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A B S T R A C T

We prove the existence and uniqueness of the solution of a BSDE with time-delayed generators
in the small delay setting (or equivalently small Lipschitz constant), which employs the Stieltjes
integral with respect to an increasing continuous stochastic process. Moreover, we obtain a
result of continuity of the solution with regard to the increasing process, assuming only uniform
convergence, but not in variation. We also prove the existence in the case of arbitrary delay
by imposing monotonicity and linearity on generators. Lastly, we provide an application of the
theoretical framework within an insurance based example.

1. Introduction

Backward stochastic differential equations (BSDEs for short) were introduced in the linear case by Bismut [1], as adjoint equations
involved in the control of SDEs. The nonlinear case was considered by Pardoux and Peng first in [13] and then in [14,18,19],
where they established a connection between BSDEs and semilinear parabolic partial differential equations (PDEs), by the so-called
nonlinear Feynman–Kac formula. It was this kind of application which triggered an impressive amount of research on the subject.
Concerning parabolic PDEs with Neumann boundary conditions, Pardoux and Zhang [17] discovered that their solutions can be
linked to BSDEs involving the integral with respect to continuous increasing processes (Stieltjes integral). Moreover, the connection
between BSDE and PDE with Neumann boundary condition has been further studied in [15,16] and also within a multivalued setting
in [12,21].

This paper represents a first step in establishing a probabilistic representation formula of the solutions of delayed path-dependent
parabolic PDEs with Neumann boundary conditions. It consists of studying the well posedness of the associated BSDEs, i.e. existence
and uniqueness of solutions, as well as stability with respect to terminal data and coefficients. As already shown in [2] for the case
of such PDEs considered on the whole space, the generator of the associated BSDE has to take into account the delayed-path of its
solution. As a result, our present work is concerned with the following BSDE:

⎧

⎪

⎨

⎪

⎩

𝑑𝑌 (𝑡) = −𝐹 (𝑡, 𝑌 (𝑡), 𝑍(𝑡), 𝑌𝑡, 𝑍𝑡)𝑑𝑡 − 𝐺(𝑡, 𝑌 (𝑡), 𝑌𝑡)𝑑𝐴(𝑡)

+𝑍(𝑡)𝑑𝑊 (𝑡), 𝑡 ∈ [0, 𝑇 ] ;
𝑌 (𝑇 ) = 𝜉,

(1)
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where the generators 𝐹 and 𝐺 depend also on the past of the solution (𝑌 ,𝑍). Here, if 𝒙 ∶ [−𝛿, 𝑇 ] → R𝑛 is a function and 𝑡 ∈ [0, 𝑇 ],
𝒙𝑡 ∶ [−𝛿, 0] → R𝑛 denotes the delayed-path of 𝒙, defined as

𝒙𝑡(𝜃) ∶= 𝒙(𝑡 + 𝜃), 𝜃 ∈ [−𝛿, 0],

where 𝛿 > 0 is a fixed delay. The coefficient 𝐴 is a continuous real valued increasing process.
We recall that time-delayed BSDEs were first introduced in [6,7] where the authors obtained the existence and uniqueness of

the solution of the time–delayed BSDE

𝑌 (𝑡) = 𝜉 + ∫

𝑇

𝑡
𝑓 (𝑠, 𝑌𝑠, 𝑍𝑠)𝑑𝑠 − ∫

𝑇

𝑡
𝑍(𝑠)𝑑𝑊 (𝑠), 0 ≤ 𝑡 ≤ 𝑇 , (2)

where

𝑌𝑠 ∶= (𝑌 (𝑟))𝑟∈[0,𝑠] and 𝑍𝑠 ∶= (𝑍(𝑟))𝑟∈[0,𝑠].

In particular, the aforementioned existence and uniqueness result holds true if the time horizon 𝑇 or the Lipschitz constant for the
generator 𝑓 are sufficiently small.

The motivation behind the introduction of a driving force 𝑑𝐴 and the corresponding integral goes beyond the link with PDE and
can be traced in actuarial applications since [3,20]. In the context of insurance, a BSDE such as the one described in Eq. (1) can
be used to model the evolution of a hedging strategy for an insurance portfolio over time. In this framework, the Riemann–Stieltjes
integral is linked to the sum of claims with respect to an increasing continuous process that models the cumulative distribution of
claims.

This paper is organized as follows. In the remaining part of this section, we introduce the notations and set the framework of
our problem. In Section 2 we derive a result of existence and uniqueness for small delay (or small Lipschitz constant) for BSDE (1),
based on Banach’s fixed point theorem, expressed in Theorem 4. Moreover, we provide in Proposition 6, the well-posedness result
for an arbitrary delay for a specific case assuming monotone (in the delayed term) and linear coefficients. Section 3 is devoted to
the problem of stability of solutions with respect to terminal data 𝜉 and coefficients 𝐹 , 𝐺 and 𝐴. Lastly, in Section 4, we present an
insurance application dealing with a variable annuity investment that suits the theoretical setting. The main difficulty encountered
in the article is to prove the convergence of the solutions of the approximating BSDEs when the increasing process 𝐴 is approximated
uniformly, but not in variation. In order to tackle this problem, we use a stochastic variant of Helly–Bray theorem, proved in the
Appendix, as it may be an interesting result for use in other applications.

1.1. Problem setting and notations

On the Euclidean space R𝑛 we consider the Euclidean norm and scalar product, denoted by |⋅| and ⟨⋅, ⋅⟩, respectively. If 𝑛, 𝑘 ∈ N∗,
R𝑛×𝑘 denotes the space of real 𝑛 × 𝑘-matrices, equipped with the Frobenius norm (the Euclidean norm when this space is identified
with R𝑛𝑘), denoted as well by |⋅|.

For 𝑠 < 𝑡, 𝐶([𝑠, 𝑡];R𝑛) represents the set of continuous functions 𝒙 ∶ [𝑠, 𝑡] → R𝑑 , endowed with the sup-norm: ‖𝒙‖𝐶([𝑠,𝑡];R𝑛) ∶=
sup𝑟∈[𝑠,𝑡] |𝒙(𝑟)|; 𝐵𝑉 ([𝑠, 𝑡];R𝑛) denotes the set of right-continuous functions with bounded variation 𝜼 ∶ [𝑠, 𝑡] → R𝑛, i.e. with a finite
total variation. Recall that the total variation of 𝜼 on [𝑠, 𝑡] is defined as

V𝑡
𝑠(𝜼) ∶= sup

∑𝑛
𝑖=1

|

|

𝜼(𝑡𝑖) − 𝜼(𝑡𝑖−1)|| ,

where the sup is taken on all the partitions 𝑠 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑛 = 𝑡. The standard norm on 𝐵𝑉 ([𝑠, 𝑡];R𝑛) is given by

‖𝜼‖𝐵𝑉 ([𝑠,𝑡];R𝑛) ∶= |𝜼(𝑠)| + V𝑡
𝑠(𝜼).

We will simply denote 𝐶[𝑠, 𝑡], 𝐵𝑉 [𝑠, 𝑡] instead of 𝐶([𝑠, 𝑡];R), 𝐵𝑉 ([𝑠, 𝑡];R), respectively.
If 𝒙 ∶ [𝑠, 𝑡] → R𝑛 is a Borel-measurable function and 𝜼 ∈ 𝐵𝑉 ([𝑠, 𝑡];R𝑛), by ∫ 𝑡

𝑠 ⟨𝒙(𝑟)𝑑𝜼(𝑟)⟩ we denote the sum
𝑛
∑

𝑖=1
∫

𝑡

𝑠
⟨𝒙𝑖(𝑟)𝑑𝜼𝑖(𝑟)⟩ ,

where 𝒙1, … , 𝒙𝑛 and 𝜼1, … , 𝜼𝑛 are the components of 𝒙, respectively 𝜼, in the case where the Lebesgue–Stieltjes integrals are
well-defined and the sum makes sense.

We fix now the framework of our problem, to be utilized throughout the article.
Let 𝑇 > 0 be a finite horizon of time, 𝑑, 𝑚 ∈ N∗ and 𝛿 ∈ (0, 𝑇 ] a fixed time-delay. Let (𝛺, ,P) be a complete probability space,

𝑊 a 𝑑-dimensional Brownian motion and F =
{

𝑡
}

𝑡∈[0,𝑇 ] the filtration generated by 𝑊 , augmented by the null-probability subsets
of 𝛺. The stochastic process 𝐴 ∶ 𝛺 × [0, 𝑇 ] → R is an increasing F-adapted process with 𝐴(0) = 0, P-a.s.

Definition 1. Let 𝑝 ≥ 2 and 𝛽 ≥ 0.

(i) 𝑝,𝑚 denotes the space of continuous F–progressively measurable processes 𝑌 ∶ 𝛺 × [0, 𝑇 ] → R𝑚 such that

E
[

sup |𝑌 (𝑠)|𝑝
]

< +∞.
2

0≤𝑠≤𝑇
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(ii) 𝑝,𝑚
𝛽 denotes the space of continuous F–progressively measurable processes 𝑌 ∶ 𝛺 × [0, 𝑇 ] → R𝑚 such that

E
[

sup
0≤𝑠≤𝑇

𝑒𝛽𝐴(𝑠)|𝑌 (𝑠)|𝑝
]

+ E
[

∫

𝑇

0
𝑒𝛽𝐴(𝑠)|𝑌 (𝑠)|2𝑑𝐴(𝑠)

]𝑝∕2

< +∞.

(iii) 𝑝,𝑚×𝑑
𝛽 denotes the space of F–progressively measurable processes 𝑍 ∶ 𝛺 × [0, 𝑇 ] → R𝑚×𝑑 such that

E
[

∫

𝑇

0
𝑒𝛽𝐴(𝑠)|𝑍(𝑠)|2𝑑𝑠

]𝑝∕2

< +∞.

Instead of 𝑝,𝑚×𝑑
0 we will write 𝑝,𝑚×𝑑 . The space 𝑝,𝑚

𝛽 × 𝑝,𝑚×𝑑
𝛽 (in fact, its quotient with respect to P × P𝑑𝑡-a.e. equality) is

naturally equipped with the following norm

‖(𝑌 ,𝑍)‖𝑝𝑝,𝛽 = E
[

sup
0≤𝑠≤𝑇

𝑒𝛽𝐴(𝑠)|𝑌 (𝑠)|𝑝
]

+ E
[

∫

𝑇

0
𝑒𝛽𝐴(𝑠)|𝑌 (𝑠)|2𝑑𝐴(𝑠)

]𝑝∕2

+E
[

∫

𝑇

0
𝑒𝛽𝐴(𝑠)|𝑍(𝑠)|2𝑑𝑠

]𝑝∕2

.

2. Existence and uniqueness

We consider the following BSDE

𝑌 (𝑡) = 𝜉 + ∫

𝑇

𝑡
𝐹 (𝑠, 𝑌 (𝑠), 𝑍(𝑠), 𝑌𝑠, 𝑍𝑠)𝑑𝑠 + ∫

𝑇

𝑡
𝐺(𝑠, 𝑌 (𝑠), 𝑌𝑠)𝑑𝐴(𝑠)

−∫

𝑇

𝑡
𝑍(𝑠)𝑑𝑊 (𝑠), 𝑡 ∈ [0, 𝑇 ] , (3)

with 𝜉 ∈ 𝐿2 (𝛺,𝑇 ,P;R𝑚) and the generators 𝐹 ∶ 𝛺 × [0, 𝑇 ] × R𝑚 × R𝑚×𝑑 × 𝐿2 ([−𝛿, 0];R𝑚) × 𝐿2([−𝛿, 0];R𝑚×𝑑 ) → R𝑚, 𝐺 ∶
𝛺 × [0, 𝑇 ] × R𝑚 × 𝐿2 ([−𝛿, 0];R𝑚) → R𝑚 such that the functions 𝐹 (⋅, 𝑦, 𝑧, 𝑦̂, 𝑧̂) and 𝐺 (⋅, 𝑦, 𝑦̂) are F–progressively measurable, for any
(𝑦, 𝑧, 𝑦̂, 𝑧̂) ∈ R𝑚 × R𝑚×𝑑 × 𝐿2 ([−𝛿, 0];R𝑚) × 𝐿2([−𝛿, 0];R𝑚×𝑑 ), respectively for any (𝑦, 𝑦̂) ∈ R𝑚 × 𝐿2 ([−𝛿, 0];R𝑚).

Recall that, for a function 𝒙 ∶ [−𝛿, 𝑇 ] → R𝑛 and some 𝑡 ∈ [0, 𝑇 ], 𝒙𝑡 ∶ [−𝛿, 0] → R𝑛 denotes the delayed-path of 𝒙, defined as

𝒙𝑡(𝜃) ∶= 𝒙(𝑡 + 𝜃), 𝜃 ∈ [−𝛿, 0].

In order to define 𝑌𝑠 and 𝑍𝑠 even for 𝑠 < 𝛿, we prolong by convention, 𝑌 by 𝑌 (0) and 𝑍 by 0 on the negative real axis.
In what follows we present the assumptions required in this section. We suppose that there exist constants 𝛽, 𝐿, 𝐿̃ > 0, bounded

progressively measurable stochastic processes 𝐾, 𝐾̃ ∶ 𝛺×[0, 𝑇 ] → R+ and 𝜌, 𝜌̃ probability measures on ([−𝛿, 0], ([−𝛿, 0])) such that:

(A0) E
[

𝑒𝛽𝐴(𝑇 )
(

1 + |𝜉|2
)]

< +∞;

(A1) E
[

∫ 𝑇
0 𝑒𝛽𝐴(𝑡) |𝐹 (𝑡, 0, 0, 0, 0)|2 𝑑𝑡 + ∫ 𝑇

0 𝑒𝛽𝐴(𝑡) |𝐺 (𝑡, 0, 0)|2 𝑑𝐴(𝑡)
]

< +∞.

(A2) for any 𝑡 ∈ [0, 𝑇 ], (𝑦, 𝑧) , (𝑦′, 𝑧′) ∈ R𝑚 × R𝑚×𝑑 , 𝑦̂, 𝑦̂′ ∈ 𝐿2 ([−𝛿, 0];R𝑚) and 𝑧̂, 𝑧̂′ ∈ 𝐿2([−𝛿, 0];R𝑚×𝑑 ), we have

(𝑖) |𝐹 (𝑡, 𝑦, 𝑧, 𝑦̂, 𝑧̂) − 𝐹 (𝑡, 𝑦′, 𝑧′, 𝑦̂, 𝑧̂)| ≤ 𝐿(|𝑦 − 𝑦′| + |𝑧 − 𝑧′|), P-a.s.;

(𝑖𝑖) |𝐹 (𝑡, 𝑦, 𝑧, 𝑦̂, 𝑧̂) − 𝐹 (𝑡, 𝑦, 𝑧, 𝑦̂′, 𝑧̂′)|2

≤ 𝐾 (𝑡)∫

0

−𝛿

(

|

|

𝑦̂(𝜃) − 𝑦̂′(𝜃)|
|

2 + |

|

𝑧̂(𝜃) − 𝑧̂′(𝜃)|
|

2
)

𝜌(𝑑𝜃), P-a.s.;

(A3) for any 𝑡 ∈ [0, 𝑇 ], 𝑦, 𝑦′ ∈ R𝑚 and 𝑦̂, 𝑦̂′ ∈ 𝐿2 ([−𝛿, 0];R𝑚), we have

(𝑖) |𝐺(𝑡, 𝑦, 𝑦̂) − 𝐺(𝑡, 𝑦′, 𝑦̂)| ≤ 𝐿̃|𝑦 − 𝑦′|, P-a.s.;

(𝑖𝑖) |𝐺(𝑡, 𝑦, 𝑦̂) − 𝐺(𝑡, 𝑦, 𝑦̂′)|2 ≤ 𝐾̃ (𝑡)∫

0

−𝛿
|

|

𝑦̂(𝜃) − 𝑦̂′(𝜃)|
|

2 𝜌̃(𝑑𝜃), P-a.s.;

Remark 2. Let us underline that the latter conditions differ from those used in [6], since we allow 𝑇 to be arbitrary, but different
from the delay 𝛿 ∈ [0, 𝑇 ]. This allows to separate the Lipschitz constant 𝐿 w.r.t. (𝑦, 𝑧) from the Lipschitz constant 𝐾 w.r.t. (𝑦̂, 𝑧̂);
therefore the restriction on the coefficients can avoid the constant 𝐿.

Remark 3. Existence and uniqueness of a solution to the backward system (3) will be proved by exploiting a standard Banach’s
3

fixed point argument which requires 𝐾 or 𝛿 to be small enough.
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(

(

T
s

P

𝛤

More precisely, by denoting 𝐾1 ∶= sup𝑠∈[0,𝑇 ] 𝐾(𝑠), 𝐾̃1 ∶= sup𝑠∈[0,𝑇 ] 𝐾̃(𝑠) and

𝜔𝛿 ∶= sup
𝑡∈[0,𝑇−𝛿]

(𝐴(𝑡 + 𝛿) − 𝐴(𝑡)) ,

we will assume the existence of a positive constant 𝑐 < 𝑐𝛽,𝐿̃ ∶= min
{

𝛽2−8𝐿̃2

4𝛽2 , 1
584

}

such that

H1) 𝐾1 ⋅max {1, 𝑇 } ⋅ 𝑒(8𝐿
2+ 1

2 )𝛿+𝛽𝜔𝛿

4𝐿2 ≤ 𝑐, P-a.s.;

H2) 4𝐾̃1 ⋅ 𝐴(𝑇 ) ⋅
𝑒(8𝐿

2+ 1
2 )𝛿+𝛽𝜔𝛿

𝛽 ≤ 𝑐, P-a.s.

Our first result states existence and uniqueness of Eq. (3).

heorem 4. Let us assume that (A0)–(A3) hold true and 𝛽 > 2
√

2𝐿̃. If conditions (H1) and (H2) are satisfied then there exists a unique
olution (𝑌 ,𝑍) ∈ 2,𝑚

𝛽 ×2,𝑚×𝑑
𝛽 for (3).

roof. The existence and uniqueness will be obtained by the Banach fixed point theorem.

Let us consider the map 𝛤 ∶ 2,𝑚
𝛽 × 2,𝑚×𝑑

𝛽 → 2,𝑚
𝛽 × 2,𝑚×𝑑

𝛽 , defined in the following way: for (𝑈, 𝑉 ) ∈ 2,𝑚
𝛽 × 2,𝑚×𝑑

𝛽 ,
(𝑈, 𝑉 ) = (𝑌 ,𝑍), where the couple of adapted processes (𝑌 ,𝑍) is the solution to the equation

𝑌 (𝑡) = 𝜉 + ∫

𝑇

𝑡
𝐹 (𝑠, 𝑌 (𝑠), 𝑍(𝑠), 𝑈𝑠, 𝑉𝑠)𝑑𝑠 + ∫

𝑇

𝑡
𝐺(𝑠, 𝑈 (𝑠), 𝑈𝑠)𝑑𝐴(𝑠)

−∫

𝑇

𝑡
𝑍(𝑠)𝑑𝑊 (𝑠), 𝑡 ∈ [0, 𝑇 ] . (4)

The existence of a unique solution (𝑌 ,𝑍) ∈ 2,𝑚 ×2,𝑚×𝑑 is guaranteed by [13]. Indeed, if we denote

𝐵(𝑡) ∶= ∫

𝑡

0
𝐺(𝑠, 𝑈 (𝑠), 𝑈𝑠)𝑑𝐴(𝑠), 𝑡 ∈ [0, 𝑇 ];

𝐹 (𝑡, 𝑦, 𝑧) ∶= 𝐹 (𝑡, 𝑦 − 𝐵(𝑡), 𝑧, 𝑈𝑡, 𝑉𝑡), 𝑡 ∈ [0, 𝑇 ], (𝑦, 𝑧) ∈ R𝑚 × R𝑚×𝑑 ,

then (𝑌 ,𝑍) is a solution to Eq. (3) if and only if (𝑌 + 𝐵,𝑍) solves the equation

𝑌 (𝑡) = 𝜉 + 𝐵(𝑇 ) + ∫

𝑇

𝑡
𝐹 (𝑠, 𝑌 (𝑠), 𝑍(𝑠), 𝑈𝑠, 𝑉𝑠)𝑑𝑠 − ∫

𝑇

𝑡
𝑍(𝑠)𝑑𝑊 (𝑠), 𝑡 ∈ [0, 𝑇 ] .

Since 𝐹 is Lipschitz with respect to (𝑦, 𝑧), it remains to prove that E ∫ 𝑇
0

|

|

|

𝐹 (𝑡, 0, 0)||
|

2
𝑑𝑡 < +∞ and 𝜉 + 𝐵(𝑇 ) ∈ 𝐿2 (𝛺,𝑇 ,P;R𝑚). We

have (remember that 𝐾1 ∶= sup𝑠∈[0,𝑇 ] 𝐾(𝑠) and 𝐾̃1 ∶= sup𝑠∈[0,𝑇 ] 𝐾̃(𝑠)):

E∫

𝑇

0

|

|

|

𝐹 (𝑡, 0, 0)||
|

2
𝑑𝑡 = E∫

𝑇

0
|

|

𝐹 (𝑡,−𝐵(𝑡), 0, 𝑈𝑡, 𝑉𝑡)||
2 𝑑𝑡 ≤ 3E∫

𝑇

0
|𝐹 (𝑡, 0, 0, 0, 0)|2 𝑑𝑡

+3𝐿2E∫

𝑇

0
|𝐵(𝑡)|2 𝑑𝑡 + 3E∫

𝑇

0
𝐾 (𝑡)∫

0

−𝛿

(

|𝑈 (𝑡 + 𝜃)|2 + |𝑉 (𝑡 + 𝜃)|2
)

𝜌(𝑑𝜃)𝑑𝑡

≤ 3E∫

𝑇

0
|𝐹 (𝑡, 0, 0, 0, 0)|2 𝑑𝑡 + 3𝐿2E∫

𝑇

0
|𝐵(𝑡)|2 𝑑𝑡

+3𝑇E
[

𝐾1 sup
𝑡∈[0,𝑇 ]

|𝑈 (𝑡)|2
]

+ 3E𝐾1 ∫

𝑇

0
|𝑉 (𝑡)|2 𝑑𝑡.

Since (A1) holds and 𝐾1 is bounded, we only have to show that E ∫ 𝑇
0 |𝐵(𝑡)|2 𝑑𝑡 < +∞ and E |𝐵(𝑇 )|2 < +∞. We have

E∫

𝑇

0

|

|

|

|

|

∫

𝑡

0
𝐺(𝑠, 𝑈 (𝑠), 𝑈𝑠)𝑑𝐴(𝑠)

|

|

|

|

|

2

𝑑𝑡

≤ E∫

𝑇

0

[

∫

𝑡

0
𝑒𝛽𝐴(𝑠) |

|

𝐺(𝑠, 𝑈 (𝑠), 𝑈𝑠)||
2 𝑑𝐴(𝑠) ⋅ ∫

𝑡

0
𝑒−𝛽𝐴(𝑠)𝑑𝐴(𝑠)

]

𝑑𝑡

≤ 𝑇
𝛽
E∫

𝑇

0
𝑒𝛽𝐴(𝑡) |

|

𝐺(𝑡, 𝑈 (𝑡), 𝑈𝑡)||
2 𝑑𝐴(𝑡) ≤ 2𝑇

𝛽
E∫

𝑇

0
𝑒𝛽𝐴(𝑡) |𝐺(𝑡, 0, 0)|2 𝑑𝐴(𝑡)

+2𝑇
𝛽

E∫

𝑇

0
𝑒𝛽𝐴(𝑡)𝐿2

|𝑈 (𝑡)|2 𝑑𝐴(𝑡) + 2𝑇
𝛽

E∫

𝑇

0
𝑒𝛽𝐴(𝑡)𝐾̃ (𝑡)∫

0

−𝛿
|𝑈 (𝑡 + 𝜃)|2 𝜌̃(𝑑𝜃)𝑑𝐴(𝑡)

≤ 2𝑇
𝛽

E∫

𝑇

0
𝑒𝛽𝐴(𝑡) |𝐺(𝑡, 0, 0)|2 𝑑𝐴(𝑡) + 2𝑇𝐿2

𝛽
E∫

𝑇

0
𝑒𝛽𝐴(𝑡) |𝑈 (𝑡)|2 𝑑𝐴(𝑡)

+2𝑇 E𝐾̃1𝐴(𝑇 )𝑒𝛽𝜔𝛿 sup 𝑒𝛽𝐴(𝑡) |𝑈 (𝑡)|2 < +∞,
4

𝛽 𝑡∈[0,𝑇 ]
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by (A1) and (H2), which proves the claim (along the way we have also proven that E |𝐵(𝑇 )|2 < +∞).

The proof that (𝑌 ,𝑍) ∈ 2,𝑚
𝛽 ×2,𝑚×𝑑

𝛽 is very similar to that of Proposition 1.1 from [17], so it is left to the reader.

Let us prove that 𝛤 is a contraction with respect to the equivalent norm

‖(𝑌 ,𝑍)‖22,𝛼,𝛽,𝑎,𝑏 ∶= E
(

sup
𝑡∈[0,𝑇 ]

𝑒𝛼𝑡+𝛽𝐴(𝑡)|𝑌 (𝑡) |2
)

+ 𝑎E∫

𝑇

0
𝑒𝛼𝑠+𝛽𝐴(𝑠)|𝑌 (𝑠) |2𝑑𝐴 (𝑠)

+𝑏E∫

𝑇

0
𝑒𝛼𝑠+𝛽𝐴(𝑠)|𝑍 (𝑠) |2𝑑𝑠.

here 𝛼 ∶= 8𝐿2 + 1
2 and the constants 𝑎, 𝑏 > 0 are yet to be chosen.

Let us consider
(

𝑈1, 𝑉 1) ,
(

𝑈2, 𝑉 2) ∈ 2,𝑚
𝛽 ×2,𝑚×𝑑

𝛽 and
(

𝑌 1, 𝑍1) ∶= 𝛤
(

𝑈1, 𝑉 1),
(

𝑌 2, 𝑍2) ∶= 𝛤
(

𝑈2, 𝑉 2). For the sake of brevity,
we will denote in what follows

𝛥𝐹 (𝑠) ∶= 𝐹 (𝑠, 𝑌 1 (𝑠) , 𝑍1 (𝑠) , 𝑈1
𝑠 , 𝑉

1
𝑠 ) − 𝐹 (𝑠, 𝑌 2 (𝑠) , 𝑍2 (𝑠) , 𝑈2

𝑠 , 𝑉
2
𝑠 ),

𝛥𝐺 (𝑠) ∶= 𝐺(𝑠, 𝑈1 (𝑠) , 𝑈1
𝑠 ) − 𝐺(𝑠, 𝑈2 (𝑠) , 𝑈2

𝑠 ),

𝛥𝑈 (𝑠) ∶= 𝑈1 (𝑠) − 𝑈2 (𝑠) , 𝛥𝑉 (𝑠) ∶= 𝑉 1 (𝑠) − 𝑉 2 (𝑠) ,

𝛥𝑌 (𝑠) ∶= 𝑌 1 (𝑠) − 𝑌 2 (𝑠) , 𝛥𝑍 (𝑠) ∶= 𝑍1 (𝑠) −𝑍2 (𝑠) .

Exploiting Itô’s formula we have, for any 𝑡 ∈ [0, 𝑇 ]

𝑒𝛼𝑡+𝛽𝐴(𝑡)|𝛥𝑌 (𝑡) |2 + ∫

𝑇

𝑡
𝑒𝛼𝑠+𝛽𝐴(𝑠)|𝛥𝑌 (𝑠) |2 (𝛼𝑑𝑠 + 𝛽𝑑𝐴 (𝑠)) + ∫

𝑇

𝑡
𝑒𝛼𝑠+𝛽𝐴(𝑠)|𝛥𝑍 (𝑠) |2𝑑𝑠

= 𝑒𝛼𝑇+𝛽𝐴(𝑇 )|𝛥𝑌 (𝑇 ) |2 − 2∫

𝑇

𝑡
𝑒𝛼𝑠+𝛽𝐴(𝑠)⟨𝛥𝑌 (𝑠) , 𝛥𝑍 (𝑠) 𝑑𝑊 (𝑠)⟩

+2∫

𝑇

𝑡
𝑒𝛼𝑠+𝛽𝐴(𝑠)⟨𝛥𝑌 (𝑠) , 𝛥𝐹 (𝑠)⟩𝑑𝑠 + 2∫

𝑇

𝑡
𝑒𝛼𝑠+𝛽𝐴(𝑠)⟨𝛥𝑌 (𝑠) , 𝛥𝐺 (𝑠)⟩𝑑𝐴 (𝑠) .

From assumptions (A2)–(A3) we obtain,

2||
|∫

𝑇

𝑡
𝑒𝛼𝑠+𝛽𝐴(𝑠)⟨𝛥𝑌 (𝑠) , 𝛥𝐹 (𝑠)⟩𝑑𝑠||

|

≤ 2∫

𝑇

𝑡
𝑒𝛼𝑠+𝛽𝐴(𝑠)||

|

⟨𝛥𝑌 (𝑠) , 𝛥𝐹 (𝑠)⟩||
|

𝑑𝑠

≤ 8𝐿2
∫

𝑇

𝑡
𝑒𝛼𝑠+𝛽𝐴(𝑠)|𝛥𝑌 (𝑠) |2𝑑𝑠 + 1

8𝐿2 ∫

𝑇

𝑡
𝑒𝛼𝑠+𝛽𝐴(𝑠)|𝛥𝐹 (𝑠) |2𝑑𝑠

≤ 8𝐿2
∫

𝑇

𝑡
𝑒𝛼𝑠+𝛽𝐴(𝑠)|𝛥𝑌 (𝑠) |2𝑑𝑠 + 1

2 ∫

𝑇

𝑡
𝑒𝛼𝑠+𝛽𝐴(𝑠)

(

|𝛥𝑌 (𝑠) |2 + |𝛥𝑍 (𝑠) |2
)

𝑑𝑠

+
𝐾1𝑇
4𝐿2

𝑒𝛼𝛿+𝛽𝜔𝛿 ⋅ sup
𝑠∈[0,𝑇 ]

(

𝑒𝛼𝑠+𝛽𝐴(𝑠)|𝛥𝑈 (𝑠) |2
)

+
𝐾1

4𝐿2
𝑒𝛼𝛿+𝛽𝜔𝛿 ⋅ ∫

𝑇

0
𝑒𝛼𝑠+𝛽𝐴(𝑠)|𝛥𝑉 (𝑠) |2𝑑𝑠

nd

2||
|∫

𝑇

𝑡
𝑒𝛼𝑠+𝛽𝐴(𝑠)⟨𝛥𝑌 (𝑠) , 𝛥𝐺(𝑠)⟩𝑑𝐴 (𝑠) ||

|

≤ 2∫

𝑇

𝑡
𝑒𝛼𝑠+𝛽𝐴(𝑠)||

|

⟨𝛥𝑌 (𝑠) , 𝛥𝐺(𝑠)⟩||
|

𝑑𝐴(𝑠)

≤ 𝛽
2 ∫

𝑇

𝑡
𝑒𝛼𝑠+𝛽𝐴(𝑠)|𝛥𝑌 (𝑠) |2𝑑𝐴 (𝑠) + 2

𝛽 ∫

𝑇

𝑡
𝑒𝛼𝑠+𝛽𝐴(𝑠)|𝛥𝐺 (𝑠) |2𝑑𝐴 (𝑠)

≤ 𝛽
2 ∫

𝑇

𝑡
𝑒𝛼𝑠+𝛽𝐴(𝑠)|𝛥𝑌 (𝑠) |2𝑑𝐴 (𝑠) + 4𝐿̃2

𝛽 ∫

𝑇

𝑡
𝑒𝛼𝑠+𝛽𝐴(𝑠)|𝛥𝑈 (𝑠) |2𝑑𝐴 (𝑠)

+
4𝐾̃1 𝐴(𝑇 )

𝛽
𝑒𝛼𝛿+𝛽𝜔𝛿 ⋅ sup

𝑠∈[0,𝑇 ]

(

𝑒𝛼𝑠+𝛽𝐴(𝑠)|𝛥𝑈 (𝑠) |2
)

.

By (H1) and (H2), we have
(

𝐾1𝑇
4𝐿2 + 4𝐾̃1 𝐴(𝑇 )

𝛽

)

𝑒𝛼𝛿+𝛽𝜔𝛿 ≤ 2𝑐, P-a.s.;
𝐾1
4𝐿2 𝑒

𝛼𝛿+𝛽𝜔𝛿 ≤ 𝑐, P-a.s,
5
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(recall that 𝛼 ∶= 8𝐿2 + 1
2 ). Therefore,

𝑒𝛼𝑡+𝛽𝐴(𝑡)|𝛥𝑌 (𝑡) |2 +
𝛽
2 ∫

𝑇

𝑡
𝑒𝛼𝑠+𝛽𝐴(𝑠)|𝛥𝑌 (𝑠) |2𝑑𝐴 (𝑠)

+1
2 ∫

𝑇

𝑡
𝑒𝛼𝑠+𝛽𝐴(𝑠)|𝛥𝑍 (𝑠) |2𝑑𝑠

≤ −2∫

𝑇

𝑡
𝑒𝛼𝑠+𝛽𝐴(𝑠)⟨𝛥𝑌 (𝑠) , 𝛥𝑍 (𝑠) 𝑑𝑊 (𝑠)⟩ + 4𝐿̃2

𝛽 ∫

𝑇

𝑡
𝑒𝛼𝑠+𝛽𝐴(𝑠)|𝛥𝑈 (𝑠) |2𝑑𝐴 (𝑠)

+2𝑐 sup
𝑠∈[0,𝑇 ]

(

𝑒𝛼𝑠+𝛽𝐴(𝑠)|𝛥𝑈 (𝑠) |2
)

+ 𝑐 ∫

𝑇

0
𝑒𝛼𝑠+𝛽𝐴(𝑠)|𝛥𝑉 (𝑠) |2𝑑𝑠.

(5)

ince 𝑒𝛼𝑠+𝛽𝐴(𝑠)𝛥𝑌 ∈ 2,𝑚 and 𝛥𝑍 ∈ 2,𝑚×𝑑 , one can show that

E
[

∫

𝑇

0
𝑒𝛼𝑠+𝛽𝐴(𝑠)⟨𝛥𝑌 (𝑠) , 𝛥𝑍 (𝑠) 𝑑𝑊 (𝑠)⟩

]

= 0,

hence
𝛽
2
E∫

𝑇

0
𝑒𝛼𝑠+𝛽𝐴(𝑠)|𝛥𝑌 (𝑠) |2𝑑𝐴 (𝑠) + 1

2
E∫

𝑇

0
𝑒𝛼𝑠+𝛽𝐴(𝑠)|𝛥𝑍 (𝑠) |2𝑑𝑠

≤ 4𝐿̃2

𝛽
E∫

𝑇

0
𝑒𝛼𝑠+𝛽𝐴(𝑠)|𝛥𝑈 (𝑠) |2𝑑𝐴 (𝑠) + 2𝑐E

[

sup
𝑠∈[0,𝑇 ]

(

𝑒𝛼𝑠+𝛽𝐴(𝑠)|𝛥𝑈 (𝑠) |2
)

]

+𝑐E
[

∫

𝑇

0
𝑒𝛼𝑠+𝛽𝐴(𝑠)|𝛥𝑉 (𝑠) |2𝑑𝑠

]

.

(6)

On the other hand, by Burkholder–Davis–Gundy’s inequality, we have

2E
[

sup
𝑡∈[0,𝑇 ]

|

|

|∫

𝑇

𝑡
𝑒𝛼𝑠+𝛽𝐴(𝑠)⟨𝛥𝑌 (𝑠) , 𝛥𝑍 (𝑠)⟩𝑑𝑊 (𝑠) ||

|

]

≤ 1
2
E
(

sup
𝑡∈[0,𝑇 ]

𝑒𝛼𝑡+𝛽𝐴(𝑡)|𝛥𝑌 (𝑡) |2
)

+ 72E∫

𝑇

0
𝑒𝛼𝑠+𝛽𝐴(𝑠)|𝛥𝑍 (𝑠) |2𝑑𝑠.

ence, by (5),
1
2
E
(

sup
𝑡∈[0,𝑇 ]

𝑒𝛼𝑡+𝛽𝐴(𝑡)|𝛥𝑌 (𝑡) |2
)

≤ 72E∫

𝑇

0
𝑒𝛼𝑠+𝛽𝐴(𝑠)|𝛥𝑍 (𝑠) |2𝑑𝑠 + 4𝐿̃2

𝛽
E∫

𝑇

0
𝑒𝛼𝑠+𝛽𝐴(𝑠)|𝛥𝑈 (𝑠) |2𝑑𝐴 (𝑠)

+2𝑐E
[

sup
𝑠∈[0,𝑇 ]

(

𝑒𝛼𝑠+𝛽𝐴(𝑠)|𝛥𝑈 (𝑠) |2
)

]

+ 𝑐E
[

∫

𝑇

0
𝑒𝛼𝑠+𝛽𝐴(𝑠)|𝛥𝑉 (𝑠) |2𝑑𝑠

]

.

hus, with 𝑎 ∶= 𝜆𝛽
2 , 𝑏 ∶= 𝜆

2 − 144 and some 𝜆 > 288, by taking into account (6), we obtain

E
(

sup
𝑡∈[0,𝑇 ]

𝑒𝛼𝑡+𝛽𝐴(𝑡)|𝛥𝑌 (𝑡) |2
)

+ 𝑎∫

𝑇

0
𝑒𝛼𝑠+𝛽𝐴(𝑠)|𝛥𝑌 (𝑠) |2𝑑𝐴 (𝑠)

+𝑏E∫

𝑇

0
𝑒𝛼𝑠+𝛽𝐴(𝑠)|𝛥𝑍 (𝑠) |2𝑑𝑠

≤ 2𝑐(2 + 𝜆)E
[

sup
𝑠∈[0,𝑇 ]

(

𝑒𝛼𝑠+𝛽𝐴(𝑠)|𝛥𝑈 (𝑠) |2
)

]

+ 4𝐿̃2

𝛽
(2 + 𝜆)E∫

𝑇

0
𝑒𝛼𝑠+𝛽𝐴(𝑠)|𝛥𝑈 (𝑠) |2𝑑𝐴 (𝑠)

+𝑐(2 + 𝜆)E∫

𝑇

0
𝑒𝛼𝑟+𝛽𝐴(𝑟)|𝛥𝑉 (𝑟) |2𝑑𝑟,

so

‖(𝛥𝑌 , 𝛥𝑍)‖22,𝛼,𝛽,𝑎,𝑏 ≤ 𝜇𝜆 ‖(𝛥𝑈, 𝛥𝑉 )‖22,𝛼,𝛽,𝑎,𝑏 ,

where

𝜇𝜆 ∶= max
{

𝑐(2 + 𝜆), 8𝐿̃
2(2+𝜆)
𝜆𝛽2

, 2𝑐(2+𝜆)𝜆−288

}

.

ince 𝑐 < 𝑐𝛽,𝐿̃, we can take 𝜆 slightly bigger than 1
2𝑐𝛽,𝐿̃

− 2, such that 2𝑐(2 + 𝜆) < 1 and so 𝜇𝜆 < 1 (by the definition of 𝑐𝛽,𝐿̃).

It follows that the application 𝛤 is a contraction on the Banach space 2,𝑚
𝛽 ×2,𝑚×𝑑

𝛽 . Therefore, by Banach fixed point theorem,
there exists a unique fixed point (𝑌 ,𝑍) = 𝛤 (𝑌 ,𝑍) in the space 2,𝑚

𝛽 ×2,𝑚×𝑑
𝛽 , which completes our proof. ■
6
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Remark 5. Let us underline that the condition on 𝐴 to be increasing can be relaxed assuming it to be a continuous bounded
variation F-adapted process with 𝐴0 = 0, P-a.s. Indeed, by considering the increasing process 𝐴̃(𝑡) ∶= ‖𝐴‖𝐵𝑉 ([0,𝑡]), 𝑡 ∈ [0, 𝑇 ] and the

adon–Nikodym derivative 𝛾(𝑡) ∶= 𝑑𝐴(𝑡)
𝑑𝐴̃(𝑡) , 𝑡 ∈ [0, 𝑇 ], we have that |𝛾(𝑡)| ≤ 1, ∀𝑡 ∈ [0, 𝑇 ], P-a.s. and the BSDE (3) can be rewritten as

𝑌 (𝑡) = 𝜉 + ∫

𝑇

𝑡
𝐹 (𝑠, 𝑌 (𝑠), 𝑍(𝑠), 𝑌𝑠, 𝑍𝑠)𝑑𝑠 + ∫

𝑇

𝑡
𝐺̃(𝑠, 𝑌 (𝑠), 𝑌𝑠)𝑑𝐴̃(𝑠)

−∫

𝑇

𝑡
𝑍(𝑠)𝑑𝑊 (𝑠), 𝑡 ∈ [0, 𝑇 ] ,

where the new coefficient 𝐺̃ ∶ 𝛺×[0, 𝑇 ]×R𝑚×𝐿2 ([−𝛿, 0];R𝑚) → R𝑚 is defined as 𝐺̃(𝑡, 𝑦, 𝑦̂) ∶= 𝛾(𝑡)𝐺(𝑡, 𝑦, 𝑦̂), still satisfying the condition
(A3), by replacing 𝐴 with 𝐴̃ and with the same 𝐿̃ and 𝐾̃.

As shown in [6], conditions as (H1) and (H2) restricting the magnitude of the delay are necessary. However, in the same paper, the
authors provide some examples (𝐹 ≡ 𝐾𝑌 (𝑡− 𝑇 ) and 𝐹 ≡ 𝐾 ∫ 𝑡

0 𝑌 (𝑠)𝑑𝑠, with 𝐾 ≤ 0) in which the delay can be considered of arbitrary
length. The next result is a first attempt to get rid of the restrictive assumptions concerning the delay, by imposing monotonicity
and linearity on generators 𝐹 and 𝐺.

More precisely, we assume that 𝑚 = 1, 𝜉 ∈ 𝐿2 (𝛺,𝑇 ,P
)

and we require 𝐹 and 𝐺 not depending on 𝑍𝑠, namely 𝐹 ∶
𝛺 × [0, 𝑇 ] × R × R𝑑 × 𝐿2 ([−𝛿, 0]) → R and 𝐺 ∶ 𝛺 × [0, 𝑇 ] × R × 𝐿2 ([−𝛿, 0]) → R.

Moreover, we require that:

(D1) 𝑦̂ ↦ 𝐹 (𝑡, 𝑦, 𝑧, 𝑦̂) and 𝑦̂ ↦ 𝐺(𝑡, 𝑦, 𝑦̂) are non-increasing with respect to the positive cone of 𝐿2 ([−𝛿, 0]) for all (𝑡, 𝑦, 𝑧) ∈ [0, 𝑇 ]×R×R𝑑 ,
P-a.s.;

(D2) 𝐹 (𝑡, 𝑦, 𝑧, 𝑦̂) = 𝐹0(𝑡) + 𝐹1(𝑦, 𝑧, 𝑦̂), 𝐺(𝑡, 𝑦, 𝑦̂) = 𝐺0(𝑡) + 𝐺1(𝑦, 𝑦̂), with 𝐹1 and 𝐺1 linear.

Thus, the BSDE (3) reduces to the following one:

𝑌 (𝑡) = 𝜉 + ∫

𝑇

𝑡

[

𝐹0(𝑠) + 𝐹1(𝑌 (𝑠), 𝑍(𝑠), 𝑌𝑠)𝑑𝑠
]

+ ∫

𝑇

𝑡

[

𝐺0(𝑠) + 𝐺1(𝑌 (𝑠), 𝑌𝑠)
]

𝑑𝐴(𝑠)

−∫

𝑇

𝑡
𝑍(𝑠)𝑑𝑊 (𝑠), 𝑡 ∈ [0, 𝑇 ] . (7)

Proposition 6. Assume conditions (D1), (D2) and (A0)–(A3) hold. If 𝛽 > 2
√

2𝐿̃, then there exists a solution (𝑌 ,𝑍) ∈ 2,1
𝛽 ×2,1×𝑑

𝛽 for
7).

roof. As in the proof of Theorem 4, we consider the map 𝛤 ∶ 2,1
𝛽 → 2,1

𝛽 , defined in the following way: for 𝑈 ∈ 2,1
𝛽 , 𝛤 (𝑈 ) = 𝑌 ,

here the couple of adapted processes (𝑌 ,𝑍) is the solution to the equation

𝑌 (𝑡) = 𝜉 + ∫

𝑇

𝑡

[

𝐹0(𝑠) + 𝐹1(𝑌 (𝑠), 𝑍(𝑠), 𝑈𝑠)𝑑𝑠
]

+ ∫

𝑇

𝑡

[

𝐺0(𝑠) + 𝐺1(𝑌 (𝑠), 𝑈𝑠)
]

𝑑𝐴(𝑠)

−∫

𝑇

𝑡
𝑍(𝑠)𝑑𝑊 (𝑠), 𝑡 ∈ [0, 𝑇 ] .

Using the same type of computations as in the above proof, it is easy to see that even without conditions (H1) and (H2), 𝛤 is still a
ipschitz-continuous function. By a classical comparison theorem for BSDEs, if 𝑈1(𝑡) ≤ 𝑈2(𝑡) P𝑑𝑡-a.e., then 𝑌 1(𝑡) ≤ 𝑌 2(𝑡), ∀𝑡 ∈ [0, 𝑇 ],
-a.s., with 𝑌 𝑖(𝑡) ∶= 𝛤 (𝑈 𝑖), 𝑖 = 1, 2. This shows that 𝛤 is non-increasing with respect to the positive cone of 2,1

𝛽 .
One can use now an argument from [11, Theorem 2.2] to show that there exist 𝑈,𝑈 ∈ 2,1

𝛽 such that 𝛤 ([𝑈,𝑈 ]) ⊆ [𝑈,𝑈 ], where
𝑈,𝑈 ] ∶=

{

𝑈 ∈ 2,1
𝛽 ∣ 𝑈 (𝑡) ≤ 𝑈 (𝑡) ≤ 𝑈 (𝑡), P𝑑𝑡-a.e.

}

. Obviously, [𝑈,𝑈 ] is a closed, convex set of the Banach space 2,1
𝛽 .

Let 𝑌 0 ∶= 𝑈 and, by recursion, 𝑌 𝑛+1 ∶= 𝛤 (𝑌 𝑛). By the monotonicity property of 𝛤 , it is easy to show that ∀𝑡 ∈ [0, 𝑇 ], P-a.s.,

𝑈 (𝑡) = 𝑌 0(𝑡) ≤ 𝑌 2(𝑡) ≤ ⋯ ≤ 𝑌 2𝑛(𝑡) ≤ ⋯ ≤ 𝑌 2𝑛+1(𝑡) ≤ ⋯ ≤ 𝑌 3(𝑡) ≤ 𝑌 1(𝑡) ≤ 𝑈 (𝑡).

et 𝑌 (𝑡) ∶= lim𝑛→∞ 𝑌 2𝑛(𝑡) and 𝑌 (𝑡) ∶= lim𝑛→∞ 𝑌 2𝑛+1(𝑡). Since 𝑈,𝑈 ∈ 2,1
𝛽 , for any 𝐻 ∈ 𝐿2(𝛺;𝐵𝑉 [0, 𝑇 ]) or 𝐻 ∈ 𝐿2(𝛺 × [0, 𝑇 ],P𝑑𝐴(⋅))

we have, by the dominated convergence theorem,

lim
𝑛→∞

E∫

𝑇

0
𝑒𝛽𝐴(𝑡)𝑌 2𝑛(𝑡)𝐻(𝑡)𝑑𝑡 = E∫

𝑇

0
𝑒𝛽𝐴(𝑡)𝑌 (𝑡)𝐻(𝑡)𝑑𝑡 and

lim
𝑛→∞

E∫

𝑇
𝑒𝛽𝐴(𝑡)𝑌 2𝑛+1(𝑡)𝐻(𝑡)𝑑𝑡 = E∫

𝑇
𝑒𝛽𝐴(𝑡)𝑌 (𝑡)𝐻(𝑡)𝑑𝑡.
7
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Hence (𝑒𝛽𝐴(⋅)∕2𝑌 2𝑛) and (𝑒𝛽𝐴(⋅)∕2𝑌 2𝑛+1) converge weakly to 𝑒𝛽𝐴(⋅)∕2𝑌 , respectively 𝑒𝛽𝐴(⋅)∕2𝑌 , in both 𝐿2(𝛺;𝐶[0, 𝑇 ]) and 𝐿2(𝛺 ×
[0, 𝑇 ],P𝑑𝐴(⋅)). By Mazur’s lemma (applied two times), for any 𝑛 ∈ N there are convex combinations, let us call them 𝑌 𝑛 and 𝑌

𝑛
, of

he elements of (𝑌 2𝑘)𝑘≥𝑛, respectively (𝑌 2𝑘+1)𝑘≥𝑛, such that (𝑒𝛽𝐴(⋅)∕2𝑌 𝑛) and (𝑒𝛽𝐴(⋅)∕2𝑌
𝑛
) converge strongly in both 𝐿2(𝛺;𝐶[0, 𝑇 ]) and

𝐿2(𝛺× [0, 𝑇 ],P𝑑𝐴(⋅)) to 𝑒𝛽𝐴(⋅)∕2𝑌 , respectively 𝑒𝛽𝐴(⋅)∕2𝑌 . Therefore, (𝑌 𝑛) and (𝑌
𝑛
) converge strongly in 2,1

𝛽 to 𝑌 , respectively 𝑒𝛽𝐴(⋅)𝑌 ;
thus, lim𝑛→∞ 𝛤 (𝑌 𝑛) = 𝛤 (𝑌 ) and lim𝑛→∞ 𝛤 (𝑌

𝑛
) = 𝛤 (𝑌 ).

On the other hand, by the linearity of 𝐹1 and 𝐺1, 𝛤 (𝑌 𝑛) and 𝛤 (𝑌
𝑛
) are convex combinations of the elements of (𝑌 2𝑘+1)𝑘≥𝑛,

espectively (𝑌 2𝑘)𝑘≥𝑛, so 𝑒𝛽𝐴(⋅)∕2𝛤 (𝑌 𝑛) and 𝑒𝛽𝐴(⋅)∕2𝛤 (𝑌
𝑛
) converge pointwisely to 𝑒𝛽𝐴(⋅)∕2𝑌 , respectively 𝑒𝛽𝐴(⋅)∕2𝑌 . Consequently,

(𝑌 ) = 𝑌 and 𝛤 (𝑌 ) = 𝑌 . Then, setting 𝑌 = 1
2𝑌 + 1

2𝑌 , we have 𝛤 (𝑌 ) = 𝑌 , which proves our claim. ■

. Dependence on parameters

Let us consider, for all 𝑛 ∈ N∗, the following BSDEs which approximate (3):

𝑌 𝑛(𝑡) = 𝜉𝑛 + ∫

𝑇

𝑡
𝐹 𝑛(𝑠, 𝑌 𝑛(𝑠), 𝑍𝑛(𝑠), 𝑌 𝑛

𝑠 , 𝑍
𝑛
𝑠 )𝑑𝑠 + ∫

𝑇

𝑡
𝐺𝑛(𝑠, 𝑌 𝑛(𝑠), 𝑌 𝑛

𝑠 )𝑑𝐴
𝑛(𝑠)

−∫

𝑇

𝑡
𝑍𝑛(𝑠)𝑑𝑊 (𝑠), 𝑡 ∈ [0, 𝑇 ] , (8)

In order to unify the notations, we will sometimes denote 𝜍0 instead of 𝜍, if 𝜍 is 𝜉, 𝐴, 𝐹 , 𝐺, 𝑌 or 𝑍. We suppose that the
coefficients 𝜉𝑛, 𝐴𝑛, 𝐹 𝑛, 𝐺𝑛, 𝑛 ≥ 0, satisfy conditions (A2)–(A3), (H1), (H2) with processes 𝐾𝑛, 𝐾̃𝑛, but the same constants 𝛽, 𝑐, 𝐿, 𝐿̃.

oreover, we have to impose that 𝛽 > 2
√

2𝐿̃.
We suppose that there exists 𝑝 > 1 such that

(A′
0) sup𝑛∈N E

[

𝑒𝑝𝛽𝐴𝑛(𝑇 )
|𝜉𝑛|2𝑝

]

< +∞.

(A′′
0 ) sup𝑛∈N E

[

𝑒𝑞𝐴𝑛(𝑇 )] < +∞, for any 𝑞 > 0.

(A′
1) sup𝑛∈N E

[(

∫ 𝑇
0 𝑒𝛽𝐴𝑛(𝑡)

|𝐹 𝑛 (𝑡, 0, 0, 0, 0)|2 𝑑𝑡
)𝑝

+
(

∫ 𝑇
0 𝑒𝛽𝐴𝑛(𝑡)

|𝐺𝑛 (𝑡, 0, 0)|2 𝑑𝐴𝑛(𝑡)
)𝑝]

< +∞.

Under these assumptions, there exists a unique solution (𝑌 𝑛, 𝑍𝑛) ∈ 2,𝑚
𝛽 ×2,𝑚×𝑑

𝛽 to Eq. (8). In fact, one can now prove by standard
omputations that (𝑌 𝑛, 𝑍𝑛) ∈ 𝑝,𝑚

𝛽 ×𝑝,𝑚×𝑑
𝛽 , ∀𝑛 ∈ N and

sup
𝑛∈N

‖(𝑌 𝑛, 𝑍𝑛)‖𝑝,𝛽 < +∞. (9)

Our aim is to show that if the coefficients (𝜉𝑛, 𝐴𝑛, 𝐹 𝑛, 𝐺𝑛) of Eq. (8) converge to (𝜉, 𝐴, 𝐹 , 𝐺), then (𝑌 𝑛, 𝑍𝑛) converge to (𝑌 ,𝑍) in
2,𝑚 ×2,𝑚×𝑑 . Let now specify in which sense the convergence of the coefficients takes place. We define

𝛥𝑛𝐹 ∶= sup
𝑡∈[0,𝑇 ], (𝑦,𝑧)∈R𝑚×R𝑚×𝑑 , (𝑦̂,𝑧̂)∈𝐿2([−𝛿,0];R𝑚×R𝑚×𝑑 )

|𝐹 𝑛(𝑡, 𝑦, 𝑧, 𝑦̂, 𝑧̂) − 𝐹 (𝑡, 𝑦, 𝑧, 𝑦̂, 𝑧̂)| ;

𝛥𝑛𝐺 ∶= sup
𝑡∈[0,𝑇 ], 𝑦∈R𝑚×R𝑚×𝑑 , 𝑦̂∈𝐿2([−𝛿,0];R𝑚)

|𝐺𝑛(𝑡, 𝑦, 𝑦̂) − 𝐺(𝑡, 𝑦, 𝑦̂)|

nd impose

C1) E
[

|𝜉𝑛 − 𝜉|2𝑝
]

→ 0 as 𝑛 → ∞;

C2) E sup𝑡∈[0,𝑇 ] |𝐴𝑛(𝑡) − 𝐴(𝑡)| → 0 as 𝑛 → ∞;

C3) [E
(

𝛥𝑛𝐹
)2𝑝 +

(

𝛥𝑛𝐺
)2𝑝] → 0 as 𝑛 → ∞.

The uniform convergence from assumption (C3) can be relaxed to a weaker type of convergence; however, we will work with
his hypothesis for the sake of keeping computations as simple as possible.

heorem 7. Assume that the above assumptions are fulfilled. Then

lim
𝑛→∞

E
[

sup |𝑌 𝑛(𝑡) − 𝑌 (𝑡)|2 +
𝑇
|𝑍𝑛(𝑡) −𝑍(𝑡)|2 𝑑𝑡

]

= 0.
8
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a

Proof. Let us denote for short

𝛥𝑛𝑌 (𝑡) ∶= 𝑌 𝑛(𝑡) − 𝑌 (𝑡) , 𝛥𝑛𝑍(𝑡) ∶= 𝑍𝑛(𝑡) −𝑍(𝑡) ; 𝛥𝑛𝜉 ∶= 𝜉𝑛(𝑡) − 𝜉(𝑡)

𝜔𝑛
𝛿 ∶= sup

𝑡∈[0,𝑇−𝛿]
(𝐴𝑛(𝑡 + 𝛿) − 𝐴𝑛(𝑡)) .

Exactly as in the proof of Theorem 4, by (H1) and (H2), we have
(

𝐾1𝑇
4𝐿2 + 4𝐾̃1 𝐴(𝑇 )

𝛽

)

𝑒𝛼𝛿+𝛽𝜔𝛿 ≤ 2𝑐 , P-a.s.;
𝐾1
4𝐿2 𝑒

𝛼𝛿+𝛽𝜔𝛿 ≤ 𝑐 , P-a.s,

for all 𝑛 ∈ N, where 𝛼 = 8𝐿2 + 1
2 . Let us apply Itô’s formula to 𝑒𝛼𝑡+𝛽𝐴(𝑡) |𝑌 𝑛(𝑡) − 𝑌 (𝑡)|2:

𝑒𝛼𝑡+𝛽𝐴
𝑛(𝑡)

|𝛥𝑛𝑌 (𝑡)|
2 + ∫

𝑇

𝑡
𝑒𝛼𝑠+𝛽𝐴

𝑛(𝑠)
|𝛥𝑛𝑌 (𝑠)|

2 (𝛼 𝑑𝑠 + 𝛽 𝑑𝐴𝑛(𝑠)) + ∫

𝑇

𝑡
𝑒𝛼𝑠+𝛽𝐴

𝑛(𝑠)
|𝛥𝑛𝑍(𝑠)|2𝑑𝑠

= 𝑒𝛼𝑇+𝛽𝐴
𝑛(𝑇 )

|𝛥𝑛𝜉|
2 − 2∫

𝑇

𝑡
𝑒𝛼𝑠+𝛽𝐴

𝑛(𝑠)
⟨𝛥𝑛𝑌 (𝑠), 𝛥𝑛𝑍(𝑠)𝑑𝑊 (𝑠)⟩

+2∫

𝑇

𝑡
𝑒𝛼𝑠+𝛽𝐴

𝑛(𝑠)
⟨𝛥𝑛𝑌 (𝑠), 𝐹 𝑛(𝑠, 𝑌 𝑛(𝑠), 𝑍𝑛(𝑠), 𝑌 𝑛

𝑠 , 𝑍
𝑛
𝑠 ) − 𝐹 (𝑠, 𝑌 (𝑠), 𝑍(𝑠), 𝑌𝑠, 𝑍𝑠)⟩𝑑𝑠

+2∫

𝑇

𝑡
𝑒𝛼𝑠+𝛽𝐴

𝑛(𝑠)
⟨𝛥𝑛𝑌 (𝑠) , 𝐺𝑛(𝑠, 𝑌 𝑛(𝑠), 𝑌 𝑛

𝑠 )𝑑𝐴
𝑛(𝑠) − 𝐺(𝑠, 𝑌 (𝑠), 𝑌𝑠)𝑑𝐴(𝑠)⟩ .

From assumptions (A2)–(A3) and (A′
1), we have, with 𝐾𝑛

1 ∶= sup𝑡∈[0,𝑇 ] 𝐾𝑛 and 𝐾̃𝑛
1 ∶= sup𝑡∈[0,𝑇 ] 𝐾̃𝑛,

2∫

𝑇

𝑡
𝑒𝛼𝑠+𝛽𝐴

𝑛(𝑠)
⟨𝛥𝑛𝑌 (𝑠), 𝐹 𝑛(𝑠, 𝑌 𝑛(𝑠), 𝑍𝑛(𝑠), 𝑌 𝑛

𝑠 , 𝑍
𝑛
𝑠 ) − 𝐹 (𝑠, 𝑌 (𝑠), 𝑍(𝑠), 𝑌𝑠, 𝑍𝑠)⟩𝑑𝑠

≤ 8𝐿2
∫

𝑇

𝑡
𝑒𝛼𝑠+𝛽𝐴

𝑛(𝑠)
|𝛥𝑛𝑌 (𝑠) |2𝑑𝑠 + 1

2
|

|

𝛥𝑛𝐹 |

|

2
∫

𝑇

𝑡
𝑒𝛼𝑠+𝛽𝐴

𝑛(𝑠)𝑑𝑠

+1
2 ∫

𝑇

𝑡
𝑒𝛼𝑠+𝛽𝐴

𝑛(𝑠) (
|𝛥𝑛𝑌 (𝑠) |2 + |𝛥𝑛𝑍 (𝑠) |2

)

𝑑𝑟

+
𝐾𝑛

1𝑇 𝑒
𝛼𝛿+𝛽𝜔𝑛

𝛿

4𝐿2
sup

𝑠∈[0,𝑇 ]

(

𝑒𝛼𝑠+𝛽𝐴
𝑛(𝑠)

|𝛥𝑛𝑌 (𝑠) |2
)

+
𝐾𝑛

1 𝑒
𝛼𝛿+𝛽𝜔𝑛

𝛿

4𝐿2 ∫

𝑇

0
𝑒𝛼𝑟+𝛽𝐴

𝑛(𝑟)
|𝛥𝑛𝑍 (𝑟) |2𝑑𝑟

nd, for all 𝑏 > 0,

2∫

𝑇

𝑡
𝑒𝛼𝑠+𝛽𝐴

𝑛(𝑠)
⟨𝛥𝑛𝑌 (𝑠) , 𝐺𝑛(𝑠, 𝑌 𝑛(𝑠), 𝑌 𝑛

𝑠 )𝑑𝐴
𝑛(𝑠) − 𝐺(𝑠, 𝑌 (𝑠), 𝑌𝑠)𝑑𝐴(𝑠)⟩

= 2∫

𝑇

𝑡
𝑒𝛼𝑠+𝛽𝐴

𝑛(𝑠)
⟨𝛥𝑛𝑌 (𝑠) , 𝐺𝑛(𝑠, 𝑌 𝑛(𝑠), 𝑌 𝑛

𝑠 ) − 𝐺𝑛(𝑠, 𝑌 (𝑠), 𝑌𝑠)⟩𝑑𝐴𝑛 (𝑠)

+2∫

𝑇

𝑡
𝑒𝛼𝑠+𝛽𝐴

𝑛(𝑠)
⟨𝛥𝑛𝑌 (𝑠) , 𝐺𝑛(𝑠, 𝑌 𝑛(𝑠), 𝑌 𝑛

𝑠 ) − 𝐺(𝑠, 𝑌 (𝑠), 𝑌𝑠)⟩𝑑𝐴𝑛 (𝑠)

+2∫

𝑇

𝑡
𝑒𝛼𝑠+𝛽𝐴

𝑛(𝑠)
⟨𝛥𝑛𝑌 (𝑠) , 𝐺(𝑠, 𝑌 (𝑠), 𝑌𝑠)⟩ (𝑑𝐴𝑛 (𝑠) − 𝑑𝐴 (𝑠))

≤ 2∫

𝑇

𝑡
𝑒𝛼𝑠+𝛽𝐴

𝑛(𝑠)
⟨𝛥𝑛𝑌 (𝑠) , 𝐺(𝑠, 𝑌 (𝑠), 𝑌𝑠)⟩ (𝑑𝐴𝑛 (𝑠) − 𝑑𝐴 (𝑠))

+𝑏∫

𝑇

𝑡
𝑒𝛼𝑠+𝛽𝐴

𝑛(𝑠)
|𝛥𝑛𝑌 (𝑠) |2𝑑𝐴𝑛 (𝑠) + 4𝐿̃2

𝑏
|

|

𝛥𝑛𝐺|

|

2
∫

𝑇

𝑡
𝑒𝛼𝑠+𝛽𝐴

𝑛(𝑠)𝑑𝐴𝑛 (𝑠)

+
𝛽
2 ∫

𝑇

𝑡
𝑒𝛼𝑠+𝛽𝐴

𝑛(𝑠)
|𝛥𝑛𝑌 (𝑠) |2𝑑𝐴𝑛 (𝑠) + 4𝐿̃2

𝛽 ∫

𝑇

𝑡
𝑒𝛼𝑠+𝛽𝐴

𝑛(𝑠)
|𝛥𝑛𝑌 (𝑠) |2𝑑𝐴𝑛 (𝑠)

+
4𝐾̃𝑛

1 𝐴
𝑛 (𝑇 ) 𝑒𝛼𝛿+𝛽𝜔

𝑛
𝛿

sup
(

𝑒𝛼𝑠+𝛽𝐴
𝑛(𝑠)

|𝛥𝑛𝑌 (𝑠) |2
)

.

9

𝛽 𝑠∈[0,𝑇 ]
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I

w

Since 𝛼 = 4𝐿2 + 1 and 𝛽 > 2
√

2𝐿̃, one can choose 𝑏 ∶= 𝛽
2 − 4𝐿̃2

𝛽 and so we obtain

𝑒𝛼𝑡+𝛽𝐴
𝑛(𝑡)

|𝛥𝑛𝑌 (𝑡)|
2 + 1

2 ∫

𝑇

𝑡
𝑒𝛼𝑠+𝛽𝐴

𝑛(𝑠)
|𝛥𝑛𝑍(𝑠)|2𝑑𝑠

≤ 𝑒𝛼𝑇+𝛽𝐴
𝑛(𝑇 )

|𝛥𝑛𝜉|
2 − 2∫

𝑇

𝑡
𝑒𝛼𝑠+𝛽𝐴

𝑛(𝑠)
⟨𝛥𝑛𝑌 (𝑠), 𝛥𝑛𝑍(𝑠)𝑑𝑊 (𝑠)⟩

+2∫

𝑇

𝑡
𝑒𝛼𝑠+𝛽𝐴

𝑛(𝑠)
⟨𝛥𝑛𝑌 (𝑠) , 𝐺(𝑠, 𝑌 (𝑠), 𝑌𝑠)⟩ (𝑑𝐴𝑛 (𝑠) − 𝑑𝐴 (𝑠))

+1
2
|

|

𝛥𝑛𝐹 |

|

2
∫

𝑇

𝑡
𝑒𝛼𝑠+𝛽𝐴

𝑛(𝑠)𝑑𝑠 + 4𝐿̃2

𝑏
|

|

𝛥𝑛𝐺|

|

2
∫

𝑇

𝑡
𝑒𝛼𝑠+𝛽𝐴

𝑛(𝑠)𝑑𝐴𝑛 (𝑠)

+
𝐾1𝑇 𝑒

𝛼𝛿+𝛽𝜔𝑛
𝛿

4𝐿2
sup

𝑠∈[0,𝑇 ]

(

𝑒𝛼𝑠+𝛽𝐴
𝑛(𝑠)

|𝛥𝑛𝑌 (𝑠) |2
)

+
𝐾1𝑒

𝛼𝛿+𝛽𝜔𝑛
𝛿

4𝐿2 ∫

𝑇

0
𝑒𝛼𝑠+𝛽𝐴

𝑛(𝑠)
|𝛥𝑛𝑍 (𝑠) |2𝑑𝑠

+
4𝐾̃1 𝐴𝑛 (𝑇 ) 𝑒𝛼𝛿+𝛽𝜔

𝑛
𝛿

𝛽
sup

𝑠∈[0,𝑇 ]

(

𝑒𝛼𝑠+𝛽𝐴
𝑛(𝑠)

|𝛥𝑛𝑌 (𝑠) |2
)

.

Therefore, by conditions (H1) and (H2),

1
2 ∫

𝑇

𝑡
𝑒𝛼𝑠+𝛽𝐴

𝑛(𝑠)
|𝛥𝑛𝑍(𝑠)|2𝑑𝑠

≤ 2∫

𝑇

𝑡
𝑒𝛼𝑠+𝛽𝐴

𝑛(𝑠)
⟨𝛥𝑛𝑌 (𝑠) , 𝐺(𝑠, 𝑌 (𝑠), 𝑌𝑠)⟩ (𝑑𝐴𝑛 (𝑠) − 𝑑𝐴 (𝑠))

+1
2
|

|

𝛥𝑛𝐹 |

|

2
∫

𝑇

𝑡
𝑒𝛼𝑠+𝛽𝐴

𝑛(𝑠)𝑑𝑠 + 4𝐿̃2

𝑏
|

|

𝛥𝑛𝐺|

|

2
∫

𝑇

𝑡
𝑒𝛼𝑠+𝛽𝐴

𝑛(𝑠)𝑑𝐴𝑛 (𝑠)

+2𝑐 sup
𝑠∈[0,𝑇 ]

(

𝑒𝛼𝑠+𝛽𝐴
𝑛(𝑠)

|𝛥𝑛𝑌 (𝑠) |2
)

+ 𝑐 ∫

𝑇

0
𝑒𝛼𝑠+𝛽𝐴

𝑛(𝑠)
|𝛥𝑛𝑍 (𝑠) |2𝑑𝑠.

Exploiting Burkholder–Davis–Gundy’s inequality, we have that

2E
[

sup
𝑡∈[0,𝑇 ]

|

|

|∫

𝑇

𝑡
𝑒𝛼𝑠+𝛽𝐴

𝑛(𝑠)
⟨𝛥𝑛𝑌 (𝑠), 𝛥𝑛𝑍(𝑠)𝑑𝑊 (𝑠)⟩||

|

]

≤ 1
4
E
(

𝑒𝛼𝑠+𝛽𝐴
𝑛(𝑠)

|𝛥𝑛𝑌 (𝑠) |2
)

+ 144E∫

𝑇

0
𝑒𝛼𝑠+𝛽𝐴

𝑛(𝑠)
|𝛥𝑛𝑍 (𝑠) |2𝑑𝑠 .

As in the proof of Theorem 4, we obtain

E
(

sup
𝑠∈[𝑡,𝑇 ]

𝑒𝛼𝑠+𝛽𝐴
𝑛(𝑠)

|𝛥𝑛𝑌 (𝑠) |2
)

+ E∫

𝑇

0
𝑒𝛼𝑠+𝛽𝐴

𝑛(𝑠)
|𝛥𝑛𝑍 (𝑠) |2𝑑𝑠

≤ 𝐶E
[

|𝛥𝑛𝜉|
2𝑝 + |𝛥𝑛𝐹 |

2𝑝 + |𝛥𝑛𝐺|

2𝑝] ⋅ E𝑒𝛽𝑞𝐴𝑛(𝑇 )

+𝐶E sup
𝑡∈[0,𝑇 ]

|

|

|

|

|

∫

𝑇

𝑡
𝑒𝛼𝑠+𝛽𝐴

𝑛(𝑠)
⟨𝛥𝑛𝑌 (𝑠) , 𝐺(𝑠, 𝑌 (𝑠), 𝑌𝑠)⟩ (𝑑𝐴𝑛 (𝑠) − 𝑑𝐴 (𝑠))

|

|

|

|

|

.

where 𝐶 is a positive constant and 𝑞 ∶= 𝑝
𝑝−1 .

By conditions (C1) and (A′′
0 ),

lim
𝑛→∞

E
[

|𝛥𝑛𝜉|
2𝑝 + |𝛥𝑛𝐹 |

2𝑝 + |𝛥𝑛𝐺|

2𝑝] ⋅ E𝑒𝛽𝑞𝐴𝑛(𝑇 ) = 0.

t remains to prove that

lim
𝑛→∞

E sup
𝑡∈[0,𝑇 ]

|

|

|

|

|

∫

𝑇

𝑡
𝑋𝑛(𝑠)𝑑𝐻𝑛(𝑠)

|

|

|

|

|

= 0,

here, for 𝑠 ∈ [0, 𝑇 ],

𝑋𝑛(𝑠) ∶= 𝑒𝛼𝑠+𝛽𝐴
𝑛(𝑠)

⟨𝛥𝑛𝑌 (𝑠) , 𝐺(𝑠, 𝑌 (𝑠), 𝑌𝑠)⟩;

𝐻𝑛(𝑠) ∶= 𝐴𝑛 (𝑠) − 𝐴 (𝑠) .

One can prove that

E sup |𝑋𝑛(𝑡)|𝑝
10

𝑡∈[0,𝑇 ]
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H

m

is uniformly bounded (with respect to 𝑛), by (9). Obviously, by (A′′
0 ),

sup
𝑛∈N∗

E sup
𝑡∈[0,𝑇 ]

|𝐻𝑛(𝑡)|2 < +∞.

ence, the sequence (𝑋𝑛,𝐻𝑛)𝑛∈N∗ is tight in 𝐶 [0, 𝑇 ]2. By Prokhorov’s theorem, we can extract a sequence, say (𝑋𝑛𝑘 ,𝐻𝑛𝑘 )𝑘∈N∗ ,
convergent in distribution to some stochastic process (𝑋,𝐻) with continuous paths. Since, by (C2), lim𝑛→∞ E sup𝑡∈[0,𝑇 ] |𝐻𝑛(𝑡)| = 0, 𝐻

ust be P-a.s. equal to 0. The condition (A′′
0 ) also implies that sup𝑛∈N E ‖𝐻𝑛

‖

𝑎
𝐵𝑉 [0,𝑇 ] < +∞, for every 𝑎 > 1, so ‖𝐻𝑛

‖𝐵𝑉 [0,𝑇 ] is bounded
in probability (i.e., it satisfies condition (16)). We can now apply Proposition 8, proved as an auxiliary result in the Appendix, in
order to derive the convergence in distribution to 0 of the process

(

∫

𝑡

0
𝑋𝑛(𝑠)𝑑𝐻𝑛(𝑠)

)

𝑡∈[0,𝑇 ]
.

Since, for some 𝜈 > 0, the functional 𝜙𝜈 ∶ 𝐶 [0, 𝑇 ] → R, defined by

𝜙𝜈 (𝒙) ∶= sup
𝑡∈[0,𝑇 ]

|𝒙(𝑇 ) − 𝒙(𝑡)| ∧ 𝜈,

is bounded and continuous, it follows that

E

[

sup
𝑡∈[0,𝑇 ]

|

|

|

|

|

∫

𝑇

𝑡
𝑋𝑛(𝑠)𝑑𝐻𝑛(𝑠)

|

|

|

|

|

∧ 𝜈

]

= 0,

for every 𝜈 > 0. Since, by Markov’s inequality, for some 𝑎 ∈ (1, 𝑝)

E sup
𝑡∈[0,𝑇 ]

|

|

|

|

|

∫

𝑇

𝑡
𝑋𝑛(𝑠)𝑑𝐻𝑛(𝑠)

|

|

|

|

|

≤ E

[

sup
𝑡∈[0,𝑇 ]

|

|

|

|

|

∫

𝑇

𝑡
𝑋𝑛(𝑠)𝑑𝐻𝑛(𝑠)

|

|

|

|

|

∧ 𝜈

]

+ 1
𝜈𝑎

E

[

sup
𝑡∈[0,𝑇 ]

|

|

|

|

|

∫

𝑇

𝑡
𝑋𝑛(𝑠)𝑑𝐻𝑛(𝑠)

|

|

|

|

|

𝑎]

and

E

[

sup
𝑡∈[0,𝑇 ]

|

|

|

|

|

∫

𝑇

𝑡
𝑋𝑛(𝑠)𝑑𝐻𝑛(𝑠)

|

|

|

|

|

𝑎]

≤ E
[(

sup
𝑡∈[0,𝑇 ]

|𝑋𝑛(𝑡)|𝑎
)

‖𝐻𝑛
‖

𝑎
𝐵𝑉 [0,𝑇 ]

]

≤
(

E
[

sup
𝑡∈[0,𝑇 ]

|𝑋𝑛(𝑡)|𝑝
])

𝑎
𝑝
(

E ‖𝐻𝑛
‖

𝑝
𝑎(𝑝−𝑎)
𝐵𝑉 [0,𝑇 ]

)1− 𝑎
𝑝
,

it follows that

lim
𝑛→∞

E sup
𝑡∈[0,𝑇 ]

|

|

|

|

|

∫

𝑇

𝑡
𝑋𝑛(𝑠)𝑑𝐻𝑛(𝑠)

|

|

|

|

|

= 0,

which concludes our proof. ■

4. Hedging a stream of payments with time-delayed GBSDE

In this last section, we present a risk management application for an insurance product, the so-called variable annuity instrument,
whose composition can be controlled by the insurer selecting an appropriate strategy to reduce the overall risk of the policyholder’s
investment. This example is an extension of the work contained in [4–7], where the authors apply different classes of BSDEs with
time–delayed generators to insurance and finance. Specifically, inspired by Section 7 in [4], we consider an insurance product where
the policyholder withdraws some guaranteed amounts as a fraction of the maximum value of the investment and, additionally, is
subjected to a continuous payment triggered by an increasing continuous process 𝐴 modelling the cumulative function of claims
(or, e.g. of fees for the management of the wealth). At maturity, the remaining value is converted into a life-time annuity with a
guaranteed consumption rate 𝐶.

We consider a probability space (𝛺, ,P) with associated natural filtration F = (𝑡)0≤𝑡≤𝑅 generated by a Brownian motion
𝑊 ∶= (𝑊 (𝑡), 0 ≤ 𝑡 ≤ 𝑇 ) and a finite time horizon 𝑇 ≤ ∞.

The goal of the investor is to replicate the insurance by investing in the assets and to quantify the risk of the investing activities.
In the terminology of [8], we focus on an investment composed of a risk free asset 𝑆0 and a risky asset 𝐷.

The price of the risk free asset 𝑆0 ∶= (𝑆0(𝑡), 0 ≤ 𝑡 ≤ 𝑇 ) is given by the equation

𝑑𝑆0(𝑡)
𝑆0(𝑡)

= 𝑟(𝑡)𝑑𝑡, 𝑆0(0) = 1, (10)
11

where 𝑟 describes the risk free interest rate being a non-negative F-progressively measurable stochastic process.
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The price of the risky ass 𝐷 ∶= (𝐷(𝑡), 0 ≤ 𝑡 ≤ 𝑇 ) with maturity 𝑇 is given by
𝑑𝐷(𝑡)
𝐷(𝑡)

= (𝑟(𝑡) + 𝜎(𝑡)𝜃(𝑡)) 𝑑𝑡 + 𝜎(𝑡)𝑑𝑊 (𝑡), 𝑆(0) = 𝑥, (11)

where the volatility 𝜎 ∶= (𝜎(𝑡), 0 ≤ 𝑡 ≤ 𝑇 ) and the risk premium 𝜃 ∶= (𝜃(𝑡), 0 ≤ 𝑡 ≤ 𝑇 ) are F-progressively measurable processes.
On the other hand, the stream of liabilities 𝑃 (𝑡) ∶= (𝑃 (𝑡), 0 ≤ 𝑡 ≤ 𝑇 ) depends on the past value of the portfolio by the following:

𝑃 (𝑡) = 𝛾 sup
𝑠∈[0,𝑡]

{𝑋(𝑠)} 𝑑𝑡 + ∫

𝑡

0
𝑋(𝑠 − 𝛿)𝑑𝐴(𝑠). (12)

The first term models a guaranteed withdrawal amount as a fraction 𝛾 ∈ (0, 1) of the running maximum value of the investment
value. Instead, the second term models a Stieltjes integral representing the total amount of continuous claims that depend on a
past value of the investment and that are triggered by the increasing continuous function 𝐴. We emphasize that if we consider no
dependence on the value of the investment 𝑋, i.e. only ∫ 𝑡

0 𝑑𝐴(𝑠), we obtain the well-known case with 𝐴 representing a cumulative
consumption process. See, e.g., [8,9] for a detailed description or [10] for the problem of utility maximization under a drawdown
constraint setting.

We consider a self financing investment portfolio 𝑋 ∶= (𝑋(𝑡), 0 ≤ 𝑡 ≤ 𝑇 ), while the admissible strategy 𝜋 ∶= (𝜋(𝑡), 0 ≤ 𝑡 ≤ 𝑇 )
denotes the amount invested in the risky bond 𝐷.

We denote 𝜇(𝑡) = 𝑟(𝑡) + 𝜃(𝑡)𝜎(𝑡) and we write the dynamic of 𝑋 by the following SDE

𝑑𝑋(𝑡) =𝜋(𝑡)
𝑑𝐷(𝑡)
𝐷(𝑡)

+ (𝑋(𝑡) − 𝜋(𝑡))
𝑑𝑆0(𝑡)
𝑆0(𝑡)

− 𝑑𝑃 (𝑡) (13)

=𝜋(𝑡) (𝜇(𝑡)𝑑𝑡 + 𝜎(𝑡)𝑑𝑊 (𝑡)) + (𝑋(𝑡) − 𝜋(𝑡)) 𝑟(𝑡)𝑑𝑡

− 𝛾 sup
𝑠∈[0,𝑡]

{𝑋(𝑠)} 𝑑𝑡 − ∫

𝑡

0
𝑋(𝑠 − 𝛿)𝑑𝐴(𝑠)

𝑋(𝑇 ) =𝐶𝑎(𝑇 ) ,

𝑎 being the annuity factor 𝑎(𝑇 ) = EQ
[

∫ ∞
𝑇 𝑒− ∫ 𝑠

𝑇 𝑟(𝑢)𝑑𝑢𝑑𝑠|𝑇

]

.
Eq. (13) models a variable annuity contract where the policyholder’s contributions are invested into two assets (𝐷 and 𝑆0).

Positive returns are distributed to the policyholder account based on the maximum value of the investment and on a prescribed
process 𝐴 (hedging fee) while the remaining value at maturity is received as a life-time annuity.

From [4], we know that there exists a unique equivalent martingale measure Q ∼ P under which the discounted price process
𝑆 is a (Q,F)-martingale. Thus, we perform the following change of variables

𝑌 (𝑡) = 𝑋(𝑡)𝑒− ∫ 𝑡
0 𝑟(𝑠)𝑑𝑠 , 𝑍(𝑡) = 𝜋(𝑡)𝜎(𝑡)𝑒− ∫ 𝑡

0 𝑟(𝑠)𝑑𝑠 , 0 ≤ 𝑡 ≤ 𝑇 (14)

giving the following dynamic for the discounted portfolio process 𝑌 ∶= (𝑌 (𝑡))0≤𝑡≤𝑇 under the measure Q

𝑌 (𝑡) = 𝐶𝑎̃(𝑇 ) + ∫

𝑇

𝑡
𝛾 sup
𝑢∈[0,𝑠]

{

𝑌 (𝑢)𝑒− ∫ 𝑠
𝑢 𝑟(𝑣)𝑑𝑣

}

𝑑𝑠

+∫

𝑇

𝑡
𝑌 (𝑠 − 𝛿)𝑒− ∫ 𝑠−𝛿

0 𝑟(𝑣)𝑑𝑣𝑑𝐴(𝑠) − ∫

𝑇

𝑡
𝑍(𝑠)𝑑𝑊 Q(𝑠) ,

(15)

𝑊 Q being a Q-Brownian motion.
Assuming that conditions (A0)–(A3) and (H1)–(H2) hold true and applying Theorem 4, we obtain existence and uniqueness of the

solution of Eq. (15). Moreover, the stability of the investment under a perturbation (in uniform norm) of the distribution of the
prescribed cumulative distribution is obtained by Theorem 7, letting to model robust hedging for the investment with respect to a
modification of the prescribed cumulative distribution of future claims.

5. Conclusions and further developments

In this article, we develop a theoretical framework to study a BSDE with time-delayed generator whose dynamic depends also on
Stieltjes integral term. Under regular assumptions of the coefficients and small delay, we prove the well-posedness of the problem
in terms of existence, uniqueness and stability under a perturbation in uniform norm. We also provide an application of our results
for a BSDE in insurance setting. Moreover, we obtain the global (in time) well posedness of the BSDE for an arbitrary delay that
represent a novel result in the literature, representing a first attempt to handle (globally) time delayed BSDE. Providing a solid
theoretical background for this setting could open up new directions for applications.

Concerning further direction of research, other extensions would consider the forward reflected SDE linked to the Stieltjes
integral in (1) to investigate the corresponding FBSDE with delayed generator and possible connections with the nonlinear PDE
with Neumann boundary conditions in the spirit of [17]. Another possibility concerns considering Stieltjes integration with respect
to increasing functions that are not necessarily continuous, dealing with dynamics driven by Poisson random measure.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.
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Appendix

In this section, we state the result used in the proof of Theorem 7. It is a variant of the Helly–Bray theorem for the stochastic
ase and is also stronger than Proposition 3.4 from [21]:1

roposition 8. Let (𝑋𝑛,𝐻𝑛) ∶ (𝛺𝑛,𝑛,P𝑛) → 𝐶([0, 𝑇 ];R𝑑 )2, 𝑛 ≥ 1, be a sequence of random variables, converging in distribution to a
andom variable (𝑋,𝐻) ∶ (𝛺, ,P) → 𝐶([0, 𝑇 ];R𝑑 )2. If for all 𝑛 ≥ 1, 𝐻𝑛 is P𝑛-a.s. with bounded variation and

lim
𝜈→+∞

sup
𝑛≥1

P𝑛

(

‖

‖

𝐻𝑛
‖

‖𝐵𝑉 ([0,𝑇 ];R𝑑 ) > 𝜈
)

= 0, (16)

hen 𝐻 is P-a.s. with bounded variation and the sequence of 𝐶[0, 𝑇 ]-valued random variables
(

∫ ⋅
0 ⟨𝑋𝑛(𝑠), 𝑑𝐻𝑛(𝑠)⟩

)

𝑛≥1 converges in
istribution to ∫ ⋅

0 ⟨𝑋(𝑠), 𝑑𝐻𝑛(𝑠)⟩.

As expected, the proof of this result uses a deterministic Helly–Bray type theorem aiming uniform convergence. For the reader’s
onvenience, we will state and prove this result:

emma 9. Let
(

𝒙𝑛
)

𝑛≥1 ⊆ 𝐶([0, 𝑇 ];R𝑑 ) and
(

𝜼𝑛
)

𝑛≥1 ⊆ 𝐵𝑉 ([0, 𝑇 ];R𝑑 ) be two sequences of functions such that:

i) 𝒙𝑛 converges uniformly to a function 𝒙∈𝐶([0, 𝑇 ];R𝑑 );
ii) 𝜼𝑛 converges uniformly to a function 𝜼;
iii) sup𝑛≥1 ‖‖𝜼𝑛‖‖𝐵𝑉 ([0,𝑇 ];R𝑑 ) < +∞.

Then 𝜼 ∈ 𝐵𝑉 ([0, 𝑇 ];R𝑑 ), ‖𝜼‖𝐵𝑉 ([0,𝑇 ];R𝑑 ) ≤ lim inf𝑛→∞
‖

‖

𝜼𝑛‖‖𝐵𝑉 ([0,𝑇 ];R𝑑 ) and the sequence of continuous functions
(

∫ ⋅
0 ⟨𝒙𝑛(𝑠), 𝑑𝜼𝑛(𝑠)⟩

)

𝑛≥1
onverges uniformly to ∫ ⋅

0 ⟨𝒙(𝑠), 𝑑𝜼(𝑠)⟩.

roof. The first two assertions are well-known, so we skip their proof.
Let us prove the last one. We say that a tuple 𝜋 = (𝑡0,… , 𝑡𝑘) is a partition of [0, 𝑇 ] if 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑘𝑁 = 𝑇 .
We consider 𝜋𝑁 = (𝑡𝑁0 ,… , 𝑡𝑁𝑘𝑁 ), 𝑁 ∈ N∗ partitions of the interval [0, 𝑇 ] such that

lim
𝑁→∞

sup
0≤𝑖<𝑡𝑁𝑘𝑁

|

|

|

𝑡𝑁𝑖+1 − 𝑡𝑁𝑖
|

|

|

= 0.

et 𝒙𝑁 ∶ [0, 𝑇 ] → R𝑑 be a step-function approximating 𝒙, defined by

𝒙𝑁 ∶= 𝟏{0}𝒙(0) +
𝑘𝑁
∑

𝑖=1
𝟏(𝑡𝑖−1 ,𝑡𝑖]𝒙(𝑡𝑖).

et 𝑀 ∶= sup𝑛≥1 ‖‖𝜼𝑛‖‖𝐵𝑉 ([0,𝑇 ];R𝑑 ). Then
|

|

|

|

|

∫

𝑡

0
⟨𝒙𝑛(𝑠), 𝑑𝜼𝑛(𝑠)⟩ − ∫

𝑡

0
⟨𝒙(𝑠), 𝑑𝜼(𝑠)⟩

|

|

|

|

|

≤
|

|

|

|

|

∫

𝑡

0
⟨𝒙𝑛(𝑠) − 𝒙(𝑠), 𝑑𝜼𝑛(𝑠)⟩

|

|

|

|

|

+
|

|

|

|

|

∫

𝑡

0

⟨

𝒙(𝑠) − 𝒙𝑁 (𝑠), 𝑑(𝜼𝑛 − 𝜼)(𝑠)
⟩

|

|

|

|

|

+
|

|

|

|

|

∫

𝑡

0

⟨

𝒙𝑁 (𝑠), 𝑑(𝜼𝑛 − 𝜼)(𝑠)
⟩

|

|

|

|

|

≤ ‖

‖

𝒙𝑛 − 𝒙‖
‖𝐶([0,𝑇 ];R𝑑 ) V

𝑇
0 (𝜼𝑛) +

‖

‖

‖

𝒙𝑁 − 𝒙‖‖
‖𝐶([0,𝑇 ];R𝑑 )

(

V𝑇
0 (𝜼𝑛) + V𝑇

0 (𝜼)
)

+
𝑘𝑁
∑

𝑖=1

|

|

𝒙(𝑡𝑖)|| ⋅ ||(𝜼𝑛 − 𝜼)(𝑡𝑖 ∧ 𝑡) − (𝜼𝑛 − 𝜼)(𝑡𝑖−1 ∧ 𝑡)|
|

.

Therefore,

sup
𝑡∈[0,𝑇 ]

|

|

|

|

|

∫

𝑡

0
⟨𝒙𝑛(𝑠), 𝑑𝜼𝑛(𝑠)⟩ − ∫

𝑡

0
⟨𝒙(𝑠), 𝑑𝜼(𝑠)⟩

|

|

|

|

|

≤ 𝑀 ‖

‖

𝒙𝑛 − 𝒙‖
‖𝐶([0,𝑇 ];R𝑑 )

+2𝑀 ‖

‖

‖

𝒙𝑁 − 𝒙‖‖
‖𝐶([0,𝑇 ];R𝑑 )

+ 2

(𝑘𝑁
∑

𝑖=1

|

|

𝒙(𝑡𝑖)||

)

‖𝜼𝑛 − 𝜼‖𝐶([0,𝑇 ];R𝑑 ) .

It follows that

lim sup
𝑛→∞

sup
𝑡∈[0,𝑇 ]

|

|

|

|

|

∫

𝑡

0
⟨𝒙𝑛(𝑠), 𝑑𝜼𝑛(𝑠)⟩ − ∫

𝑡

0
⟨𝒙(𝑠), 𝑑𝜼(𝑠)⟩

|

|

|

|

|

≤ 2𝑀 ‖

‖

‖

𝒙𝑁 − 𝒙‖‖
‖𝐶([0,𝑇 ];R𝑑 )

.

1 In the same time, it corrects an error in the statement of that result: “Let 𝑋𝑛, 𝐾𝑛 ∶ (𝛺𝑛,𝑛, 𝑃 𝑛) → 𝐖, 𝑛 ≥ 1, be two sequences of random variables,
onverging in distribution to 𝑋, respectively 𝐾 ”, should be replaced with “Let (𝑋𝑛 , 𝐾𝑛) ∶ (𝛺𝑛,𝑛, 𝑃 𝑛) → 𝐖2 , 𝑛 ≥ 1, be a sequence of random variables,
onverging in distribution to (𝑋,𝐾)”. We emphasize that this does not affect in any way the validity of the other results in that paper, since the arguments
13
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w

Since lim𝑁→∞
‖

‖

𝒙𝑁 − 𝒙‖
‖𝐶([0,𝑇 ];R𝑑 ) = 0, we finally get

lim
𝑛→∞

sup
𝑡∈[0,𝑇 ]

|

|

|

|

|

∫

𝑡

0
⟨𝒙𝑛(𝑠), 𝑑𝜼𝑛(𝑠)⟩ − ∫

𝑡

0
⟨𝒙(𝑠), 𝑑𝜼(𝑠)⟩

|

|

|

|

|

= 0. ■

Let us now proceed with the proof of the main result of this section, which follows the same steps as that of Proposition 3.4
from [21].

Proof of Proposition 8. Let 𝐖 ∶= 𝐶([0, 𝑇 ];R𝑑 ), 𝐕 ∶= 𝐶([0, 𝑇 ];R𝑑 ) ∩ 𝐵𝑉 ([0, 𝑇 ];R𝑑 ) and, for 𝜈 > 0,

𝐕𝜈 ∶=
{

𝜼 ∈ 𝐕 ∣ ‖𝜼‖𝐵𝑉 ([0,𝑇 ];R𝑑 ) ≤ 𝜈
}

.

By the first part of Lemma 9, 𝐕𝜈 is a closed subset of the Banach space 𝐖.
Let us consider the function 𝛬 ∶ 𝐖 ×𝐖 → 𝐖 defined by

𝛬(𝒙, 𝜼)(𝑡) ∶=
{

∫ 𝑡
0 ⟨𝒙(𝑠), 𝑑𝜼(𝑠)⟩ , (𝑥, 𝜼) ∈ 𝐖 × 𝐕;
0, (𝑥, 𝜼) ∈ 𝐖 × (𝐖 ⧵ 𝐕).

By the last conclusion of Lemma 9, the restriction 𝛬|𝐖×𝐕𝜈
is continuous.

Let now 𝑅𝑛 ∶= P𝑛◦(𝑋𝑛,𝐻𝑛)−1 and 𝑅0 ∶= P◦(𝑋,𝐻)−1, the distribution probabilities of (𝑋𝑛,𝐻𝑛), respectively (𝑋,𝐻). By the
assumptions of the theorem,

(

𝑅𝑛
)

𝑛≥1 converges weakly to 𝑅0, i.e.

lim
𝑛→∞∫𝐖×𝐖

𝛷 (𝒙, 𝜼)𝑅𝑛(𝑑𝒙, 𝑑𝜼) = ∫𝐖×𝐖
𝛷 (𝒙, 𝜼)𝑅0(𝑑𝒙, 𝑑𝜼), (17)

or every bounded continuous functional 𝛷 ∶ 𝐖 ×𝐖 → R.
First of all, by the Portmanteau lemma,

lim sup
𝑛→∞

𝑅𝑛
(

𝐖 × 𝐕𝜈
)

≤ 𝑅0
(

𝐖 × 𝐕𝜈
)

, ∀𝜈 > 0.

ince, by condition (16),

lim
𝜈→+∞

inf
𝑛≥1

𝑅𝑛
(

𝐖 × 𝐕𝜈
)

= 1, (18)

e get lim𝜈→+∞ 𝑅0
(

𝐖 × 𝐕𝜈
)

= 1, i.e. 𝑅0 (𝐖 × 𝐕) = 1, meaning that 𝐻 is P-a.s. of bounded variation.
Let now 𝜙 ∶ 𝐶[0, 𝑇 ] → R be an arbitrary bounded continuous functional. It remains to prove that lim𝑛→∞ E𝜙 (𝛬(𝑋𝑛,𝐻𝑛)) =

𝜙 (𝛬(𝑋,𝐻)), which can be written as

lim
𝑛→∞∫𝐖×𝐖

(𝜙◦𝛬)𝑑𝑅𝑛 = ∫𝐖×𝐖
(𝜙◦𝛬)𝑑𝑅0.

ince 𝜙◦𝛬|𝐖×𝐕𝜈
is bounded and continuous, it can be extended to a continuous functional 𝛷𝜈 ∶ 𝐖 × 𝐖 → R, bounded by

∶= sup𝐳∈𝐶[0,𝑇 ] 𝜙(𝐳); hence, by (17),

lim
𝑛→∞∫𝐖×𝐖

𝛷𝜈 (𝒙, 𝜼)𝑅𝑛(𝑑𝒙, 𝑑𝜼) = ∫𝐖×𝐖
𝛷𝜈 (𝒙, 𝜼)𝑅0(𝑑𝒙, 𝑑𝜼).

et us estimate the term

𝑇𝑛,𝜈 ∶=
|

|

|

|

∫𝐖×𝐖

(

𝛷𝜈 (𝒙, 𝜼) − 𝜙◦𝛬
)

𝑅𝑛(𝑑𝒙, 𝑑𝜼)
|

|

|

|

,

or 𝑛 ∈ N (including then the case 𝑛 = 0). We have

𝑇𝑛,𝜈 ≤ ∫𝐖×𝐖
|

|

𝛷𝜈 (𝒙, 𝜼) − 𝜙◦𝛬|
|

𝑅𝑛(𝑑𝒙, 𝑑𝜼) = ∫𝐖×(𝐖⧵𝐕𝜈 )
|

|

𝛷𝜈 (𝒙, 𝜼) − 𝜙◦𝛬|
|

𝑅𝑛(𝑑𝒙, 𝑑𝜼)

≤ 2𝑀𝑅𝑛
(

𝐖 × (𝐖 ⧵ 𝐕𝜈 )
)

= 2𝑀
(

1 − 𝑅𝑛
(

𝐖 × 𝐕𝜈
))

.

ence, by (18) and its consequence

lim
𝜈→+∞

sup
𝑛≥0

𝑇𝑛,𝜈 = 0.

inally, for all 𝑛 ≥ 1 and 𝜈 > 0,
|

|

|

|

∫𝐖×𝐖
(𝜙◦𝛬)𝑑𝑅𝑛 − ∫𝐖×𝐖

(𝜙◦𝛬)𝑑𝑅0
|

|

|

|

≤
|

|

|

|

∫𝐖×𝐖
𝛷𝜈 (𝒙, 𝜼)𝑅𝑛(𝑑𝒙, 𝑑𝜼) − ∫𝐖×𝐖

𝛷𝜈 (𝒙, 𝜼)𝑅0(𝑑𝒙, 𝑑𝜼)
|

|

|

|

+ 𝑇𝑛,𝜈 + 𝑇0,𝜈

nd therefore

lim sup
𝑛→∞

|

|

|

|

∫𝐖×𝐖
(𝜙◦𝛬)𝑑𝑅𝑛 − ∫𝐖×𝐖

(𝜙◦𝛬)𝑑𝑅0
|

|

|

|

≤ 2 sup
𝑛≥0

𝑇𝑛,𝜈 , ∀𝜈 > 0
14

hich, by passing to the limit as 𝜈 → 0, yields the desired conclusion. ■
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