, for all the considered numbers s, |t̄ − s|/h > εh/h,
then the only involved K α

i are such that K α
i ≤ K α(εh/h) → 0; further ∆i I{i :|t̄−ti−1|>εh } −

ti
ti−1

I{s:|t̄−s|>εh }ds is 0 for all that intervals [ti−1, ti ) but for the two containing t̄ + εh and
¯ − εh . Thus the latter sum is dominated by Kα(εh/h)

h · 2∆ → 0, and

lim
∑
i∈I ′′

K α
i ∆i

h
= lim

n∑
i=1

K α
i

h

∫ ti

ti−1

I{s:|t̄−s|>εh }ds,
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(

i

i

n

a

i

b
i

and using Lemma 2, (1), with bn
s = I{s:|t̄−s|>εh }, the latter limit coincides with

lim
∫

s∈(0,T ):|t̄−s|>εh

K α
s

h
ds = lim

∫
−

t̄
h

t̄−T
h

K α(u)I
{|u|>

εh
h }

du (37)

= lim
∫

−
εh
h

t̄−T
h

K α(u)du +

∫ t̄
h

εh
h

K α(u)du = 0.

ii) We have that
n∑

i=1

Ki

h
∆i I{

|s|Ki
ϕ(h) >1

} − K(1) ≃

n∑
i=1

Ki

h
∆i I{

|s|Ki
ϕ(h) >1

} −

n∑
i=1

Ki

h
∆i

=

n∑
i=1

Ki

h
∆i I{

|s|Ki
ϕ(h) ≤1

},
and we show that the latter sum has limit 0. With I ′ and I ′′ as defined at point (i), we
mmediately see that∑

i∈I ′

Ki

h
∆i I{

|s|Ki
ϕ(h) ≤1

} → 0,

n fact if |t̄ − ti−1| ≤ εh then K
(

|t̄−ti−1|

h

)
≥ K

(
εh
h

)
, thus∑

i∈I ′

Ki

h
∆i I{

|s|Ki
ϕ(h) ≤1

} ≤

∑
i∈I ′

Ki

h
∆i I{

|s|K
(
εh
h

)
ϕ(h) ≤1

} = I{
|s|K

(
εh
h

)
ϕ(h) ≤1

}∑
i∈I ′

Ki

h
∆i :

since the first factor tends to 0 and the second one is bounded, the latter product tends to 0.
In order to check that also∑

i∈I ′′

Ki

h
∆i I{

|s|Ki
ϕ(h) ≤1

} → 0,

ote that∑
i∈I ′′

Ki

h
∆i I{

|s|Ki
ϕ(h) ≤1

} ≤

∑
i∈I ′′

Ki

h
∆i =

n∑
i=1

Ki

h
∆i I{

|t̄−ti−1|>εh

},
nd the latter is shown to tend to 0 as in (37).

As for (iii), the proof is substantially the same as for (i), we only point out some details. It
s sufficient to prove that

n∑
i=1

K
α
2

i

h
∆i

⎛⎝∫
R
Ψ (u)

∫
|v|≤

√
2Ki |s|
ϕ(h) |u|

g(v)dvdu −

∫
R
Ψ (u)du

∫
R

g(v)dv

⎞⎠
=

n∑
i=1

K
α
2

i

h
∆i

∫
R
Ψ (u)

∫
|v|>

√
2Ki |s|
ϕ(h) |u|

g(v)dvdu → 0, (38)

ecause as in Lemma 2, (3), we have
∑n

i=1
K
α
2

i
h ∆i → K(α/2). The sum in (38) is again split

nto the sum of the terms with i ∈ I ′ and the sum of the ones with i ∈ I ′′: since for i ∈ I ′
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ν

we have {|v| >

√
2Ki |s|
ϕ(h) |u|} ⊂ {|v| >

√
2K
(
εh
h

)
|s|

ϕ(h) |u|}, the absolute value of the first sum is
dominated by∑

i∈I ′

K
α
2

i

h
∆i

∫
R
Ψ (u)

∫
|v|>

√
2K
(
εh
h

)
|s|

ϕ(h) |u|

|g(v)|dvdu,

here for any u we have
∫
|v|>

√
2K
(
εh
h

)
|s|

ϕ(h) |u|

|g(v)|dv → 0 and

Ψ (u)
∫

|v|>

√
2K
(
εh
h

)
|s|

ϕ(h) |u|

|g(v)|dv ≤ CΨ (u) ∈ L1(R),

ere C =
∫
R |g(v)|dv, thus by the dominated convergence theorem the sum over i ∈ I ′ tends

o 0. On the other hand,∑
i∈I ′′

K
α
2

i

h
∆i

∫
R
Ψ (u)

∫
|v|>

√
2Ki |s|
ϕ(h) |u|

|g(v)|dvdu ≤

∑
i∈I ′′

K
α
2

i

h
∆i

∫
R
Ψ (u)du

∫
R

|g(v)|dv

here, as in (37), the first factor tends to 0. □

A useful procedure to extend results for α-stable processes to semimartingales. This
rocedure is explained in [5], sec. 12.4, we report it with some adjustments needed in our
ramework.

Let us consider a one sided martingale X̃+
t =

∫ t
0

∫
0<x≤1 xdµ̃+, t ∈ [0, T ], where the jump

easure µ+ has Lévy measure

λ+(s, x) =
A+g(s, x)

x1+α
I0<x≤1dx .

In our application X̃+ is the component of X involving the positive small jumps.
Since g(s, x) ≤ 1, then A+(1 − g(s, x)) ≥ 0 and

[
I0<x≤1 A+(1 − g(s, x))/(x1+α)

]
dx can

epresent a Lévy measure. Consider the Skorohod space (Ω ′,F ′, {F ′
t }t∈[0,T ]) of the càdlàg

unctions starting from state 0 at time 0. For any fixed ω ∈ Ω we define

ν
′
+

ω (ω′, ds, dx) =

[
A+

x1+α
I0<x≤1 − λ+(s, x)

]
dxds = I0<x≤1

A+(1 − g(s, x))
x1+α

dxds,

nd we put on Ω ′ the unique probability Qω under which the canonical process, that we call
X̃

′
+, is a SM with characteristics (0, 0, ν

′
+
ω ) : X̃

′
+

t =
∫ t

0

∫
0<x≤1 xdµ̃

′
+, µ̃

′
+

= µ
′
+

− ν
′
+
ω .

Since ν
′
+
ω keeps fixed as ω′ varies on Ω ′, then X̃

′
+ on Ω ′ has independent increments.

urther, ν
′
+
ω is measurable as a function of ω, because I0<x≤1 A+(1 − g(s, x)))/(x1+α) is

uch, then Qω(dω′) is a transition probability from (Ω ,F), to (Ω ′,F ′), and we can enlarge
Ω ,F , {Ft }t∈[0,T ], P) to

(
Ω̄ , F̄ , {F̄t }t∈[0,T ], P̄

)
, where Ω̄ = Ω×Ω ′, F̄ = F⊗F ′, F̄t = Ft ⊗F ′

t ,
P̄(dω, dω′) = P(dω)Qω(dω′). We extend X̃+, X̃

′
+ to Ω̄ by keeping X̃+(ω) constant as ω′

aries and X̃
′
+(ω′) constant as ω varies. In order to simplify notations we keep the same

ame for an object originally defined on Ω or on Ω ′ and which was extended on Ω̄ . Only
′
+
ω undergoes a slight name change in what follows.

The above enlargement turns out to be a very good extension ([6], p.36), which ensures that
X̃+ and X̃

′
+ are still martingales on Ω̄ , with respective characteristics

+
(

′
)

+
′
+
(

′
) ′

+ ′
ν (ω,ω ), ds, dx = λ (s, x)dxds, ν (ω,ω ), ds, dx = νω (ω , ds, dx).
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Now, X̃ and X̃
′
+ turn out not to have common jumps. In fact if at time τ we have ∆X̃τ ̸= 0,

hen τ depends on ω and not on ω′. X̃
′
+ has absolutely continuous characteristics (0, 0, ν

′
+
ω ),

hus it is an Ito SM. But then, since τ (ω) is fixed on Ω ′, and X̃
′
+ cannot have on Ω ′ fixed

times of discontinuity, thus ∆X̃
′
+

τ (ω) = 0. This implies that the number of jumps of X̃+
+ X̃

′
+

on any subset of Ω̄ × [0, T ] is the sum of the number of jumps of the two terms on the same
subset, i.e.

ν X̃+
+X̃

′
+(

(ω,ω′), ds, dx
)

= ν+
(
(ω,ω′), ds, dx

)
+ ν

′
+
(
(ω,ω′), ds, dx

)
=

A+

x1+α
I0<x≤1dxds,

ut then X̃+
+ X̃

′
+ is on Ω̄ a martingale made of compensated jumps smaller than 1 and having

ne sided α stable law. Thus we identify X̃+
+ X̃

′
+ with a martingale, say J̃+, represented by

he compensated small jumps of an α-stable process. In the following we denote by J̃+ either
he compensated small jumps of an α-stable process on Ω or the compensated small jumps of
n α-stable process on Ω̄ , P̄ .

From one sided to two sided. The model (2) we are dealing with has possibly two sided
mall jumps. By applying the same reasoning above also to the side X̃− of the process having
egative jumps, we end up with a connection of X̃ = X̃+

+ X̃− with a possibly non-symmetric
artingale J̃ = J̃+

+ J̃− representing the compensated small jumps of an α stable process.
ith X̃ ′

= X̃
′
+

+ X̃ ′− we obtain

X̃ + X̃ ′
= J̃ , (39)

here

X̃ t =

∫ t

0

∫
|x |≤1

x(dµ−dν), X̃ ′

t =

∫ t

0

∫
|x |≤1

x(dµ′
−dν ′), J̃t =

∫ t

0

∫
|x |≤1

x(dµJ
−dν J ),

ν
(
(ω,ω′), ds, dx

)
= λ(s, x)dxds, ν ′

(
(ω,ω′), ds, dx

)
= λ′(s, x)dxds,

ν J ((ω,ω′), ds, dx
)

= λJ (x)dxds,

ith λ(s, x) as in IA3,

λ′(s, x) = I0<x≤1
A+(1 − g(s, x))

x1+α
+ I−1≤x<0

A−(1 − g(s, x))
x1+α

,

λJ (x) =
A+

x1+α
I0<x≤1 +

A−

|x |
1+α

I−1≤x<0.

The big advantage of this approach is that we now have a useful expression linking
xpectations of functionals of J̃ under P̄ and expectations of functionals of X̃ under P (see
emma 7). This allows us to firstly prove our results for the small jumps of an α stable process
nd then to extend the results to the process in (2).

emma 7. Let fn be a sequence of deterministic functionals to be applied to either a process
V̄ on Ω̄ or to a process V on Ω , and let gn = gn(ω, ·) a sequence of functionals, possibly
epending on ω, to be applied to a process V ′ on Ω ′ such that the processes V, V ′ extended
n Ω̄ satisfy V̄ = V + V ′.

Let, for all n, | fn| and | fn||gn| be bounded, fn
(
V̄
)

= fn
(
V
)
gn
(
V ′
)

and let(
′
) Qω
∀ω, gn V −→ 1.
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a

N

s

Then, denoting Ē = E P̄ , as n → ∞, we obtain

lim
n

Ē
[

fn
(
V̄
)]

= lim
n

E P
[

fn
(
V
)]
.

roof. Since fn(V ) only depends on ω and not on ω′,

Ē[ fn(V )] = E P [E Qω [ fn(V )]] = E P [ fn(V )E Qω [1]] = E P [ fn(V )].

Then

Ē
[

fn
(
V̄
)]

− E P
[

fn
(
V
)]

= Ē
[

fn
(
V̄
)
− fn

(
V
)]

= Ē
[

fn
(
V
)[

gn
(
V ′
)
− 1

]]
.

Since ∀ω, gn
(
V ′
) Qω

−→ 1 then gn
(
V ′
) P̄

−→ 1. In fact, for all η > 0 we have

P̄
{
|gn
(
V ′
)
− 1| > η

}
= E P [E Qω [I

{|gn

(
V ′

)
−1|>η}

]] : for any ω, I
{|gn

(
V ′

)
−1|>η}

Qω
−→ 0 and

is bounded, thus E Qω [I
{|gn

(
V ′

)
−1|>η}

] → 0. However the latter term is also bounded, then

E P [E Qω [I
{|gn

(
V ′

)
−1|>η}

]] → 0.

Moreover | fn
(
V
)
| is bounded, thus fn

(
V
)[

gn
(
V ′
)
−1

]
P̄

−→ 0, and is bounded because also
fngn is bounded. Therefore, by the dominated convergence Theorem, the latter display tends
to 0, and the lemma is proved. □

Remark 11. We use this lemma for the second steps of Lemmas 4, 5, 6. For instance for
Lemma 5 when α ≥ 1 (Eq. (66)), with the notation in (39), we have V̄ = J̃ , V = X̃ , V ′

= X̃ ′,

and fn(X̃ ) = e−s
∑n

j=1
K j

h2/α (∆ j X̃)
2

, while gn(ω, X̃ ′) = e−s
∑n

j=1
K j

h2/α (∆ j X̃ ′)
2
−2s

∑n
j=1

K j
h2/α ∆ j X̃∆ j X̃ ′

.

Lemma 8. Let r < α ≤ 1 be such that
∫
|x |≤1 |x |

rλ′(s, x)dx ≤ C for any (ω, s) ∈ Ω × [0, T ];
nd let the kernel satisfy K r

∈ L1(R). Then for all ω, on Ω ′ we have∑n
j=1 K j

∫ ti
ti−1

∫
|x |≤1 xdµ′

h
1
α

Qω
→ 0.

Proof. It is sufficient to show that

E Qω

⎡⎣⏐⏐⏐⏐⏐
∑n

j=1 K j
∫ ti

ti−1

∫
|x |≤1 xdµ′

h
1
α

⏐⏐⏐⏐⏐
r ⎤⎦ → 0.

ow note that, due to the fact that r < 1, the left term in the above display is dominated by

E Qω

⎡⎢⎣
∑n

j=1 K r
j

⏐⏐⏐∫ ti
ti−1

∫
|x |≤1 xdµ′

⏐⏐⏐r
h

r
α

⎤⎥⎦ =

∑n
j=1 K r

j E Qω
[⏐⏐⏐∫ ti

ti−1

∫
|x |≤1 xdµ′

⏐⏐⏐r ]
h

r
α

o by [6] (2.1.40), recalling that ν ′
ω does not depend on ω′, the latter term is dominated by∑n

j=1 K r
j

∫ ti
ti−1

∫
|x |≤1 |x |

r dν ′
ω

r .

h α
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Recalling that dν ′
ω = λ′

ω(s, x)dxds, since by assumption
∫
|x |≤1 |x |

rλ′
ω(s, x)dx ≤ C , the above

isplay is upper bounded by

C

∑n
j=1 K r

j∆

h
· h1−

r
α → 0. □

roof of Lemma 4. First step. We start by proving the results when the small jumps of X
re the ones of an α stable process J , i.e. g(t, x) ≡ 1 and λ(ω, s, x) ≡ λ(x). In this case for
ny t̄ we have

a⋆t̄ = a =

∫
|x |≤1

xλ(x)dx =
A+ − A−

1 − α
.

To distinguish the stable case we replace ∆i X̃ with ∆i J̃ . We now prove that under the
ssumptions of the lemma we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

if α ∈ (0, 1)
∑n

i=1 Ki∆i J̃
h

d
→ −a and

∑n
i=1 Ki

∫ ti
ti−1

∫
|x |≤1 xdµJ

h
1
α

d
→ Z1,α

if α = 1 and A+ ̸= A−

∑n
i=1 Ki∆i J̃

h log 1
h

d
→ −(A

+
− A

−
)K(1),

if α ∈ (1, 2)
∑n

i=1 Ki∆i J̃

h
1
α

d
→ Z1,α.

For each fixed α ∈ (0, 2), defined Zn
.
=

∑n
i=1 Ki∆i J̃
ϕα (h) , we proceed by showing that the

haracteristic functions E[eis Zn ] converge to the characteristic function of the limit shown in
he statement of the lemma.

Since J̃ is a Lévy process,

E[eis Zn ] = E

⎡⎣ n∏
j=1

eis
K j∆ j J̃
ϕα (h)

⎤⎦ =

n∏
j=1

E
[
eis

K j∆ j J̃
ϕα (h)

]

=

n∏
j=1

e
∆
∫
|x |≤1

⎛⎝e
is

K j
ϕα (h) x

−1−is
K j
ϕα (h) x

⎞⎠λ(x)dx

ith z .
= s K j

ϕα (h) , the integral at exponent is

A
+

∫
0<x≤1

(
ei zx

− 1 − i zx
)

x−1−αdx + A
−

∫
−1≤x<0

(
ei zx

− 1 − i zx
)
|x |

−1−αdx (40)

= (A
+

+ A
−

)
∫ 1

0

cos
(

zx
)

− 1

x1+α
dx + i(A

+
− A

−
)
∫ 1

0

sin
(

zx
)

− zx

x1+α
dx . (41)

By changing variable v = |z|x that becomes

|z|α
[

(A
+

+ A
−

)
∫

cos(v) − 1
1+α

dv + i(A
+

− A
−

)sgn(z)
∫

sin(v) − v

1+α
dv
]

0<v≤|z| v 0<v≤|z| v
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so that E[eis Zn ] is given by

e

∑n
j=1 ∆

⏐⏐⏐⏐ sK j
ϕα (h)

⏐⏐⏐⏐α
⎡⎣(A

+
+A

−
)
∫

0<v≤
|s|K j
ϕα (h)

cos(v)−1
v1+α

dv+i(A
+

−A
−

)sgn(s)
∫

0<v≤
|s|K j
ϕα (h)

sin(v)−v
v1+α

dv

⎤⎦
(42)

n each of the three cases α < 1, α = 1, α > 1 the right speed is the ϕα(h) such that the
xponent in the above expression converges to a finite quantity.

In the case α ∈ (0, 1) we have ϕα(h) = h, cos(v)−1
v1+α , sin(v)

v1+α ∈ L1(R+), while⏐⏐⏐⏐ sK j

ϕα(h)

⏐⏐⏐⏐α sgn(s)
∫

0<v≤
|s|K j

h

v

v1+α
dv =

sK j

h
1

1 − α
.

t follows from (42) that E[eis Zn ] equals the exponential of
n∑

j=1

∆

⏐⏐⏐⏐ sK j

h

⏐⏐⏐⏐α (A
+

+ A
−

)

[∫
0<v≤

|s|K j
h

cos(v) − 1
v1+α

dv + iβsgn(s)
∫

0<v≤
|s|K j

h

sin(v)
v1+α

dv

]

− i
n∑

j=1

∆
sK j

h
A

+
− A

−

1 − α
.

Recall that (from [8], Lemma 14.11)∫
R+

cos(v) − 1
v1+α

dv =

{
Γ (−α) cos

(
πα
2

)
, α ∈ (0, 1) ∪ (1, 2)

−
π
2 , α = 1, (43)⎧⎪⎨⎪⎩

∫
+∞

0
sin(v)
v1+α dv = −Γ (−α) sin

(
πα
2

)
, if α ∈ (0, 1)∫ 1

0
sin(v)−v
v2 dv +

∫
+∞

1
sin(v)
v2 dv < +∞, if α = 1

(44)

⎧⎪⎨⎪⎩
∫

+∞

0
eir

−1−ir
r1+α dr = Γ (−α)e−iπ α2 , if α ∈ (1, 2)

∫
+∞

0
e−ir

−1+ir
r1+α dr = Γ (−α)eiπ α2 , if α ∈ (1, 2)

(45)

Thus, since the two integrals in the above exponent of E[eis Zn ] are dominated by constants,
|s|α

∑n
j=1 ∆

Kαj
hα = |s|α

∑n
j=1 ∆Kαj

h · h1−α
→ 0, and a =

∫
|x |≤1 xλ(x)dx =

A
+

−A
−

1−α
, we have

E[eis Zn ] → e−is
A
+

−A
−

1−α = e−isa,

here the limit is the characteristic function of the constant random variable −a.
If we do not compensate the small jumps and only consider

Yn
.
=

∑n
i=1 Ki

∫ ti
ti−1

∫
|x |≤1 xdµJ

h1/α ,

hen

E[ei z
∫ ti

ti−1

∫
|x |≤1 xdµJ

] = e∆
∫
|x |≤1(ei zx

−1)λ(x)dx
,

hus, with z =
sK j
h1/α ,

E[eisYn ] =

n∏
e∆

∫
|x |≤1(ei zx

−1)λ(x)dx
,

j=1
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and each integral at exponent differs from expression (41) because the last term −zx/x1+α

here is absent here. Thus E[eisYn ] coincides with

e

∑n
j=1 ∆

⏐⏐⏐⏐ sK j
h1/α

⏐⏐⏐⏐α
⎡⎣(A

+
+A

−
)
∫

0<v≤
|s|K j
h1/α

cos(v)−1
v1+α

dv+i(A
+

−A
−

)sgn(s)
∫

0<v≤
|s|K j
h1/α

sin(v)
v1+α

dv

⎤⎦
(46)

and by Lemma 3 (i) we have
n∑

j=1

K α
j

h
∆

∫
0<v≤

|s|K j

h
1
α

cos(v) − 1
v1+α

dv → K(α)Γ (−α) cos
(πα

2

)
,

n∑
j=1

K α
j

h
∆

∫
0<v≤

|s|K j

h
1
α

sin(v)
v1+α

dv → −K(α)Γ (−α) sin
(πα

2

)
.

hus

E[eisYn ] → e
|s|αK(α)Γ (−α)

(
(A

+
+A

−
) cos( πα2 )−i sgn(s)(A

+
−A

−
) sin( πα2 )

)
:

by collecting (A
+

+ A
−

) cos
(
πα
2

)
and recalling that β =

A
+

−A
−

A
+

+A
−

and that Γ (−α) cos
(
πα
2

)
< 0,

e obtain that the above display coincides with E[eis Z1,α ], having used notation (9).
If α = 1, with ϕα(h) = h log 1

h and z j =
sK j

h log 1
h

, from (42) we have

E[eis Zn ] = e
∑n

j=1 ∆|z j |

[
(A

+
+A

−
)
∫ |z j |

0
cos(v)−1
v2 dv+i(A

+
−A

−
)sgn(z j )

∫ |z j |
0

sin(v)−v
v2 dv

]
. (47)

The exponent above is∑n
j=1 ∆K j

h log 1
h

⎡⎣|s|(A
+

+ A
−

)
∫ |s|K j

h log 1
h

0

cos(v) − 1
v2 dv+

is(A
+

− A
−

)
∫ |s|K j

h log 1
h

0

sin(v) − v

v2 dv

⎤⎦
hich is shown to tend to −is(A+ − A−)K(1) : the first integrand cos(v)−1

v2 Iv>0 is in L1(R), thus,
pplying Lemma 3 (i) we obtain that

|s|

∑n
j=1 ∆K j

h log 1
h

(A
+

+ A
−

)
∫ |s|K j

h log 1
h

0

cos(v) − 1
v2 dv → 0.

The second integral is written as∫
|z j |

0

sin(v) − v

v2 dv I|z j |≤1 +

[∫ 1

0

sin(v) − v

v2 dv +

∫
|z j |

1

sin(v)
v2 dv − log

(
|z j |

)]
I|z j |>1

(48)

here (sin(v) − v)/v2
∈ L1((0, 1)), and sin(v)

v2 Iv∈(1,+∞) ∈ L1(R). Note that if s = 0 we directly
nd that E[eis Zn ] = 1, we thus only concentrate on a fixed s ̸= 0. We have that∑n

j=1 ∆K j

h log 1

⎛⎝∫ |s|K j
h log 1

h

0

⏐⏐⏐⏐ sin(v) − v

v2

⏐⏐⏐⏐ dv I|z j |≤1 +

∫ 1

0

⏐⏐⏐⏐ sin(v) − v

v2

⏐⏐⏐⏐ dv

⎞⎠ ≤
h
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∑n
j=1 ∆K j

h
· 2
∫ 1

0

⏐⏐⏐⏐ sin(v) − v

v2

⏐⏐⏐⏐ dv
1

log 1
h

≤

∑n
j=1 ∆K j

h
C

log 1
h

→ 0,

nd ∑n
j=1 ∆K j

h log 1
h

∫ |s|K j
h log 1

h

1

sin(v)
v2 dv I|z j |>1 ≤

C

log 1
h

∑n
j=1 ∆K j

h
→ 0.

inally, recalling that K is bounded (by IA1),

−is(A
+

− A
−

)

∑n
j=1 ∆K j

h log 1
h

log

(
|s|K j

h log 1
h

)
I{

|s|K j
h log 1

h
>1

} → −is(A
+

− A
−

)K(1),

ince within∑n
j=1 K j∆

h log 1
h

[
log(|s|) + log

(
K j
)
+ log(

1
h

) − log
(

log
1
h

)]
I{

|s|K j
h log 1

h
>1

}

he first two terms are bounded in absolute value by

1
log 1

h

[∑n
j=1 |K j log(K j )|∆

h
+

C
∑n

j=1 K j∆

h

]
→ 0,

he third term converges by Lemma 3 (i):
n∑

j=1

K j

h
∆I{

|s|K j
h log 1

h
>1

} → K(1);

nd the fourth one
n∑

j=1

K j

h
∆I{

|s|K j
h log 1

h
>1

} log
(
log 1

h

)
log 1

h

→ 0.

hus the statement is proved.
If α ∈ (1, 2) we can directly use the relations in (45) In fact, from (40), where z j = s K j

ϕα (h) =

s K j
h1/α , we change variable v = |z j |x in the first integral, while in the second one we firstly
hange in y = −x , then in v = |z j |y, and we reach

|z j |
α

[
A

+

∫
|z j |

0

eiv·sgn(z j )
− 1 − iv · sgn(z j )
v1+α

dv+ (49)

A
−

∫
|z j |

0

e−iv·sgn(z j )
− 1 + iv · sgn(z j )
v1+α

dv
]
.

With g(v) =
eiv

−1−iv
v1+α Iv>0 ∈ L1(R), and ḡ its complex conjugate, the above equals

|z j |
α

(
A

+

∫
|z j |

0
g(v)Iz j>0 + ḡ(v)Iz j<0 dv + A

−

∫
|z j |

0
ḡ(v)Iz j>0 + g(v)Iz j<0 dv

)
hus

E[eis Zn ] = e
∑n

j=1 ∆

⏐⏐⏐⏐ sK j
ϕα (h)

⏐⏐⏐⏐α[Iz j>0
∫ |z j |

0 A
+

g(v)+A
−

ḡ(v) dv+Iz j<0
∫ |z j |

0 A
+

ḡ(v)+A
−

g(v)dv
]

573



C. Mancini Stochastic Processes and their Applications 163 (2023) 535–591

t

B

w
c

f
a
i

ν

t

w

With ϕα(h) = h
1
α , by Lemma 3 (i), the exponent

|s|α
∑n

j=1 ∆K α
j

h

[
Is>0

∫
|z j |

0
A

+
g(v) + A

−
ḡ(v)dv + Is<0

∫
|z j |

0
A

+
ḡ(v) + A

−
g(v)dv

]
ends to

|s|αK(α)Γ (−α)
(

Is>0

(
A

+
e−iπ α2 + A

−
eiπ α2

)
+ Is<0

(
A

+
eiπ α2 + A

−
e−iπ α2

))
.

y developing and simplifying, the above expression becomes

−|s|αK(α) c
(

1 − iβ tan
(απ

2

)
sgn(s)

)
,

here c = −Γ (−α) cos
(
απ
2

)
(A+ + A−), β =

A+−A−

A++A−
, the statement is proved and the first step

oncluded.

Second step. We come back to the small jumps of X , as described at Assumption IA3. Also
or X we look at the characteristic functions of the quantities in the statement of Lemma 4,
nd at their asymptotic behavior. Now we employ (39) and show that the contribution from X ′

s negligible, because X ′ has jump activity index less than α.
On the enlarged space

(
Ω̄ , F̄ , {F̄t }t∈[0,T ], P̄

)
we have

Ē
[

fn( J̃ )
]

= Ē
[

e
∑n

j=1 is
K j

h1/α ∆ j J̃
]

= Ē
[

e
∑n

j=1 is
K j

h1/α ∆ j X̃ e
∑n

j=1 is
K j

h1/α ∆ j X̃ ′

]
= Ē

[
fn(X̃ )gn(X̃ ′)

]
= E P

[
fn(X̃ )E Qω [gn(X̃ ′)]

]
,

where fn(X̃ ) .= e
∑n

j=1 is
K j

h1/α ∆ j X̃
, gn(X̃ ′) .= e

∑n
j=1 is

K j
h1/α ∆ j X̃ ′

and we recall that the Lévy measure
′
(
(ω,ω′), ds, dx

)
of X ′, given in (39), does not depend on ω′.

Case α > 1 : under IA3, X ′ has FV, since
∫ T

0

∫
|x |≤1 |x |λ′(s, x)dxds < ∞, thus

E Qω

⎡⎣⏐⏐⏐⏐⏐⏐
n∑

j=1

K j

h1/α∆ j X̃ ′

⏐⏐⏐⏐⏐⏐
⎤⎦ ≤

n∑
j=1

K j

h1/α E Qω
[⏐⏐⏐∆ j X̃ ′

⏐⏐⏐] :

by (2.1.36) in [6] with p = 1, and using IA3 the latter is dominated by

C
n∑

j=1

K j

h1/α

∫ t j

t j−1

∫
|x |≤1

|x |λ′(s, x)dx = C
n∑

j=1

K j∆

h
h1−1/α

→ 0,

hus, for any fixed ω,
∑n

j=1 is K j
h1/α∆ j X̃ ′ tends to 0 in probability wrt Qω, so gn(X̃ ′)

Qω
→ 1 and

we can apply Lemma 7 and conclude that

lim
n

E P
[

e
∑n

j=1 is
K j

h1/α ∆ j X̃
]

= lim
n

Ē
[

e
∑n

j=1 is
K j

h1/α ∆ j J̃
]
.

Since under P̄ the process J̃ is α-stable, the first step of this proof applies, thus

lim
n

Ē
[

e
∑n

j=1 is
K j

h1/α ∆ j J̃
]

= Ē
[
eis Z̄1,α

]
,

here Z̄1,α has under P̄ the same law as Z1,α under P̄ , so

Ē
[
eis Z̄1,α

]
= E

[
eis Z1,α

]
.
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It follows that

lim
n

E P
[

e
∑n

j=1 is
K j

h1/α ∆ j X̃
]

= E P [eis Z1,α
]
,

and (25) is proved.
Case α = 1 : now the fact that

E Qω

⎡⎣⏐⏐⏐⏐⏐⏐
n∑

j=1

K j

h1 ∆ j X̃ ′

⏐⏐⏐⏐⏐⏐
⎤⎦ ≤ C

n∑
j=1

K j

h

∫ t j

t j−1

∫
|x |≤1

|x |λ′(s, x)dx ≤ C
n∑

j=1

K j

h
∆,

allows to state that for any ω
n∑

j=1

K j

h log 1
h

∆ j X̃ ′ Qω
−→ 0,

nd again, for any ω, gn(X̃ ′)
Qω
→ 1, so by Lemma 7 we have

lim
n

E P

[
e
∑n

j=1 is
K j

h log 1
h
∆ j X̃

]
= lim

n
Ē

[
e
∑n

j=1 is
K j

h log 1
h
∆ j J̃

]
= e−is(A+−A−)K(1) ,

and (24) is proved.
If α ∈ (0, 1), the jumps of X̃ , J̃ and X̃ ′ have FV and we can separately deal with the not

compensated small jumps and the compensator. Further, now the jump activity index of X ′, by
IA3, is α′

≤ r .
Let us first consider the not compensated jumps: defining V .

=
∫

·

0

∫
|x |≤1 xdµ on Ω and

analogously V̄ on Ω̄ and V ′ on Ω ′, we have

Ē
[

fn(V̄ )
]

= Ē
[

e
∑n

j=1 is
K j

h1/α
∫ ∫

xdµJ
]

= Ē
[

fn(V )gn(V ′)
]
,

where
∫ ∫

xdµ stands for
∫ t j

t j−1

∫
|x |≤1 xdµ, fn(V ) .

= e
∑n

j=1 is
K j

h1/α
∫ ∫

xdµ and gn(V ′) .
=∑n

j=1 is
K j

h1/α
∫ ∫

xdµ′

. Using that
∫
|x |≤1 |x |

rλ′(s, x)dx ≤ C (Assumption IA3) and K r
∈ L1(R)

assumption of Lemma 4), by Lemma 8 we obtain that for all ω

gn(V ′) = e
∑n

j=1 is
K j

h1/α
∫ t j

t j−1

∫
|x |≤1 xdµ′ Qω

→ 1,

o, by Lemma 7 and the first step of this proof,

lim
n

E P
[

e
∑n

j=1 is
K j

h1/α
∫∫

xdµ
]

= lim
n

Ē
[

e
∑n

j=1 is
K j

h1/α
∫∫

xdµJ
]

= E
[
eis Z1,α

]
and the second part of (23) is proved.

We now analyze the first part of (23) directly for X . Since we just proved that, on Ω ,∑n
j=1

K j
h1/α

∫∫
xdµ

d
→ Z1,α , then

n∑ K j

h

∫∫
xdµ = h

1
α−1

·

n∑ K j

h1/α

∫∫
xdµ

P
→ 0.
j=1 j=1
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On the other hand we have
∫ t j

t j−1

∫
|x |≤1 xλ(x, v)dxdv =

∫ t j
t j−1

avdv, and av satisfies A3, thus by
emma 2, parts (1) and (4), we have∑n

j=1
K j
h

∫ t j
t j−1

∫
|x |≤1 xλ(x, v)dxdv

h
P

→ a⋆t̄ ,

herefore

n∑
j=1

K j

h
∆ j X̃ =

n∑
j=1

K j

h

[∫ t j

t j−1

∫
|x |≤1

xdµ−

∫ t j

t j−1

∫
|x |≤1

xλ(x, v)dxdv
]

P
→ −a⋆t̄ ,

and also the first part of (23) is done. □

Proof of Lemma 5. First step: the case where X is α-stable on Ω , we name it J . We show

that the Laplace transforms of either
∑n

i=1 Ki (
∫ ti

ti−1

∫
|x |≤1 xdµ)2

ψα (h) when α < 1, or
∑n

i=1 Ki (∆i J̃ )2

ψα (h) when
≥ 1, converge to the Laplace transform of the limit shown in the statement of this lemma

see [3], theorem 6.6.3 for the properties of the Laplace transforms limit). For that, since the law
ensity of J is not available in explicit form, we are going to use the characteristic function as
ollows. For a r.v. U on R with law density u(x) and for a given v > 0, it is possible to compute

E
[
e−vU2

]
=
∫
R e−vx2

u(x)dx by interpreting e−vx2
as the characteristic function E[ei xW ] of a

Gaussian random variable W , with mean 0, variance σ 2 .
= 2v and density φ(x) =

e
−

x2

2σ2

σ
√

2π
, and

o obtain E
[
e−vU2

]
only using the characteristic function of U . In fact

E
[
e−vU2

]
=

∫
R

e−vx2
u(x)dx =

∫
E[ei xW ]u(x)dx

=

∫ ∫
ei xzφ(z)dz u(x)dx =

∫
φ(z)

∫
ei xzu(x)dx dz =

∫
φ(z)E[ei zU ]dz.

We will apply this in the following way: v = v j
.
=

sK j
ψα (h) and:

· when α < 1, U = U j =
∫ ti

ti−1

∫
|x |≤1 xdµ and E[ei zU j ] = e∆

∫
|r |≤1 ei zr

−1 λ(dr )
;

· when α ∈ [1, 2), U = U j = ∆ j J̃ =
∫ ti

ti−1

∫
|x |≤1 xdµ̃ and

E[ei zU j ] = e∆
∫
|r |≤1 ei zr

−1−i zr λ(dr ).
hen

E[e−
∑n

j=1 v j U2
j ] =

n∏
j=1

E
[
e−v j U2

j
]

=

n∏
j=1

∫
R

e
−

z2

2σ2
j

σ j
√

2π
E[ei zU j ]dz, (50)

ith σ 2
j = 2v j . The latter display, with u .

=
z
σ j

, becomes

n∏∫
R

e−
u2
2

√
2π

· E[eiσ j uU j ]du. (51)

j=1
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Case α ∈ (0, 1). Let Vn
.
=

∑n
i=1 Ki (

∫ ti
ti−1

∫
|x |≤1 xdµ)2

ψα (h) , then, with s > 0, v j = sK j/ψα > 0 and

j =
√

2v j

E[e−sVn ] .= E[e−
∑n

j=1 v j U2
j ] =

n∏
j=1

∫
R

e−
u2
2

√
2π

· e∆
∫
|r |≤1 eiσ j ur

−1 λ(dr )du. (52)

Similarly as when from (40) we obtained (42) and then (46), with z =
sK j
h1/α there replaced by

σ j u =
√

2v j · u here, we have∫
|r |≤1

eiσ j ur
− 1 λ(dr ) = σ αj |u|

α(A
+

+ A
−

)
∫ σ j |u|

0

[
cos(w) − 1
w1+α

+ iβsgn(u)
sin(w)
w1+α

]
dw

.
= σ αj |u|

α

∫ σ j |u|

0
fu(w)dw .

= σ αj |u|
αg j (u), (53)

hen we are left with

E[e−sVn ] =

n∏
j=1

∫
R

e−
u2
2

√
2π

· e∆σ
α
j |u|

αg j (u)du.

By developing ey
=
∑

+∞

k=0
yk

k!
, we obtain

∏n
j=1

(
1 + θ

(n)
j

)
.
=

n∏
j=1

⎡⎢⎣∫
R

e−
u2
2

√
2π

du +

∫
R

e−
u2
2

√
2π

∆σ αj |u|
αg j (u)du +

∑
k≥2

∫
R

e−
u2
2

√
2π

∆k
(
σ αj |u|

αg j (u)
)k

k!
du

⎤⎥⎦
(54)

e are now going to show that

(c1) ∀ j = 1, . . . , n, θ (n)
j → 0 and max j=1,...,n |θ

(n)
j | → 0

(c2)
∑n

j=1 |θ
(n)
j | ≤ M < ∞

(c3)
∑n

j=1 θ
(n)
j → θ,

here M does not depend on n, and

θ
.
= s

α
2 2αK(α/2)(A+ + A

−
)Γ
(
α + 1

2

)
1

√
π
Γ (−α) cos

(πα
2

)
< 0.

hat allows to conclude ([3], lemma at p.199) that

E[e−sVn ] =

n∏
j=1

(
1 + θ

(n)
j

)
→ eθ ,

which is the Laplace transform of the law of the Z2,α in the notations, and the stated result
follows.
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Let us now evaluate the numbers θ (n)
j . Denoted

θ
(n)
j,1

.
=

∫
R

e−
u2
2

√
2π

· ∆σ αj |u|
αg j (u)du (55)

=

∫
R+

e−
u2
2

√
2π

· ∆σ αj uα(A+ + A−)
∫ σ j u

0

[
cos(w) − 1
w1+α

+ iβ
sin(w)
w1+α

]
dwdu

+

∫
R−

e−
u2
2

√
2π

· ∆σ αj (−u)α(A+ + A−)
∫ σ j ·(−u)

0

[
cos(w) − 1
w1+α

− iβ
sin(w)
w1+α

]
dwdu,

(56)

by changing variable y = −u, the second integral in du becomes∫
R+

e−
y2
2

√
2π

· ∆σ αj yα(A+ + A−)
∫ σ j y

0

cos(w) − 1
w1+α

− iβ
sin(w)
w1+α

dwdy :

y renaming u the variable y of the latter integral, in (56) the sin function simplifies, and we
btain

θ
(n)
j,1 = 2

∫
R+

e−
u2
2

√
2π

· ∆σ αj uα(A+ + A−)
∫ σ j u

0

cos(w) − 1
w1+α

dwdu. (57)

We preliminarily show that

(c4)
∑n

j=1 θ
(n)
j,1 → θ

(c5)
∑n

j=1 |θ
(n)
j − θ

(n)
j,1| → 0.

Note that the function e−
u2
2

√
2π

|u|
αk is in L1(R) for any integer k, with∫

R+

e−
u2
2 |u|

αkdu = 2
αk−1

2 Γ

(
αk + 1

2

)
. (58)

As for (c4), using the notation in (53), Lemma 3 (iii), (43) and (58) and with σ j =
√

2v j =

2 sK j
ψα (h) we have that

∑n
j=1 θ

(n)
j,1 coincides with

n∑
j=1

∆σ αj

∫
R

e−
u2
2

√
2π

|u|
αg j (u)du = s

α
2 2

α
2

n∑
j=1

K
α
2
j ∆

h

∫
R

e−
u2
2

√
2π

|u|
α

∫ σ j |u|

0
f (w)dwdu

= s
α
2 2

α
2

n∑
j=1

K
α
2
j ∆

h
2(A+ + A

−
)
∫
R+

e−
u2
2

√
2π

|u|
α

∫ σ j |u|

0

cos(w) − 1
w1+α

dvdu → θ. (59)

As for (c5), since for all j = 1, . . . , n, |g j (u)| ≤ C
∫
R+

|cos(w)−1|

w1+α +
| sin(w)|
w1+α dw < ∞, g j (u)

is bounded uniformly in j and u, thus we have that
∑n

j=1 |θ
(n)
j − θ

(n)
j,1| is dominated by

n∑
j=1

∑
k≥2

∫
R

e−
u2
2

√
2π

·

∆k
(

Cσ αj |u|
α
)k

k!
du =

n∑
j=1

∑
k≥2

Ck
(
∆

h

)k 2
αk
2 K

αk
2

j

k!
2
αk−1

2 Γ

(
αk + 1

2

)
,

(60)
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where the term s
α
2 within σ j has been included into C , because s is fixed. Since the kernel K

s bounded, the above is dominated by(
∆

h

)2

n
∑
k≥2

(
∆

h

)k−2

Ck 2αk−
1
2

k!
Γ

(
αk + 1

2

)
. (61)

ince for large n we have ∆/h < 1, in the series above, for sufficiently small ∆ and large k,
e have

ak+1

ak
=

C
k + 1

∆

h
Γ
(
αk+α+1

2

)
Γ
(
αk+1

2

) =
C

k + 1
∆

h
αk + α + 1

2
Γ
(
αk+α−1

2

)
Γ
(
αk+1

2

)
<

C
k + 1

∆

h
αk + α + 1

2
<

C
k + 1

∆

h

(
k
2

+ 1
)
< C

∆

h
< 1,

ecause 0 < α < 1 and for large k the argument of the Gamma function is positive, so the
unction is increasing. Thus by the quotient criterion the series is absolutely convergent, and
61) is O

(
∆
h2

)
, therefore it tends to 0, and (c5) is verified.

It follows that, since θ (n)
j,1 = ∆σ αj

∫
R

e−
u2
2

√
2π

|u|
αg j (u)du, where σ αj ≤ C K (0)

α
2

h and g j (u) is

uniformly bounded, thus |θ
(n)
j,1| ≤ C∆/h uniformly in j , and

max
j=1,...,n

|θ
(n)
j | ≤ max

j=1,...,n
|θ

(n)
j − θ

(n)
j,1| + max

j=1,...,n
|θ

(n)
j,1| ≤

n∑
j=1

|θ
(n)
j − θ

(n)
j,1| + C

∆

h
= O

(
∆

h2

)
nd thus tends to 0, which solves (c1).

As for (c2), using again Lemma 3 (iii), we have that
∑n

j=1 |θ
(n)
j,1| is dominated by

n∑
j=1

σ αj ∆

∫
R
Ψ (u)|g j (u)|du ≤ C

n∑
j=1

K
α
2
j

h
∆

∫
R
Ψ (u)

∫
|u|

√
2|s|K j
h2/α

0
| f (w)|dw du → C,

hus using also that (60) is O(∆/h2) we reach
n∑

j=1

|θ
(n)
j | ≤

n∑
j=1

|θ
(n)
j − θ

(n)
j,1| +

n∑
j=1

|θ
(n)
j,1| ≤ C

∆

h2 + C ≤ M.

Finally (c3) follows directly from (c4) and (c5).
Case α ∈ [1, 2). Let now Ṽn

.
=

∑n
i=1 Ki (∆i J̃ )2

ψα (h) , then, with v j = sK j/ψα > 0,

E[e−sṼn ] = E[e−
∑n

j=1 v j U2
j ] =

n∏
j=1

∫
R

e−
u2
2

√
2π

· e∆
∫
|r |≤1 eiσ j ur

−1−iσ j ur λ(dr )du.

he integral in λ(dr ) is given by∫ 1

0
(A

+
+ A

−
)
cos(σ j ur ) − 1

r1+α
+ i(A

+
− A

−
)
sin(σ j ur ) − σ j ur

r1+α
dr =

σ αj |u|
α

∫ σ j |u|

(A
+

+ A
−

)
cos(w) − 1

+ i(A
+

− A
−

)sgn(u)
sin(w) − w

dw .
= σ αj |u|

α g̃ j (u).

0 w1+α w1+α

579



C. Mancini Stochastic Processes and their Applications 163 (2023) 535–591

a
t

w
o
f

w

t

T

Thus

E[e−sṼn ] =

n∏
j=1

∫
R

e−
u2
2

√
2π

· e∆σ
α
j |u|

α g̃ j (u)du

=

n∏
j=1

⎛⎜⎝1 +

∑
k≥1

∫
R

e−
u2
2

√
2π

·

(
∆σ αj |u|

α g̃ j (u)
)k

k!
du

⎞⎟⎠ .
=

n∏
j=1

(
1 + θ̃

(n)
j

)
. (62)

Again, we show that θ̃ (n)
j,1

.
=
∫
R

e−
u2
2

√
2π

·∆σ αj |u|
α g̃ j (u)du turns out to be the leading term of θ̃ (n)

j ,

nd that the conditions (c1) to (c5) above are satisfied also for θ̃ (n)
j , which allows to conclude

he proof. Note that for any α ∈ [1, 2), similarly as from (55) to (57),

θ̃
(n)
j,1 = 2

∫
R+

e−
u2
2

√
2π

· ∆σ αj uα
∫ σ j u

0
(A

+
+ A

−
)
cos(w) − 1
w1+α

dwdu,

hich is the same expression as θ (n)
j,1 in (57), thus

∑n
j=1 θ̃

(n)
j,1 coincides exactly with the left part

f the last line in (59). By Lemma 3 (iii), using (58) and the relations in (43) we obtain that
or α = 1 then

∑n
j=1 θ̃

(n)
j,1 → θ̃

.
= −s

α
2 2α−1√πK(α/2)(A+ + A

−
)Γ
(
α+1

2

)
, while for α ∈ (1, 2)

then
∑n

j=1 θ̃
(n)
j,1 → θ , and a condition of type (c4) is satisfied in any case.

As for (c5), we need to bound differently |θ̃
(n)
j − θ̃

(n)
j,1| in the two cases α = 1, α ∈ (1, 2).

If α = 1, splitting as in (48), we write

g̃ j (u) = (A
+

+ A
−

)
∫ σ j |u|

0

cos(w) − 1
w2 dw + i(A

+
− A

−
)sgn(u)

∫ σ j |u|

0

sin(w) − w

w2 dw Iσ j |u|≤1

+ i(A
+

− A
−

)sgn(u)
[∫ 1

0

sin(w) − w

w2 dw +

∫ σ j |u|

1

sin(w)
w2 dw − log

(
σ j |u|

)]
Iσ j |u|>1,

here log
(
σ j |u|

)
=

1
2 log (2s)+

1
2 log

(
K j
)
+ log

( 1
h

)
+ log (|u|), thus

g̃ j (u) .= ℓ j (u) − i(A
+

− A
−

)sgn(u)
[

1
2

log
(
K j
)
+ log

(
1
h

)
+ log (|u|)

]
Iσ j |u|>1,

where ℓ j (u) is uniformly bounded in j and u. Using that |u log(|u|)| ≤ |u|
2 I|u|>1 +

1
e I0<|u|<1,

hen for any triplet of positive quantities A1, A2, A3 with A = A1 + A2 + A3, we have

|u|
k [A + | log |u||

]k
≤ |u|

k2k [Ak
+ | log |u||

k]
= 2k

(
|u|

k Ak
+ (|u log |u||)k

)
≤

2k
(
|u|

k Ak
+ (u2

+ C)k
)

≤ 8k
(
|u|

k(Ak
1 + Ak

2 + Ak
3) + u2k

+ Ck
)
.

hus ⏐⏐⏐θ̃ (n)
j − θ̃

(n)
j,1

⏐⏐⏐ ≤

∑
k≥2

∆k

hk Ck
K

k
2
j

k!

∫
R

e−
u2
2

√
2π

|u|
k
[

C + | log
(
K j
)
| + log

(
1
h

)
+ | log |u||

]k

du

≤

∑
k≥2

∆k

hk Ck
K

k
2
j

k!
· 2
∫
R+

e−
u2
2

√
2π

[
ukCk

+ uk
| log

(
K j
)
|
k

+ uk logk
(

1
h

)
+ u2k

+ Ck
]

du :

similarly as above,

∑
Ck ∆

k

hk

K
k
2
j

k!

∫
R

e−
u2
2

√
2π

ukdu =
∆2

h2

∑
Ck ∆

k−2

hk−2

K
k
2
j

k!

∫
R

e−
u2
2

√
2π

ukdu = O
(
∆2

h2

)
,

k≥2 + k≥2 +
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∑
k≥2

Ck ∆
k

hk

K
k
2
j

k!

∫
R+

e−
u2
2

√
2π

u2kdu = O
(
∆2

h2

)
,

∑
k≥2

Ck ∆
k

hk

K
k
2
j

k!
= O

(
∆2

h2

)
;

ince
√

K | log(K )| is bounded, also

∑
k≥2

∆k

hk
Ck

(
K

1
2
j | log

(
K j
)
|

)k

k!

∫
R+

e−
u2
2

√
2π

ukdu = O
(
∆2

h2

)
.

Finally,

∑
k≥2

(
∆ log

( 1
h

)
h

)k

Ck
K

k
2
j

k!

∫
R+

e−
u2
2

√
2π

ukdu = O

⎛⎝(∆ log
( 1

h

)
h

)2
⎞⎠ ,

hus
∑n

j=1

⏐⏐⏐θ̃ (n)
j − θ̃

(n)
j,1

⏐⏐⏐ = O
(

∆ log2
(

1
h

)
h2

)
→ 0, and (c5) for θ̃ (n)

j is proved.

Thus (c1), (c2) and (c3) for θ̃ (n)
j follow analogously as for θ (n)

j .

If α ∈ (1, 2), due to (45), g̃ j (u) is uniformly bounded in j and u, thus
∑n

j=1

⏐⏐⏐θ̃ (n)
j − θ̃

(n)
j,1

⏐⏐⏐ is

ealt exactly as in (60), thus it is O
(

∆
h2

)
→ 0, and (c5) is done. From (c4) and (c5) then the

properties (c1) to (c3) again follow as above, and now the proof of the first step is complete.

Second step. We use (39). α ∈ (0, 1) :

Ē
[

fn(V̄ )
] .

= Ē
[

e
−s

∑n
j=1

K j
h2/α (

∫ t j
t j−1

∫
|x |≤1 xdµJ )2

]
= Ē

[
fn(V )gn(V ′)

]
,

where

fn(V ) .= e
−s

∑n
j=1

K j
h2/α (

∫ t j
t j−1

∫
|x |≤1 xdµ)2

, (63)

gn(V ′) .= e
∑n

j=1
K j

h2/α

(∫ t j
t j−1

∫
|x |≤1 xdµ′

)2
−2s

∑n
j=1

K j
h2/α

∫ t j
t j−1

∫
|x |≤1 xdµ

∫ t j
t j−1

∫
|x |≤1 xdµ′

.

We are going to apply Lemma 7, so it is sufficient we check that for all ω, gn(ω, V ′)
Qω
→ 1.

e start by showing that

n∑
j=1

K j

h
2
α

(∫ t j

t j−1

∫
|x |≤1

xdµ′

)2
Qω

−→ 0. (64)

n fact we pick γ ∈
( r

2 ,
α
2

)
, so γ < 1 and we can say

E Qω

⎡⎣⏐⏐⏐⏐⏐⏐
n∑

j=1

K j

h
2
α

(∫ t j

t j−1

∫
|x |≤1

xdµ′

)2
⏐⏐⏐⏐⏐⏐
γ⎤⎦ ≤

n∑
j=1

K γ

j

h
2γ
α

E Qω

⎡⎣⏐⏐⏐⏐⏐
∫ ti

ti−1

∫
|x |≤1

xdµ′

⏐⏐⏐⏐⏐
2γ
⎤⎦ , (65)

moreover 2γ < 1 and we can apply (2.1.40) in [6] and upper bound with
n∑ K γ

j
2γ
α

E Qω

[∫ t j

t

∫
|x |≤1

|x |
2γλ′(s, x)dxds

]
.

j=1 h j−1

581



C. Mancini Stochastic Processes and their Applications 163 (2023) 535–591

b

s

b

s
a

w

w

Since 2γ > r it follows from IA3 that
∫
|x |≤1 |x |

2γλ′(s, x)dx ≤ C , and then the above is upper
ounded by

C
n∑

j=1

K γ

j ∆

h
· h1−

2γ
α → 0,

ince 2γ /α < 1. Thus (64) is proved. From it we obtain that for all ω
n∑

j=1

K j

h2/α

∫ t j

t j−1

∫
|x |≤1

xdµ
∫ t j

t j−1

∫
|x |≤1

xdµ′ Qω
−→ 0,

ecause, with
∫ ∫

understanding
∫ t j

t j−1

∫
|x |≤1,

⏐⏐⏐⏐⏐⏐
n∑

j=1

√
K j

h2/α

∫ ∫
xdµ

√
K j

h2/α

∫ ∫
xdµ′

⏐⏐⏐⏐⏐⏐ ≤

√ n∑
j=1

K j

h2/α

(∫ ∫
xdµ

)2
√ n∑

j=1

K j

h2/α

(∫ ∫
xdµ′

)2

,

o for all ω the above display tends to 0 in Qω-probability, and thus gn(V ′)
Qω
→ 1. We now can

pply Lemma 7 to (63) and obtain

E P [e−s Z2,α
]

= lim
n

Ē
[

e−s
∑n

j=1
K j

h2/α

(∫ ∫
xdµJ

)2]
= lim

n
E P

[
e−s

∑n
j=1

K j
h2/α (

∫ ∫
xdµ)

2
]
,

hich concludes the proof of (26).
α = 1 : we have

Ē
[

fn( J̃ )
]

= Ē
[

e−s
∑n

j=1
K j

h2/α (∆ j J̃)
2
]

= Ē
[

fn(X̃ )gn(X̃ ′)
]

(66)

where

fn(X̃ ) .= e−s
∑n

j=1
K j

h2/α (∆ j X̃)
2

, gn(X̃ ′) .= e−s
∑n

j=1
K j

h2/α (∆ j X̃ ′)
2
−2s

∑n
j=1

K j
h2/α ∆ j X̃∆ j X̃ ′

and again we show that for all ω, gn(X̃ ′)
Qω
→ 1 and apply Lemma 7. Since r < 1,

E Qω

⎡⎢⎣
⏐⏐⏐⏐⏐⏐

n∑
j=1

K j

h2

(
∆ j X̃ ′

)2

⏐⏐⏐⏐⏐⏐
r
2
⎤⎥⎦ ≤

n∑
j=1

K
r
2
j

hr
E Qω

[⏐⏐⏐∆ j X̃ ′

⏐⏐⏐r] (67)

≤ C
n∑

j=1

K
r
2
j

hr
∆ = C

n∑
j=1

K
r
2
j ∆

h
· h1−r

→ 0.

Further, for all ω⏐⏐⏐⏐⏐⏐
n∑

j=1

√
K j

h2 ∆ j X̃

√
K j

h2 ∆ j X̃ ′

⏐⏐⏐⏐⏐⏐ ≤

√ n∑
j=1

K j

h2

(
∆ j X̃

)2

√ n∑
j=1

K j

h2

(
∆ j X̃ ′

)2 Qω
→ 0. (68)

By Lemma 7 we obtain

E P [e−s Z2,α
]

= lim
n

Ē
[

e−s
∑n

j=1
K j

h2/α (∆ j J̃)
2
]

= lim
n

E P
[

e−s
∑n

j=1
K j

h2/α (∆ j X̃)
2
]
,

hich concludes the proof of (27).
582



C. Mancini Stochastic Processes and their Applications 163 (2023) 535–591

I
2

S
b

S

A

w

P

a

a

A

α > 1 : consider again (66), and repeat a similar reasoning as above. We have
n∑

j=1

K j

h
2
α

(
∆ j X̃ ′

)2 Qω
−→ 0. (69)

n fact we pick γ ∈ ( 1
2 ,

α
2 ), so that the conditions we need below are ensured: K γ

∈ L1(R);
γ ∈ (1, 2); 1 − 2γ /α > 0. Since γ < 1, we obtain

E Qω

⎡⎣⏐⏐⏐⏐⏐⏐
n∑

j=1

K j

h
2
α

(
∆ j X̃ ′

)2

⏐⏐⏐⏐⏐⏐
γ⎤⎦ ≤

n∑
j=1

K γ

j

h
2γ
α

E Qω

[⏐⏐⏐∆ j X̃ ′

⏐⏐⏐2γ] . (70)

Since 2γ ∈ (1, 2) we can apply (2.1.36) in [6] and upper bound with
n∑

j=1

K γ

j

h
2γ
α

E Qω

[∫ t j

t j−1

∫
|x |≤1

|x |
2γλ′(s, x)dxds

]
ince 2γ > 1 then

∫
|x |≤1 |x |

2γλ′(s, x)dx ≤
∫
|x |≤1 |x |λ′(s, x)dx ≤ C , and the above is bounded

y

C
n∑

j=1

K γ

j ∆

h
· h1−2γ /α

→ 0.

imilarly as in (68), from (69) it follows that for all ω
n∑

j=1

K j

h2/α∆ j X̃∆ j X̃ ′ Qω
−→ 0. (71)

gain, Lemma 7 applies to (66), and gives

E P [e−s Z2,α
]

= lim
n

Ē
[

e−s
∑n

j=1
K j

h2/α (∆ j J̃)
2
]

= lim
n

E P
[

e−s
∑n

j=1
K j

h2/α (∆ j X̃)
2
]
,

hich concludes the proof of (28). □

roof of Lemma 6. First step: X is an α stable process, and we name it J = J̃ + J 1, where
J̃ =

∫
·

0

∫
|x |≤1 xdµ̃, J 1

=
∫

·

0

∫
|x |>1 xdµ. We write ∆i J = ∆i A +∆ · B, where A is self-similar,

nd B is a constant:

At
.
=

∫ t

0

∫
R

xdµ̃, B .
=

∫
|x |>1

xλ(x)dx < ∞,

nd proceed through the following steps:
(1) due to the negligibility of the contribution of the terms ∆B and ∆i J 1, we show that a.s.

(∑n
i=1 Ki∆i J

h
1
α

)2

≃

(∑n
i=1 Ki∆i A

h
1
α

)2

,

∑n
i=1 Ki

(
∆i J

)2

h
2
α

≃

∑n
i=1 Ki

(
∆i A

)2

h
2
α

(72)

fter that, it is sufficient to prove the convergence in distribution of⎛⎜⎝
(∑n

i=1 Ki∆i A
)2

h
2
α

,

∑n
i=1 Ki (∆i A)2

h
2
α

⎞⎟⎠ .

583



C. Mancini Stochastic Processes and their Applications 163 (2023) 535–591

i

w

s
(

l
a
j
t

(2) We develop(∑n
i=1 Ki∆i A

)2

h
2
α

=

∑n
i=1

(
Ki∆i A

)2

h
2
α

+

∑
i, j=1..n:i ̸= j Ki K j∆i A∆ j A

h
2
α

and we show that, since A+ = A− then
∑

i ̸= j Ki K j∆i A∆ j A

h
2
α

P
→ 0, so the stated limit in distribution

s the same as for⎛⎜⎝
∑n

i=1

(
Ki∆i A

)2

h
2
α

,

∑n
i=1 Ki (∆i A)2

h
2
α

⎞⎟⎠
(3) Again by the negligibility of the contribution of the terms ∆B and ∆i J 1, we show that∑n

i=1

(
Ki∆i A

)2

h
2
α

≃

∑n
i=1

(
Ki∆i J̃

)2

h
2
α

,

∑n
i=1 Ki

(
∆i A

)2

h
2
α

≃

∑n
i=1 Ki

(
∆i J̃

)2

h
2
α

, (73)

then we only have to deal with⎛⎜⎝
∑n

i=1

(
Ki∆i J̃

)2

h
2
α

,

∑n
i=1 Ki (∆i J̃ )2

h
2
α

⎞⎟⎠ .
(4) For s1, s2 > 0 we show that as n → +∞

Ln(s1, s2) .= E

⎡⎢⎣e
−s1

∑n
i=1

(
Ki∆i J̃

)2

h
2
α

−s2

∑n
i=1 Ki (∆i J̃ )2

h
2
α

⎤⎥⎦ → E
[
e−s1 Z2

1,α−s2 Z2,α
]
.
= L∞(s1, s2),

hich concludes the proof of the first step.
Let us start by (1). We proceed through 5 small substeps. The first asymptotic equality to be

hown follows immediately after substep (1.1), while the second one follows after (1.5), from
1.2) and (1.5). Substeps (1.3), (1.4) are needed to conclude the validity of (1.5).

(1.1) We have
∑n

i=1 Ki∆B

h
1
α

= B
∑n

i=1 Ki∆

h h1−
1
α → 0. From this we obtain∑n

i=1 Ki∆i J

h
1
α

≃

∑n
i=1 Ki∆i A

h
1
α

,

and the first relation at (72) follows.
(1.2) It holds

∑n
i=1 Ki∆

2 B2

h
2
α

= B2
∑n

i=1 Ki∆

h
∆
h h2−

2
α → 0.

(1.3) We show here that
∑n

i=1 Ki∆i J 1

h
1
α

P
→ 0. Note that a.s., if on [0, T ] no jumps with size

arger in absolute value than 1 occurred, then for all n we have ∆i J 1
= 0 for all i , then for

ll n we have
∑n

i=1 Ki∆i J
h1/α = 0, and the limit is 0. By contrast, for the paths where some big

umps occurred, recalling that P{∆J 1
t̄ ̸= 0} = 0, for the convergence in distribution stated in

he lemma we can focus on those ω where there is no big jump at t̄ . For any fixed ω such that
∆J 1

= 0, using the notation at the proof of Lemma 1, part (b), and recalling that J 1 has FA
t̄
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w
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t
i

jumps and that minp |t̄ − Sp| is a fixed quantity, then∑n
i=1 Ki∆i J 1

h
1
α

≃

K
(

minp |t̄−Sp |

h

)
h

1
α

:

y assumption K
(

minp |t̄−Sp |

h

)
= o(h), and since α > 1 then h = o(h

1
α ), thus the above display

ends a.s. to 0, as stated.
(1.4) We now show that

∑n
i=1 Ki∆i A

h
1
α

d
→ Z1,α . In fact∑n

i=1 Ki∆i A

h
1
α

=

∑n
i=1 Ki∆i J̃

h
1
α

+

∑n
i=1 Ki∆i J 1

h
1
α

−

∑n
i=1 Ki∆B

h
1
α

(74)

nd by (1.1), (1.3) and Lemma 4 we have the stated convergence in distribution.
(1.5) We show that

∑n
i=1 Ki∆i A∆B

h
2
α

P
→ 0,. In fact∑n

i=1 Ki∆i A∆B

h
2
α

= B
∑n

i=1 Ki∆i A

h
1
α

∆

h
h1−

1
α ,

nd we apply (1.4).
At this point the second relation at (72) follows from∑n

i=1 Ki (∆i J )2

h
2
α

=

∑n
i=1 Ki (∆i A)2

h
2
α

+

∑n
i=1 Ki∆

2 B2

h
2
α

+ 2
∑n

i=1 Ki∆i A∆B

h
2
α

,

1.2) and (1.5).
As for (2), for any η > 0 we have

P

{
|
∑

i, j :i ̸= j Ki∆i AK j∆ j A|

h
2
α

> η

}
= P

{
|
∑

i, j :i ̸= j Ki∆
1
α A1i K j∆

1
α A1 j |

h
2
α

> η

}
,

here, by selfsimilarity, each ∆i A has the same distribution as ∆
1
α A1, and since ∆i A and

j A are independent, ∆i A∆ j A d
= ∆

2
α A1i A1 j , where A1i , A1 j are independent copies of A1.

Now, as in [5], we localize the space Ω in such a way that, on any considered stochastic
interval, process A has bounded jumps. Namely, for any M > 0 we take TM (ω) such that
for any t ≤ TM we have |∆At (ω)| ≤ M . Since A has jumps in R, then a.s. TM

P
→ +∞ as

M → ∞ (a.s. TM (ω) is increasing with M , then the sequence has a limit. If the limit was
ℓ(ω) < ∞ then |∆Aℓ(ω)(ω)| > M for any M , thus |∆Aℓ(ω)(ω)| = +∞). In this way the second
moment of At∧TM is finite, and we write the above display as

P

{
|
∑

i, j :i ̸= j Ki∆
1
α A1i K j∆

1
α A1 j |

h
2
α

> η, TM ≤ 1

}
+

P

{
|
∑

i, j :i ̸= j Ki∆
1
α A1i K j∆

1
α A1 j |

h
2
α

> η, TM > 1

}
:

he first term is dominated by P {TM ≤ 1} which tends to 0 as M → ∞, while the second one
s dominated by

1
η2 E

⎡⎣(∑n
i=1
∑

j : j ̸=i Ki K j∆
2
α A1i A1 j

h
2
α

)2

ITM>1

⎤⎦ .
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On {TM > 1} the variables A1i , A1 j have jumps bounded by M , and, since A+ = A−, the
compensator of the big jumps (the jumps bigger than 1 in absolute value) is null. Thus, on
{TM > 1}, A1i , A1 j can be written as copies of Ā1

.
=
∫ 1

0

∫
|x |≤M xdµ̃, and the above display is

bounded from above by

1
η2 E

⎡⎣(∑n
i=1
∑

j : j ̸=i Ki K j∆
2
α Ā1i Ā1 j

h
2
α

)2⎤⎦ =

1
η2

∑n
i=1
∑

j : j ̸=i K 2
i K 2

j ∆
4
α E[ Ā2

1i Ā2
1 j ]

h
4
α

+

1
η2

N
∑

i, j,ℓ,m:(i, j)̸=(ℓ,m) ∆
4
α Ki K j KℓKm E[ Ā1i Ā1 j Ā1ℓ Ā1m]

h
4
α

,

here N = n
∑n−2

j=1 j + ((n −1)2
−1)

∑n−1
j=1 j , and within each term Ā1i Ā1 j Ā1ℓ Ā1m at least one

ncrement is raised to power 1 only. Since for i ̸= j the variables Ā1i , Ā1 j are independent,
ave the same law and are centered, the second term in the above display is 0, while in the
rst term E[ Ā2

1i Ā2
1 j ] = E2[ Ā2

1i ] = C < ∞, so we remain with

C

∑n
i=1
∑

j : j ̸=i K 2
i K 2

j ∆
4
α

h
4
α

= C

∑n
i=1
∑

j : j ̸=i K 2
i K 2

j ∆
2

h2

(
∆

h

) 4
α−2

:

by Lemma 2, point (6), since 4/a > 2, the latter term tends to 0 as n → 0.
As for (3), firstly note that it is sufficient to show the second asymptotic equality, because

the first one can be dealt with in the same way with K 2
i in place of Ki .

Secondly, given the asymptotic equality in (72), right side, it is sufficient to show that∑n
i=1 Ki

(
∆i J

)2

h
2
α

=

∑n
i=1 Ki

(
∆i J̃

)2

h
2
α

+ 2
∑n

i=1 Ki∆i J̃∆i J 1

h
2
α

+

∑n
i=1 Ki

(
∆i J 1

)2

h
2
α

≃

∑n
i=1 Ki

(
∆i J̃

)2

h
2
α

.

Now, similarly as for (1.3), a.s.∑n
i=1 Ki

(
∆i J 1

)2

h
2
α

≃

K 2
(

minp=1,...,NT |t̄−Sp |

h

)
h

2
α

→ 0,

hus also

∑n
i=1

√
Ki∆i J̃

√
Ki∆i J 1

h
2
α

≤

√∑n
i=1 Ki

(
∆i J̃

)2

h
2
α

√∑n
i=1 Ki

(
∆i J 1

)2

h
2
α

→ 0,

ecause by Lemma 5 the first factor converges in distribution.
As for (4), we have

Ln(s1, s2) = E

[
e−

∑n
i=1

s1 K 2
i +s2 Ki
h2/α (∆i J̃ )2

]
=

n∏
E
[
e−ui (∆i J̃ )2

]
,

i=1
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w

t∑

a

w

c

having set ui
.
=

s1 K 2
i +s2 Ki
h2/α > 0. The above display is the same as in (50), with ui in

lace of v j =
sK j
h2/α , ∆i J̃ in place of U j and (σi )α = (2ui )

α
2 =

2
α
2 (s1 K 2

i +s2 Ki )
α
2

h in place of

σ j )α = (2v j )
α
2 =

(2sK j )
α
2

h . Thus (51) applies, and proceeding similarly as in the proof of
emma 5 for the case α > 1, we obtain that the above display coincides with the last term in

(62), i.e.

n∏
i=1

E
[
e−ui (∆i J̃ )2

]
=

n∏
j=1

(
1 + θ̃

(n)
i

)
,

where within each

θ̃
(n)
i,1 = 2∆σ αi

∫
R+

e−
u2
2

√
2π

· uα
∫ σi u

0
(A

+
+ A

−
)
cos(v) − 1
v1+α

dvdu

e have to plug in the value of σi which is pertinent here. Since

n∑
i=1

∆σ αi ≃ 2
α
2

∫ T

0
[s1 K 2

r + s2 Kr ]
α
2

dr
h

= 2
α
2

∫ t̄
h

t̄−T
h

[s1 K 2(u) + s2 K (u)]
α
2 du

ends to 2
α
2
∫
R[s1 K 2(u) + s2 K (u)]

α
2 du then, similarly as for Lemma 3, part (iii), we have that

n
i=1 θ̃

(n)
i,1 tends to

2 · 2
α
2

∫
R

[s1 K 2(u) + s2 K (u)]
α
2 du ·

2
α−1

2
√

2π
Γ

(
α + 1

2

)
· (A

+
+ A

−
)Γ (−α) cos

(πα
2

)
nd, similarly as in Lemma 5,

n∏
j=1

(
1 + θ̃

(n)
i

)
≃

n∏
j=1

(
1 + θ̃

(n)
i,1

)
→ eθ .= L∞(s1, s2), (75)

here

θ
.
=

2α
√
π

(A
+

+ A
−

)Γ
(
α + 1

2

)
Γ (−α) cos

(πα
2

) ∫
R

[s1 K 2(u) + s2 K (u)]
α
2 du.

The function L∞ is the Laplace transform of a probability law (because L∞(0, 0) = 1 and
the function is continuous at (0,0)), and we see that it is the one of a proper joint law having
marginals Z2

1,α and Z2,α . In fact, with s2 = 0 we have

e
2α√
π

(A
+

+A
−

)Γ
(
α+1

2

)
Γ (−α) cos( πα2 )

∫
R[s1 K 2(u)]

α
2 du

= L∞(s1, 0)

= lim
n

Ln(s1, 0) = lim
n

E

[
e−s1

∑n
i=1(Ki∆i J̃ )2

h2/α

]
:

∑n
i=1(Ki∆i J̃ )2

h2/α

d
≃

(∑n
i=1 Ki∆i J̃

h1/α

)2
, as we saw above at (2), and, by Lemma 4, the latter term

onverges in distribution to Z2 .
1,α

587



C. Mancini Stochastic Processes and their Applications 163 (2023) 535–591

w

W

F

H

a
n
t

On the other hand, with s1 = 0 we have

e
2α√
π

(A
+

+A
−

)Γ
(
α+1

2

)
Γ (−α) cos( πα2 )

∫
R[s2 K (u)]

α
2 du

= L∞(0, s2)

= lim
n

Ln(0, s2) = lim
n

E

[
e−s2

∑n
i=1 Ki (∆i J̃ )2

h2/α

]

and, by Lemma 5,
∑n

i=1 Ki (∆i J̃ )2

h2/α
d

→ Z2,α . Thus L∞ describes a specific joint law of
(
Z2

1,α, Z2,α
)
.

Second step. Let us now consider a process X as in IA3. Again we refer to (39) and use
that J = X + X ′ is a Levy stable process on Ω̄ . Since the contribution of X1 is negligible then

e have⎛⎜⎝
(∑n

i=1 Ki∆i X
)2

h
2
α

,

∑n
i=1 Ki (∆i X )2

h
2
α

⎞⎟⎠ d
≃

⎛⎜⎝
(∑n

i=1 Ki∆i X̃
)2

h
2
α

,

∑n
i=1 Ki (∆i X̃ )2

h
2
α

⎞⎟⎠ .
e now show that∑

i, j :i ̸= j Ki∆i X̃ K j∆ j X̃

h
2
α

P
→ 0. (76)

irstly, the processes J = J̃ + J 1, B, A mentioned at point (2) of the first step are now an α-
stable process, the compensator the big jumps, and a self-similar α-stable process on Ω̄ . Thus,
by point (2) of the first step,∑

i, j :i ̸= j Ki∆i J̃ K j∆ j J̃

h
2
α

≃

∑
i, j :i ̸= j Ki∆i A K j∆ j A

h
2
α

P̄
→ 0.

owever now ∆i J̃ = ∆i X̃ + ∆i X̃ ′, thus the left side above is∑
i, j :i ̸= j Ki∆i J̃ K j∆ j J̃

h
2
α

=

∑
i, j :i ̸= j Ki∆i X̃ K j∆ j X̃

h
2
α

+

∑
i, j :i ̸= j Ki∆i X̃ ′K j∆ j X̃ ′

h
2
α

+

∑
i, j :i ̸= j Ki∆i X̃ ′K j∆ j X̃

h
2
α

+

∑
i, j :i ̸= j Ki∆i X̃ K j∆ j X̃ ′

h
2
α

,

nd we show that the last 3 terms tend to 0 in P̄-probability, therefore also the first one
ecessarily does. The process X ′ has finite variation and on Ω ′ has independent increments,
hus for any ω we have E Qω

[
|∆i X̃ ′∆ j X̃ ′

|

]
= E Qω

[
|∆i X̃ ′

|

]
E Qω

[
|∆ j X̃ ′

|

]
≤ ∆2C , where C

is independent on ω by IA3 when α > 1, therefore

E Qω

[
|
∑

i, j :i ̸= j Ki∆i X̃ ′K j∆ j X̃ ′
|

h
2
α

]
≤

∑
i, j :i ̸= j Ki K j E Qω

[
|∆i X̃ ′∆ j X̃ ′

|

]
h

2
α

≤ C

∑
i, j :i ̸= j Ki K j∆

2

h2 h2−
2
α → 0.
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Thus

Ē

[
|
∑

i, j :i ̸= j Ki∆i X̃ ′K j∆ j X̃ ′
|

h
2
α

]
= E P

[
E Qω

[
|
∑

i, j :i ̸= j Ki∆i X̃ ′K j∆ j X̃ ′
|

h
2
α

]]

≤ E P

[
C

∑
i, j :i ̸= j Ki K j∆

2

h2 h2−
2
α

]
→ 0.

As for the mixed products, we split
∑

i, j :i ̸= j Ki∆i X̃ K j∆ j X̃ ′/h
2
α into∑

i, j :i ̸= j Ki∆i X̃ K j
∫ t j

t j−1

∫
|x |≤1 xdµ′

h
2
α

−

∑
i, j :i ̸= j Ki∆i X̃ K j

∫ t j
t j−1

∫
|x |≤1 xdλ′

h
2
α

: (77)

he second term∑n
i=1 Ki∆i X̃

h
1
α

∑n
j=1 K j

∫ t j
t j−1

∫
|x |≤1 xdλ′

h
1
α

−

∑n
i=1 K 2

i ∆i X̃

h
1
α

∫ ti
ti−1

∫
|x |≤1 xdλ′

h
1
α

as absolute value dominated by

C

∑n
j=1 K j∆

h
h1−

1
α

⏐⏐⏐⏐⏐
∑n

i=1 Ki∆i X̃

h
1
α

⏐⏐⏐⏐⏐+ ∆C

h
1
α

⏐⏐⏐⏐⏐
∑n

i=1 K 2
i ∆i X̃

h
1
α

⏐⏐⏐⏐⏐ P̄
→ 0,

ecause K is bounded, 1/α < 1, and the last factors of the two terms converge in P-distribution
y Lemma 4 with kernel either K or K 2, and thus also in P̄- distribution. Similarly, the first
erm of (77)∑n

j=1 K j
∫ t j

t j−1

∫
|x |≤1 xdµ′

h
1
α′

h
1
α′ −

1
α

∑n
i=1 Ki∆i X̃

h
1
α

−

∑n
i=1 K 2

i

∫ ti
ti−1

∫
|x |≤1 xdµ′∆i X̃

h
2
α

tends to 0 in P̄-probability, because X ′ has jump index α′
≤ 1 < α, by Lemma 4 we know

hat
∑n

j=1 K j
∫ t j

t j−1

∫
|x |≤1 xdµ′

h
1
α′

and
∑n

i=1 Ki∆i X̃

h
1
α

converge in P̄-distribution, while h1/α′
−1/α

→ 0;

oreover

∑n
i=1 K 2

i
∫ ti

ti−1

∫
|x |≤1 xdµ′∆i X̃

h
2
α

≤

√∑n
i=1 K 2

i (
∫ ti

ti−1

∫
|x |≤1 xdµ′)2

h
2
α′

h
2
α′ −

2
α

√∑n
i=1 K 2

i (∆i X̃ )2

h
2
α

,

hich tends to 0 in P̄-probability by Lemma 5 with K 2 in place of K .
From (76) it follows that⎛⎜⎝

(∑n
i=1 Ki∆i X̃

)2

h
2
α

,

∑n
i=1 Ki (∆i X̃ )2

h
2
α

⎞⎟⎠ d
≃

(∑n
i=1 K 2

i (∆i X̃ )2

h
2
α

,

∑n
i=1 Ki (∆i X̃ )2

h
2
α

)
.

It remains to show the generalization of point (4) at the first step. From there we know that,
since J is α stable on Ω̄ , then as n → ∞,

Ē
[

fn( J̃ )
]
.
= L̄n(s1, s2) = Ē

[
e−

∑n
i=1

s1 K 2
i +s2 Ki
h2/α (∆i J̃ )2

]
→ L∞(s1, s2).
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On the other hand,

Ē
[

fn( J̃ )
]

= Ē

[
e−

∑n
i=1

s1 K 2
i +s2 Ki
h2/α (∆i J̃ )2

]
= Ē

[
e−

∑n
i=1

s1 K 2
i +s2 Ki
h2/α (∆i X̃ )2

·

e
−
∑n

i=1
s1 K 2

i +s2 Ki
h2/α

[
(∆i X̃ ′)2

+2∆i X̃∆i X̃ ′

]]
= Ē

[
fn(X̃ )gn(X̃ ′)

]
.

Similarly as in (69) and (71), naming zi
.
= s1 K 2

i + s2 Ki , we have
n∑

i=1

zi

h2/α (∆i X̃ ′)2 Qω
→ 0 and

n∑
i=1

zi

h2/α∆i X̃∆i X̃ ′ P̄
→ 0,

hen gn(X̃ ′)
P̄

→ 1 and by Lemma 7

lim
n

E P
[

fn(X̃ )
]
.
= lim

n
E
[

e−
∑n

i=1
zi

h2/α (∆i X̃ )2
]

= lim
n

Ē
[

fn( J̃ )
]

= L∞(s1, s2). □

roof of Corollary 3. Let us split Y = Y ′
+ X̃ , where Y ′

t
.
= Y0 +

∫ t
0 bsds +

∫ t
0 σsdWs + X1

t ,
hen T n

t̄ equals∑n
i=1 Ki∆i Y√∑n
i=1 Ki (∆i Y )2

=

∑n
i=1 Ki∆i Y ′

+
∑n

i=1 Ki∆i X̃√∑n
i=1 Ki (∆i Y ′)2 +

∑n
i=1 Ki (∆i X̃ )2 + 2

∑n
i=1 Ki∆i Y ′∆i X̃

ith Sn
.
=
∑n

i=1 Ki (∆i Y ′)2, the above equals∑n
i=1 Ki∆i Y ′

√
Sn

+

∑n
i=1 Ki∆i X̃

√
Sn√

1 +

∑n
i=1 Ki (∆i X̃ )2

Sn
+ 2

∑n
i=1 Ki∆i Y ′∆i X̃

Sn

, (78)

nd we show that the last display tends to N (0, 1) in distribution.
In fact first of all note that with probability 1 there is no jump at t̄ , and when ∆X t̄ = 0 the

eading term of Sn is
∑n

i=1 Ki (
∫ ti

ti−1
bsds +

∫ ti
ti−1

σsdWs)2
∼ h(σ 2)⋆t̄ ([7], Theorem 2.7) because

n
i=1 Ki (∆i X1)2

∼ K ( minp |t̄−Sp |

h ) = o(∆h). Thus, with probability 1, Sn ∼ h.
Then, the first quotient of the numerator at (78) tends in distribution to a standard Gaussian

r.v. because Y ′ has finite variation jumps, so the result in [2] applies. We now show that all
the other terms tend to 0.

If α ∈ (1, 2), by Lemma 4,
∑n

i=1 Ki∆i X̃ tends to 0 at speed h1/α
≪ h1/2, thus the second

quotient at numerator in (78) tends to 0; by Lemma 5 the second term at denominator∑n
i=1 Ki (∆i X̃ )2

Sn
∼

h
2
α

h
→ 0

nd the third one∑n
i=1 Ki∆i Y ′∆i X̃

Sn
≤

√∑n
i=1 Ki (∆i X̃ )2

√
Sn

Sn
∼

h
1
α

√
h

→ 0.

f instead α = 1, the second quotient at the numerator of (78) is∑n
i=1 Ki∆i X̃

√ ∼
h log 1

h
√ → 0,
Sn h
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the second term at denominator∑n
i=1 Ki (∆i X̃ )2

Sn
∼

h2

h
→ 0

and the third one∑n
i=1 Ki∆i Y ′∆i X̃

Sn
≤

√∑n
i=1 Ki (∆i X̃ )2

√
Sn

Sn
∼

h
√

h
→ 0. □
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