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ARTICLE INFO ABSTRACT

MSC: We prove the existence and uniqueness of the solution of a BSDE with time-delayed generators
60H10 in the small delay setting (or equivalently small Lipschitz constant), which employs the Stieltjes
60H30 integral with respect to an increasing continuous stochastic process. Moreover, we obtain a
Keywords: result of continuity of the solution with regard to the increasing process, assuming only uniform
Generalized backward stochastic differential convergence, but not in variation. We also prove the existence in the case of arbitrary delay
equations by imposing monotonicity and linearity on generators. Lastly, we provide an application of the
Time-delayed generators theoretical framework within an insurance based example.

Stieltjes integral

Parameter dependence

1. Introduction

Backward stochastic differential equations (BSDEs for short) were introduced in the linear case by Bismut [1], as adjoint equations
involved in the control of SDEs. The nonlinear case was considered by Pardoux and Peng first in [13] and then in [14,18,19],
where they established a connection between BSDEs and semilinear parabolic partial differential equations (PDEs), by the so-called
nonlinear Feynman-Kac formula. It was this kind of application which triggered an impressive amount of research on the subject.
Concerning parabolic PDEs with Neumann boundary conditions, Pardoux and Zhang [17] discovered that their solutions can be
linked to BSDEs involving the integral with respect to continuous increasing processes (Stieltjes integral). Moreover, the connection
between BSDE and PDE with Neumann boundary condition has been further studied in [15,16] and also within a multivalued setting
in [12,21].

This paper represents a first step in establishing a probabilistic representation formula of the solutions of delayed path-dependent
parabolic PDEs with Neumann boundary conditions. It consists of studying the well posedness of the associated BSDEs, i.e. existence
and uniqueness of solutions, as well as stability with respect to terminal data and coefficients. As already shown in [2] for the case
of such PDEs considered on the whole space, the generator of the associated BSDE has to take into account the delayed-path of its
solution. As a result, our present work is concerned with the following BSDE:

dY(t)=—-F@t,Y(t), Z(1),Y,, Z)dt — G(1,Y (1), Y,)d A(t)

+Z@®dw (), te€]0,T]; @
Y(T)=¢,
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where the generators F and G depend also on the past of the solution (Y, Z). Here, if x : [-5,T] - R”" is a function and 7 € [0,T],
x, : [-6,0] —» R" denotes the delayed-path of x, defined as

x,(0) :==x(t+0), 6 €[-05,0],

where 6 > 0 is a fixed delay. The coefficient A is a continuous real valued increasing process.
We recall that time-delayed BSDEs were first introduced in [6,7] where the authors obtained the existence and uniqueness of
the solution of the time-delayed BSDE

T T
Y(@t)=¢ +/ f(s,Y,, Z)ds —/ Z(s)ydW(s), 0<t<T, 2)
t t
where
Y, = (Y(r)),elo,xj and Z; := (Z(r))rel(),s]‘

In particular, the aforementioned existence and uniqueness result holds true if the time horizon T or the Lipschitz constant for the
generator f are sufficiently small.

The motivation behind the introduction of a driving force d A and the corresponding integral goes beyond the link with PDE and
can be traced in actuarial applications since [3,20]. In the context of insurance, a BSDE such as the one described in Eq. (1) can
be used to model the evolution of a hedging strategy for an insurance portfolio over time. In this framework, the Riemann-Stieltjes
integral is linked to the sum of claims with respect to an increasing continuous process that models the cumulative distribution of
claims.

This paper is organized as follows. In the remaining part of this section, we introduce the notations and set the framework of
our problem. In Section 2 we derive a result of existence and uniqueness for small delay (or small Lipschitz constant) for BSDE (1),
based on Banach’s fixed point theorem, expressed in Theorem 4. Moreover, we provide in Proposition 6, the well-posedness result
for an arbitrary delay for a specific case assuming monotone (in the delayed term) and linear coefficients. Section 3 is devoted to
the problem of stability of solutions with respect to terminal data ¢ and coefficients F, G and A. Lastly, in Section 4, we present an
insurance application dealing with a variable annuity investment that suits the theoretical setting. The main difficulty encountered
in the article is to prove the convergence of the solutions of the approximating BSDEs when the increasing process A is approximated
uniformly, but not in variation. In order to tackle this problem, we use a stochastic variant of Helly-Bray theorem, proved in the
Appendix, as it may be an interesting result for use in other applications.

1.1. Problem setting and notations

On the Euclidean space R” we consider the Euclidean norm and scalar product, denoted by |-| and (-, -), respectively. If n, k € N*,
R™k denotes the space of real n x k-matrices, equipped with the Frobenius norm (the Euclidean norm when this space is identified
with R”%), denoted as well by |-|.

For s < t, C([s,1];R") represents the set of continuous functions x : [s,#] —» R, endowed with the sup-norm: lxllcsamrn =
Sup,ers.q 1X(; BV ([s,7];R") denotes the set of right-continuous functions with bounded variation 7 : [s,7] — R", ie. with a finite
total variation. Recall that the total variation of 5 on [s,?] is defined as

Vi) = sup By [n@) = nGi-pl
where the sup is taken on all the partitions s =, <, < --- <t, = . The standard norm on BV ([s,t];R") is given by
7l gy sy == 0] + V@)

We will simply denote C[s, ], BV [s,1] instead of C([s,];R), BV ([s,1]; R), respectively.
If x : [s,7] - R" is a Borel-measurable function and n € BV ([s,t]; R"), by /S’ (x(r)dn(r)) we denote the sum

n t
> / (x;(ndm (M),
=173

where x|, ..., x, and n,, ..., n, are the components of x, respectively #, in the case where the Lebesgue-Stieltjes integrals are
well-defined and the sum makes sense.

We fix now the framework of our problem, to be utilized throughout the article.

Let T > 0 be a finite horizon of time, d,m € N* and 6 € (0,7] a fixed time-delay. Let (£, F,P) be a complete probability space,
W a d-dimensional Brownian motion and F = {P,} P the filtration generated by W, augmented by the null-probability subsets
of Q. The stochastic process A : 2 x[0,T] — R is an increasing F-adapted process with A(0) = 0, P-a.s.

Definition 1. Let p>2 and g > 0.

(i) SP™ denotes the space of continuous F-progressively measurable processes Y : 2 x [0,T] — R" such that

E[ sup |Y(s)|p] < 400.

0<s<T
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(ii) S;;"" denotes the space of continuous F—progressively measurable processes Y : 2 x [0,T] — R™ such that

T p/2
E [ sup eﬁA<S>|Y(s)|l’] +E [ / PAONY (5)PdA(s)| < +oo.
0

0<s<T

(iii) H;’”'Xd denotes the space of F—progressively measurable processes Z : 2 x [0,T] - R”™ such that
T p/2
E [/ eﬁf‘(~‘>|2(s)|2ds] < +00.
0

Instead of H(’)"'"Xd we will write 77", The space S;"" x Hg""Xd (in fact, its quotient with respect to P x Pdr-a.e. equality) is
naturally equipped with the following norm

p/2

T
I, 2| =E[sup AN ()P +E / A1y (5)|2d ACs)
ph 0<s<T 0

T p/2
+E [/ eﬁA(”|Z(s)|2ds] .
0

2. Existence and uniqueness

We consider the following BSDE
T T
Yt)=¢+ / F(s,Y(s), Z(s), Y, Z)ds + / G(s,Y(s),Y,)d A(s)
t t

T
—/ Z(s)dWi(s), te[0,T], 3)
t

with & € L2 (Q,Fp,P;R") and the generators F : Q x [0,T] x R" x R™? x L2 ([-6,0]; R™) x L2([-5,0;R™d) — R" G
2 x[0,T] x R™ x L?([-6,0];R™) — R” such that the functions F (-, y,z, §,2) and G (-, y, §) are F-progressively measurable, for any
(3, 2,9, 2) € R" x R"™4d x [2 ([-6,0]; R™) x L2([—8,0]; R"*4), respectively for any (y, §) € R” x L2 ([-§,0]; R™).

Recall that, for a function x : [-6,7T] - R” and some ¢ € [0,T], x, : [-6,0] - R" denotes the delayed-path of x, defined as

x,(0) :==x(+0), 6 €[-05,0].

In order to define Y; and Z; even for s < §, we prolong by convention, Y by Y(0) and Z by 0 on the negative real axis.
In what follows we present the assumptions required in this section. We suppose that there exist constants #, L, L > 0, bounded
progressively measurable stochastic processes K, K : 2x[0,T] — R, and p, j probability measures on ([-8, 0], 3([-8,0])) such that:

(Ag) E[ePAD) (1+[£%)] < +oo;
) E [/OT PAD [ (1,0,0,0,0)2 dr + [ ePAD |G(t,0,0)|2dA(t)] < +oo.

(Ay) foranyt€[0,T], (,2),(),2) e R" xR"™ 3§ §' € L?([—6,0];R™) and 2, 2’ € L?([-6,0];R">*?), we have
() |Ft.y.z.9.2) - F1t.y.Z.9.0)| < L(ly—y| +1z—Z|), P-as;

(i) |F(ty.2.9.2) = F(t, 32,9, &)
0 N N 2 N N 2
< K(t)/ <|y(9) -7 O +|200) - 2 )| )p(dH), P-a.s.;
-5
(A;) forany ¢ € [0,T], y,y € R" and $,§' € L?([-5,0];R™), we have
) 16y, 9 -Gy .9l < Lly-y|, P-as,;

0
(i) 1G(t,y.9) = Gty 3’ <R (1) / |90) - 3 0)|” 5(d6), P-as.;
-6

Remark 2. Let us underline that the latter conditions differ from those used in [6], since we allow T to be arbitrary, but different
from the delay 6 € [0,T]. This allows to separate the Lipschitz constant L w.r.t. (y,z) from the Lipschitz constant K w.r.t. (J, 2);
therefore the restriction on the coefficients can avoid the constant L.

Remark 3. Existence and uniqueness of a solution to the backward system (3) will be proved by exploiting a standard Banach’s
fixed point argument which requires K or é to be small enough.
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More precisely, by denoting K := sup,cjor) K(s), K| := supcfor) K(s) and

ws = sup (A(t+96)— A1),
1€[0,7-5)

. . ‘s . 2_gf2
we will assume the existence of a positive constant ¢ < ¢g [ ‘= min { £ 2 ;L ) ﬁ } such that

J8L2+ Ds+pag

H,)) K, -max{l,T}- <ec, Pas;

412
8(8L2+%)(5+ﬁm5
p
Our first result states existence and uniqueness of Eq. (3).

(Hy) 4K, - A(T) - <e¢, P-as.

Theorem 4. Let us assume that (Ay)—(A;3) hold true and p > 2\/5[2. If conditions (H,) and (H,) are satisfied then there exists a unique
solution (Y, Z) € SZ”" X Hﬁ”"x‘i for (3).

Proof. The existence and uniqueness will be obtained by the Banach fixed point theorem.

Let us consider the map I' : S>" x H>™? - 2™ x 1>™? defined in the following way: for (U,V) € S;*"’ X H;""Xd,
' U,v)= (Y, Z), where the couple of adapted processes (Y, Z) is the solution to the equation

T T
Yn=¢ +/ F(s,Y(s), Z(s), Uy, Vy)ds +/ G(s,U(s), Uy)d A(s)
t
r t
- / Z(s)dW (s), 1€[0,T]. 4
t
The existence of a unique solution (Y, Z) € $2" x H?>"*4 is guaranteed by [13]. Indeed, if we denote

t
B() = / G(s,U(s),U)dA(s), t€[0,T];
0
F(t,y,z) := F(t,y— B(t),z,U,V,), t€[0,T], (y,z) € R" x R"™¢,

then (Y, Z) is a solution to Eq. (3) if and only if (Y + B, Z) solves the equation
T T
Yt =&+ B(T) +/ F(s,Y(s), Z(s), Uy, Vy)ds — / Z(s)dW(s), te€[0,T].
t t

N . 2
Since F is Lipschitz with respect to (y, z), it remains to prove that E fOT |F ,0, 0)‘ dt < 40 and &+ B(T) € L? (_Q,T’T,]P; ]R"’). We
have (remember that K, := sup,cjor) K(s) and K, := sup (o) K(5)):

T R 2 T T
IE/ ‘F(t,0,0)| dt:IE/ |F(t, - B(1),0, U,,V,)|2dts31E/ |F(t,0,0,0,0)|? dt
0 0 0
T T 0
+3L2E/ |B(r)|2dz+3uz/ K(t)/ (IU@+ 0>+ [Vt +0)?) p(dd)dt
0 0 -5
T T
53E/ |F(t,0,0,0,0)|2dt+3L2E/ |B(t)|? dt
0 0

+3TE [K] sup |U@))?

T
+3IEK1/ |V (0)|? dt.
1€[0,T] 0

Since (A) holds and K, is bounded, we only have to show that IE/OT |B(t)|? df < +o0 and E |B(T)|? < +c0. We have

IE./
0

T t t
<E / [ / A |G(s, U (s),U)[* dACs) - / e‘ﬁA(S)dA(s)] dt
0 0 0

2

t
/ G(s,U(s), U)dA(s)| dr
0

T [T 2 or [T
< ﬁE/ oPAW |G, U@®),U)|” dA@) < 7I[«:/ P40 1G(1,0,0)|> d A(r)
0 0

2r 4 BA() 72 2 2T 4 BA®W) 0 2 -
+SE [ PO U@FdAD+ R [ POR @ [ UG+ 0F pdodAw
0 0 -5

T 2 T
< %TE / P40 1G(1,0,0)2 dA®) + 2TTLIE / PO N\U@)? dA®G)
0 0

+2—T]EI€1A(T)eﬂ’”5 sup P40 U@)|? < +00,
p (€[0.7)
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by (A,) and (H,), which proves the claim (along the way we have also proven that E |B(T)|? < +0).
The proof that (Y, 2) € Sj"" X H;*'"Xd is very similar to that of Proposition 1.1 from [17], so it is left to the reader.
Let us prove that I" is a contraction with respect to the equivalent norm

T
I D130 7= B S0 PO @) +aE /0 ALY (5)Pd A (s)

T
+bE / A Z (5) | ds.
0
where « :=8L2 + % and the constants a,b > 0 are yet to be chosen.

Let us consider (U, V1), (U2, V?) € Sﬂz”" xH;*’"Xd and (Y!,Z') ;=1 (U, V1), (Y2, Z2) := I (U2 V?). For the sake of brevity,
we will denote in what follows

AF (5) 1= F(s.Y' (5). Z' (5). UL V) = F(5.Y?(5), Z% (5) . U2, V2),
AG(s) := G(s,U" (5),U)) = G(5,U? (5),UD),

AU (5) :=U'(5)=U*(5), AV (5) :=V'(5)=V?(5),

AY (5) =Y () = Y2(s), AZ(s):=Z"'(s) = Z*(s).

Exploiting Itd’s formula we have, for any ¢ € [0,T]

T T
MHPAD | AY (1) |7 + / eSHPAS | AY (5) |2 (ads + Bd A (5)) + / eSHPAS|AZ (5) 2 ds

t t
T
= e T+PAMD) | gy (T) |> = 2 / e®SHPAS(AY (5), AZ (s) AW (5))
t
T T
+2 / eSTPAG)(AY (s5), AF(s))ds + 2 / eSTPAO (AY (5), AG (5))d A (s) .
t t
From assumptions (A,)—(A;) we obtain,

T T
2‘ / tHPAG) gy (s),AF(s))ds‘ <2 / HSHPAG)
t t

(AY (5), AF(s))‘ds

T T
<3812 / SHAS)| Ay (5) |2ds + 817 / HIAG) | AF (5) [2ds
t t

T T
SSLZ/ e“5+ﬁA<S>|AY(s)|2ds+%/ e HAG (14Y (5) > + [AZ (5)*) ds
t

t

K, T
+;zea5+ﬁw,; - sup (ents+ﬁA(s)|AU (s) |2)
4L s€[0.T]

K, ad+Pwg r as+PA(s) 2
+—e 6 . e 1AV (s)|~ds
4L 0

and

T
(4Y (s),AG(s))|d A(s)
'

T
2‘ / e“5+ﬁA(")(AY(s),AG(s))dA(s)|52 / AHPAG)
t

IA

NI NI

T T
/ e“’+ﬁA(’)|AY(s)|2dA(s)+72) / eHPADIAG (5) |Pd A (s)

t t

T 4f2 (T
< / e®HPAD | AY (5) |2d A (s) + 5 / eXSTPAD | AU () |Pd A (s)
t t
+4K1 A(T) 0 +hws sup (eas+ﬁA(s)|AU (5) |2)
p s€[0.T]

By (H,) and (H,), we have
KT | 4K A\ ab+pws .
(8 + EAD )eworios <o, Peas;

Ky as+po
me s <c, P-a.s,
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(recall that o := 8L% + %). Therefore,

T
eat+ﬂA(l)|AY 0} |2 + g / eas+[}A(S)|AY () |2dA (s)
t

T
+% / eSHPAS|AZ (5) | ds
t
T ~ T (5)
412 A )
<=2 [ eHPANAY (5),AZ (5)dW (5)) + 5 eXSHPAD | AU () |Pd A (s)

t t

T
+2¢ sup (“HAD AU (5) %) + ¢ / P14V (5) [Pds.
S€[0,T] 0

Since e®+FA®AY € §2Mm and AZ € H?">4 | one can show that

T
E [/ e‘”+ﬂA(“)(AY(s),AZ(s)dW(s))] =0,
0

hence

NSTRSN

T T
E/ e“5+ﬂA(S)|AY(S)|2dA(S)+%]E/ eus+ﬂA(s)|AZ(s)|2ds
0 0

2 T
< ‘*L]E / e“+ﬁA<s)|AU(s)|2dA(s)+2cE[ sup (e®+PAD|4U (5) ) 6)
ﬂ 0 s€[0,T]

T
+cE [ / e®SHPAD| AV (s) |2ds] .
0

On the other hand, by Burkholder-Davis—-Gundy’s inequality, we have

[sup | / @HPAG(AY (5), AZ (5))dW (5) |]

t€[0,T]

T
< 1IE( sup e™PAD|AY (1) |7) + T2E / eHPAD|AZ () |2ds.
t€[0,T] 0

Hence, by (5),
1

~E( sup M HPAD| Ay (1) |2)
t€[0,T]

T 4L T
572]E/ A AZ (5) |Pds + 5 E/ ™ HPAD| AU (5) |Pd A (s)
0 0

T
+2cE [ sup (e®+PA)|4U (5) |2)] +cE [/ e®SHPAD AV (s) |2ds] .
sel0.T] 0

Thus, with a := /lﬁ , b := % — 144 and some A > 288, by taking into account (6), we obtain

T
E( sup e®*PAD14Y (1)) +a / eSHPAG|AY (5)|2d A (s)
t€[0,T] 0

T
+bE / A A Z (5) |2ds
0

Nz T
<22+ DE [ sup (e®HPAD|AU (s) |2)] + 4%(2 + )E / eSHPAG| AU (s) |2d A (s)
s€[0,T] 0

T
+¢2+ DE / A AV (1) P dr,
0
SO
AY, AZ)I3 , 50y < 12 NCAU A3 4 5 oy
where

72
4, = max {c(2+ 2. 812(2+4) 2c(2+1)}

A2 7 A-288
Since ¢ < ¢; 7, we can take 4 slightly bigger than T -2, such that 2¢(2 + 1) < I and so u, < 1 (by the definition of ¢, ;).

It follows that the application I” is a contraction on the Banach space 52'" H; m<d Therefore, by Banach fixed point theorem,
there exists a unique fixed point (Y, Z) = I'(Y, Z) in the space 52’" X H; ’"Xd, which completes our proof. ]
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Remark 5. Let us underline that the condition on A to be increasing can be relaxed assuming it to be a continuous bounded

variation F-adapted process with A, = 0, P-a.s. Indeed, by considering the increasing process A(7) := || A|| BV (o> ! € [0,T] and the
Radon-Nikodym derivative y () := %8, t € [0,T], we have that |y(¢)| < 1, V¢ € [0,T], P-a.s. and the BSDE (3) can be rewritten as

T T
Y() =&+ / F(s,Y(s), Z(s), Yy, Z,)ds + / G(s,Y(s), Y,)d A(s)
t t

T
—/ Z(s)dW(s), te[0,T],
t

where the new coefficient G : 2x[0, T]xR"x L? ([-6,0]; R™) — R™ is defined as G(t,y, §) := y(t)G(t, y, ), still satisfying the condition
(Ay), by replacing A with A and with the same L and K.

As shown in [6], conditions as (H,) and (H,) restricting the magnitude of the delay are necessary. However, in the same paper, the
authors provide some examples (F = KY(t—T) and F = K f()' Y (s)ds, with K < 0) in which the delay can be considered of arbitrary
length. The next result is a first attempt to get rid of the restrictive assumptions concerning the delay, by imposing monotonicity
and linearity on generators F and G.

More precisely, we assume that m = 1, & € L2(Q,F;,P) and we require F and G not depending on Z,, namely F
Qx[0,TIxRxRYx L2([-6,0]) > Rand G : 2 x[0,T] xR x L?([-5,0]) = R.

Moreover, we require that:

(Dy) y+ F(t,y,z 9 and y = G(1, y, ) are non-increasing with respect to the positive cone of L? ([—§, 0]) for all (¢, y, z) € [0, TIXRxR¢,
P-a.s.;

D,) F(t,y,z,9) = Fy() + Fi(y,z,9), G, y,9) = Gy() + G, (¥, ), with F| and G, linear.
Thus, the BSDE (3) reduces to the following one:
T T
Yt)=¢+ / [Fo(s) + Fy(Y(s), Z(5), Yy)ds| + / [Go(s) + G (Y (s), Y,)] dA(s)
t t

T
—/ Z(s)ydW<(s), te][0,T]. )
t

Proposition 6. Assume conditions (D), (D,) and (Ay)—(A3) hold. If p > 2\/5Z, then there exists a solution (Y, Z) € S;’l X Hz’lx‘i for
).

Proof. As in the proof of Theorem 4, we consider the map I : Sﬂz’1 - S;’l, defined in the following way: for U € S>!', I (U) =Y,
where the couple of adapted processes (Y, Z) is the solution to the equation

T T
Yt)=¢+ / [Fo(s) + Fy(Y(s), Z(5), U)dss| + / [Go(s) + G, (Y (), Uy)] d A(s)
t t

T
—/ Z(s)dW(s), te€[0,T].
t

Using the same type of computations as in the above proof, it is easy to see that even without conditions (H;) and (H,), I is still a
Lipschitz-continuous function. By a classical comparison theorem for BSDEs, if U!(r) < U?(t) Pdt-a.e., then Y!(r) < Y2(t), Vt € [0,T],
P-a.s., with Y(t) := [(U"), i = 1,2. This shows that I is non-increasing with respect to the positive cone of 5;’1.

One can use now an argument from [11, Theorem 2.2] to show that there exist U. ,Ue Sﬂz’1 such that I'([U, U)c U, U], where
U, U] := {U S S;’l U@ <U@® < U(r), Pdr-a.e. } Obviously, [U, U] is a closed, convex set of the Banach space Sﬁz'l.

Let YV := U and, by recursion, Y"*! := I'(Y"). By the monotonicity property of I’, it is easy to show that V¢ € [0,T], P-a.s.,

UD=Y'0) < Y20 < <Y < o <Y () < < Y30 <Y () <T@

Let Y(1) :=lim,_ o, Y2'(z) and Y (1) := lim,_, Y2"*'(¢). Since U,U € S>', for any H € L2(2; BV[0,T]) or H € L2 x [0, T], P4 A("))
we have, by the dominated convergence theorem,

n—o0 n— 0o

T T
lim E / LAY (H(ndr = E / PAOY (1 H (1)dt and
n—oo 0 0

T T
lim E / PAOY2H (N H(dt = B / LAY (N H(t)dt.
0

n—oo 0
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Hence (efA0/2y2n) and (ePA0/2y2n+1y converge weakly to efA0/2y, respectively ef40/2Y, in both L2(Q;C[0,T]) and L*(Q x
[0,T1,Pd A(-)). By Mazur’s lemma (applied two times), for any n € N there are convex combinations, let us call them Y" and 7’, of
the elements of (Y2),s,, respectively (Y2*+1),,,, such that (e#40/2Y") and (e#40)/ 27" converge strongly in both L2(2; C[0,T]) and
L2(@x[0,T],PdA()) to eP40/2y , respectively e#A0)/2Y, Therefore, (Y") and " converge strongly in SZ" to Y, respectively e/A0)Y;
thus, lim,_, I'(Y") = I'(Y) and lim,__ I'Y") = I'(Y).

On the other hand, by the linearity of F| and G, I'(Y") and F(?") are convex combinations of the elements of (Yz"“)kz,,,
respectively (Y2),,,, so efA0/21(Y") and e#A0/21(Y") converge pointwisely to e/A0/2Y, respectively efA0/2Y. Consequently,
ry)= Y and I'(Y) = Y. Then, setting ¥ = %Z + %7, we have I'(Y) = Y, which proves our claim. [ ]

3. Dependence on parameters

Let us consider, for all » € N*, the following BSDEs which approximate (3):
T T
Y'(t) = &"+ / F'(s,Y"(s), Z"(5), Y, Z")ds + / G"(s5,Y"(5), YA A"(s5)
t t
T
—/ Z"(s)dW(s), te€l0,T], 8)
t

In order to unify the notations, we will sometimes denote ¢ instead of ¢, if ¢ is &, A, F, G, Y or Z. We suppose that the
coefficients &", A”, F", G", n > 0, satisfy conditions (A,)~(A;), (H,), (H,) with processes K", K", but the same constants 4, c, L, L.

Moreover, we have to impose that g > 2\/5i.
We suppose that there exists p > 1 such that

(AD) supyen E [eP4"T) 7] < +oo.
(Ag) sup,en E [e"A”(T)] < +o0, for any ¢ > 0.
n P n P
(A") sup,en E [(/OT PAD | Fn (1,0,0,0,0))2 dt) + (/OT P |G7 (1,0, 0)[2 dA"(t)) ] < +oo.
Under these assumptions, there exists a unique solution (Y", Z") € S;’”’XH;’”'X" to Eq. (8). In fact, one can now prove by standard
computations that (Y", Z") € Sg’m X Hg""x‘i, Vn € N and
sup Y™, Z"Ml,p < +o0. 9)

Our aim is to show that if the coefficients (£", A", F",G") of Eq. (8) converge to (&, A, F,G), then (Y", Z") converge to (Y, Z) in
S2m % H2m*d  Let now specify in which sense the convergence of the coefficients takes place. We define

A,F = sup |F"(t,y,2,9,2) — F(t,y,2,9,2)|;
t€[0.T], (y.2)ERMXRMX  (§,2)eL2([—5,0]:;RmxRm¥d)

4,G : sup IG"(t,y,9) — G(t, y, D)
1€[0,T], yeRmxRMXd = 5 L2([—5,0];R™)

and impose

(Cp) E[lg"— &) - 0as n— oo

(Cy) Esupor) |A"(1) = A®)] = 0 as n — oo;
(C3) [E(4,F)” + (4,G)"1 > 0 as n — oo.

The uniform convergence from assumption (C;) can be relaxed to a weaker type of convergence; however, we will work with
this hypothesis for the sake of keeping computations as simple as possible.

Theorem 7. Assume that the above assumptions are fulfilled. Then

T
lim E | sup |Y"(t)—Y(t)|2+/ |Z"(t) — Z(@)|*dt| = 0.
0

n—eo t€[0,T]
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Proof. Let us denote for short

AY(@M) =Y"0)-Y(®), A4,Z1t):=Z"(t)—-Z(t); A, :=E"()-&0
cug = sup (A"(t+8)—A"®).
1€[0,7-6]

Exactly as in the proof of Theorem 4, by (H;) and (H,), we have

( KT 4K A(T)

ad+fwg < » .
e 5 )e <2c, P-as;

K| as+po,
me s <c, ]P-a.S,

for all n € N, where a = 8L% + % Let us apply Itd’s formula to e*tF40) |y7(1) — Y (1)|*:

T T
A0 1A, Y (1)) + / NN, Y () (ads + fdA"(5) + / A4, Z(5)2ds

1 t

T
= THAD| 4,87 -2 / eSHPANA, Y (5), 4, Z(5)d W (5))
1

T
2 / A A Y (s), F'(s, Y"(5), Z'(s), Y, Z1) = F(s, Y (s), Z(5), Y,, Z,))ds
t
T
+2 / AN (AY (5),G"(5,Y"(5), YA A'(5) — G(5,Y (5), Y, )d A(s)) -
t

From assumptions (A,)-(A3) and (A’1 ), we have, with K’ 1 1= superor) K" and IZ;“ = SUPeqo.7 K",

)

T
2 / ™A (A, Y (5), (5, Y"(5), Z"(s), Y, Z") = F(5,Y (5), Z(5), Yy, Z,))ds
t

T T
<sr? / e“+’”*”<”|4,,1v<s)|2ds+%IA,,FI2 / A g5
t 1

T
1 "
+§/ BT (14,Y () 1> + 14,Z () %) dr
t
KnTemSJrﬂw; )
L sup (e‘””“ (S)|AnY(s)|2)
42 o)
Knea&ﬂiwg T .,
+1—2/ P04, 7 (r) Pdr
4L 0

and, for all b > 0,

T
2 / A (AY (5),G"(5,Y"(5), YA A" (5) — G(5, Y (5), Y, )d A(s))

t

T
=2 / A (A Y (5),G"(5,Y"(5), Y)) — G"(5, Y (5), Y,))d A" (5)

t

T
+2 / SN (ALY (5), G (s, Y"(5), ") — G(5,Y (5), Y,))d A" (5)
t

T
+2 / eWHPA' (A Y (5),G(s5,Y(5),Y,)) (dA" (s) — dA(s))
t

IA

T
2 / BTN ALY (5),G(s, Y (5), Y,)) (A" (5) — dA(s))
t

r n 4i2 2 r n
+b/ pXSHPA (s)lAnY (s) |2dA" (5) + — |AnG| / USTPA(S) g An (s)
" or b~2 T t
+§ / eas+ﬁA”(x)|A"Y(s) |2dAn () + % / ens+ﬂA”(g)|AnY (s) |2dAn (s)
t t

4R AN (T) ea5+ﬁw§ .
T ey o).
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~ 2
Since « =4L?> + 1 and § > 2\/§L, one can choose b := g - % and so we obtain

T
eerﬂA"(t)lAnY(t)lZ + % / eaerﬂA"(s)lA”Z(s)lst

t

T
< THAML L7 ~2 / NN A,Y (5), 4, Z(5)dW (5))

t

T
+2 / VAN (ALY (5),Gls, Y (5), Y,)) (A" (s) — dA(s))
t

1 2 [T as+HA"(s) 412 2 [T as+BAN(s) 5 4n
+5 |4,F| : e ds+ -5 |4,G| I e dA" (s)

K Tea5+ﬁw; \
e 3 sup (e"”ﬁA ©)4,Y (s) |2)

4L s€[0,T]
K ea6+ﬁwg T .
1 e / eas+ﬂA (s) |AnZ (S) IzdS
0

4R, A" (T) e®0+P% "
JATMe T sup (" A" 14,Y (5) 7).
p s€[0.T)

Therefore, by conditions (H;) and (H,),
1 (7 "
> / N4, 7 (s)|ds
2 J:
T n
<2 / eHPAYD(AY (5),G(s, Y (5), Y,)) (dA" (s) — dA(s))
t

1 2 [T n 412 2 [T n
+§ |AnF| / WA ) g6 4 T |AnG| / e¥STPA"(S) g g1 (s)
1 t

T
+2¢ sup (eVO1A,Y (9)]) +e / A4, 7 (5) Pds.
s€[0,T] 0

Exploiting Burkholder-Davis-Gundy’s inequality, we have that

T
21[3[ sup ( / e"”ﬂ""(S)(AnY(s),A,,Z(s)dW(s))”
refo.r1! Ji

T
< %E(e“”“"(”lAnY(s)lz) + 1441E/0 RV WACTEr T
As in the proof of Theorem 4, we obtain
T
E( sup e®*t4"0|4,Y (5)]*) +E / BN 4 7 (5)|ds
s€[t,T] 0

< CE (18,617 + |4,F | +14,G|*] - EePa4"T)

T
+CE sup / WA A Y (5),G(s, Y (5), Y,)) (dA" (5) — dA(s))|.
te[0,T] |/t
where C is a positive constant and q := ﬁ.

By conditions (C;) and (Ag ),
lim E [|4,&% +|4,F % +|4,G|*] - EePA"™ = o
n—oo
It remains to prove that

lim E sup =0,

=0 1el0,1]

T
/ X"(s)dH"(s)

t

where, for s € [0,T7],
X"(s) 1= eMHPAOAY (5),G(s, Y (5), Y,));
H"(s) 1= A" (s) — A(s).

One can prove that

E sup |X"(nI°
1€[0,T]

10
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is uniformly bounded (with respect to n), by (9). Obviously, by (A[),

sup E sup |H”(t)|2 < 4o00.
neN*  1€[0,T]

Hence, the sequence (X", H"),cn- is tight in C |0, T By Prokhorov’s theorem, we can extract a sequence, say (X"«, H"),cn-,
convergent in distribution to some stochastic process (X, H) with continuous paths. Since, by (C,), lim,_, , Esup,c(or) |[H"(®)| =0, H
must be P-a.s. equal to 0. The condition (A(’)’ ) also implies that sup,cn E | H" ”{;W[O,TJ < +oo, for every a > 1, 5o | H"|| gypo.r) is bounded
in probability (i.e., it satisfies condition (16)). We can now apply Proposition 8, proved as an auxiliary result in the Appendix, in
order to derive the convergence in distribution to 0 of the process

t
</ X"(s)dH"(s)) .
0 t€[0,T]

Since, for some v > 0, the functional ¢, : C[0,T] — R, defined by

¢, (x) 1= sup |x(T)—x(@®)|Av,
t€[0,T]

is bounded and continuous, it follows that

/\v] =0,

for every v > 0. Since, by Markov’s inequality, for some a € (1, p)

/ X"(s)dH"(s)

E | sup
1€[0,T]

E sup
1€[0.T)

T T
/ X"(s)dH"(s)| <E [ sup / X"(s)dH"(s)
' '

t€[0,T]
a]
] [( sup 1X"()1" >||H"||;;V[m]
; 7= =
sup IX"(t)I”D < ILH" I 510 > .
( [ze[OTJ BV[0,T]

+ LIE sup
Ve efon)

/ X"(s)d H"(s)

and

E | sup
1€[0.T]

/ X"(s)dH"(s)

it follows that

lim E sup

= 10,1

T
/ X"(s)dH"(s)

which concludes our proof. [ ]

4. Hedging a stream of payments with time-delayed GBSDE

In this last section, we present a risk management application for an insurance product, the so-called variable annuity instrument,
whose composition can be controlled by the insurer selecting an appropriate strategy to reduce the overall risk of the policyholder’s
investment. This example is an extension of the work contained in [4-7], where the authors apply different classes of BSDEs with
time-delayed generators to insurance and finance. Specifically, inspired by Section 7 in [4], we consider an insurance product where
the policyholder withdraws some guaranteed amounts as a fraction of the maximum value of the investment and, additionally, is
subjected to a continuous payment triggered by an increasing continuous process A modelling the cumulative function of claims
(or, e.g. of fees for the management of the wealth). At maturity, the remaining value is converted into a life-time annuity with a
guaranteed consumption rate C.

We consider a probability space (2, F,P) with associated natural filtration F = (F,)o<,<z generated by a Brownian motion
W =W (),0<t<T) and a finite time horizon T < co.

The goal of the investor is to replicate the insurance by investing in the assets and to quantify the risk of the investing activities.
In the terminology of [8], we focus on an investment composed of a risk free asset .S, and a risky asset D.

The price of the risk free asset S, := (Sy(t), 0 <t < T) is given by the equation

dSy(t)
So(0)

where r describes the risk free interest rate being a non-negative F-progressively measurable stochastic process.

= r(t)dt, Sp(0) = 1, (10)

11
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The price of the risky ass D := (D(r), 0 <t < T) with maturity T is given by
dD(r)
D(1)

where the volatility ¢ := (6(t), 0 <t < T) and the risk premium 0 := (6(¢), 0 <t < T) are F-progressively measurable processes.
On the other hand, the stream of liabilities P(r) := (P(r), 0 <t < T) depends on the past value of the portfolio by the following:

=)+ o(®)0() dt + oc(t)dW (1), S(0) = x, an

t
P(t)=7y sup {X(s)}dr+ / X(s — 8)d A(s). (12)
s€[0,t] 0
The first term models a guaranteed withdrawal amount as a fraction y € (0, 1) of the running maximum value of the investment
value. Instead, the second term models a Stieltjes integral representing the total amount of continuous claims that depend on a
past value of the investment and that are triggered by the increasing continuous function A. We emphasize that if we consider no
dependence on the value of the investment X, i.e. only fot d A(s), we obtain the well-known case with A representing a cumulative
consumption process. See, e.g., [8,9] for a detailed description or [10] for the problem of utility maximization under a drawdown
constraint setting.
We consider a self financing investment portfolio X := (X(),0 <t <T), while the admissible strategy = := (z(¥),0<t<T)
denotes the amount invested in the risky bond D.
We denote u(t) = r(t) + 0(t)o(t) and we write the dynamic of X by the following SDE
DO 4 x @)~ rap N
(1) So(0)

=x(t) (u@®)dt + c()dW (1)) + (X (1) — z(t)) r(t)dt

dX(t) =n(t)

—dP(@) (13)

t
—y sup {X(s)}dt— / X(s—6)dA(s)
s€[0.1] 0

X(T) =Ca(T),

a being the annuity factor a(T) = E@ | [ ™ Jr rwdug leTL.

Eq. (13) models a variable annuity contract where the policyholder’s contributions are invested into two assets (D and .S).
Positive returns are distributed to the policyholder account based on the maximum value of the investment and on a prescribed
process A (hedging fee) while the remaining value at maturity is received as a life-time annuity.

From [4], we know that there exists a unique equivalent martingale measure Q ~ [P under which the discounted price process
S is a (Q, F)-martingale. Thus, we perform the following change of variables

Y0 = X@We hr 4z = 2(t)o(t)e T4 0<1<T (14)

giving the following dynamic for the discounted portfolio process Y := (Y (#))o<,<r under the measure Q

T s
Y () = Ca(T) + / y sup {Y(u)e’/u’(”)d”}ds
t u€(0,s]
r 5=5 T (15)
+ / Y(s—8)e~ o rdvg acs) — / Z()daws),

t

WQ being a Q-Brownian motion.

Assuming that conditions (Aj)—(A3) and (H;)—(H,) hold true and applying Theorem 4, we obtain existence and uniqueness of the
solution of Eq. (15). Moreover, the stability of the investment under a perturbation (in uniform norm) of the distribution of the
prescribed cumulative distribution is obtained by Theorem 7, letting to model robust hedging for the investment with respect to a
modification of the prescribed cumulative distribution of future claims.

5. Conclusions and further developments

In this article, we develop a theoretical framework to study a BSDE with time-delayed generator whose dynamic depends also on
Stieltjes integral term. Under regular assumptions of the coefficients and small delay, we prove the well-posedness of the problem
in terms of existence, uniqueness and stability under a perturbation in uniform norm. We also provide an application of our results
for a BSDE in insurance setting. Moreover, we obtain the global (in time) well posedness of the BSDE for an arbitrary delay that
represent a novel result in the literature, representing a first attempt to handle (globally) time delayed BSDE. Providing a solid
theoretical background for this setting could open up new directions for applications.

Concerning further direction of research, other extensions would consider the forward reflected SDE linked to the Stieltjes
integral in (1) to investigate the corresponding FBSDE with delayed generator and possible connections with the nonlinear PDE
with Neumann boundary conditions in the spirit of [17]. Another possibility concerns considering Stieltjes integration with respect
to increasing functions that are not necessarily continuous, dealing with dynamics driven by Poisson random measure.
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Appendix

In this section, we state the result used in the proof of Theorem 7. It is a variant of the Helly-Bray theorem for the stochastic
case and is also stronger than Proposition 3.4 from [21]:!

Proposition 8. Let (X,, H,) : (2,,F,,B,) = C(0,T];R%)?, n > 1, be a sequence of random variables, converging in distribution to a
random variable (X, H) : (2, F,P) —» C([0,T];RY)% If for all n > 1, H,, is P,-a.s. with bounded variation and
Jim ig,P" <||Hn||BV([0,T];Rd) > ") =0, (16)

then H is P-a.s. with bounded variation and the sequence of C[0,T]-valued random variables ( fo (X, ,,(s),dH,q(s)))”>1 converges in
distribution to [ (X(s),d H,(s)). N

As expected, the proof of this result uses a deterministic Helly-Bray type theorem aiming uniform convergence. For the reader’s
convenience, we will state and prove this result:
c ([0, T1;RY) and (m,)

Lemma 9. Let (x,,) C BV ([0,T]; RY) be two sequences of functions such that:

n>1 n>1
(i) x, converges uniformly to a function x € C([0, T]; R?);
(ii) n, converges uniformly to a function n;

(iii) sup,y, ”nn”BV([O,T];]Rd) < +oo.

Then n € BV ([0, T1;RY), ||nll gy qo.r.mey < liminf, 11| v o.71:m¢) and the sequence of continuous functions (fo (xa(s), dq,,(s)))n21
converges uniformly to f; (x(s),dn(s)).

Proof. The first two assertions are well-known, so we skip their proof.
Let us prove the last one. We say that a tuple = = (t, ..., #,) is a partition of [0,T1if 0=t <t <-- <t =T.
We consider zV = (£V, ... ,t]’(VN ), N € N* partitions of the interval [0, T] such that
lim sup |, -] =0.
oo 0<i<B" i+1 i
i<y

Let xV : [0,T] - R be a step-function approximating x, defined by

kN

XN =1y x0) + ) 1, X ().
i=1
Let M :=sup,, ”nn”BV([OA,T];]Rd)' Then
<

t 1 t
’/0 (xn(S),dnn(S))—/O (x(s), dn(s)) /()(xn(S)—x(S),dnn(S))

+ +

/ (xN(s).d(@m, —)(5))
0

(VE@m,) + Vi)

/ (x(s) = xN (s),d(m, = m)(s))
0

< e = *leqoryzs Vo o) + szv - x“C([O,TI;R")

kn
+ ) |x@)] - |G, = mt A1) = (m, =iy A
i=1
Therefore,

t t
/0 (x,(5), dm,(s)) — /0 (x(s), dn(s))

sup

<Ml|x,—x .
1€[0.T] || n ”C([O,T],]Rd)

kn
+2M [ - x”C([O,T];]Rd) +2 <,§f |x(’f)|> 7" = nllcqoriz -
It follows that

limsup sup
n—oo t€[0,T]

/ (9. d,9) - / ' (x(o.dno)| <201 [
0 0

C(0.T);RY)

1 In the same time, it corrects an error in the statement of that result: “Let X,, K, : (2n,Fn,Pn) - W,n > 1, be two sequences of random variables,
converging in distribution to X, respectively K ”, should be replaced with “Let (X,.K,) : (2n,Fn,Pn) - W2, n > 1, be a sequence of random variables,
converging in distribution to (X, K)”. We emphasize that this does not affect in any way the validity of the other results in that paper, since the arguments
involved use in fact this stronger assumption.

13
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Since limy g, [| XV = x||¢o.7p:pe) = 0> We finally get

lim sup
= 4el0,T]

1 t
/ (0 (5), A () — / (x(s).dn)|=0. m
0 0

Let us now proceed with the proof of the main result of this section, which follows the same steps as that of Proposition 3.4
from [21].

Proof of Proposition 8. Let W := C([0,T];R¢), V := C([0,T]; R¢) n BV ([0,T]; R¢) and, for v > 0,

V, :={neV|lnllgyqormzs <Vv}-

By the first part of Lemma 9, V, is a closed subset of the Banach space W.
Let us consider the function A : Wx W — W defined by

Jo (x().dn(9)),  (x,m) € WX V;
0,

AQx, (1) = { (x,m) € WX (W\V).

By the last conclusion of Lemma 9, the restriction Al is continuous.
Let now R, := P"o(X", H")"! and R, := Po(X, H)™!, the distribution probabilities of (X", H"), respectively (X, H). By the

assumptions of the theorem, (R,,)n21 converges weakly to R, i.e.

lim/ tD(x,n)Rn(dx,dn)=/ @ (x,n) Ry(dx,dn), 17)
WxW WxW

n—oo
for every bounded continuous functional @ : Wx W — R.
First of all, by the Portmanteau lemma,

limsup R, (W X Vv) <R, (W X VV) , Yv>0.
n— 00
Since, by condition (16),

Jim _inf R, (WxV,)=1, (18)
we get lim,_ ,, Ry (WX V,) =1, i.e. Ry(W x V) =1, meaning that H is P-a.s. of bounded variation.
Let now ¢ : C[0,T] — R be an arbitrary bounded continuous functional. It remains to prove that lim,_ E¢ (A(X", H")) =
E¢ (A(X, H)), which can be written as

lim/ (d;oA)dR,,:/ (¢poA)dR,,.
=00 JWxW WxW

Since ¢oAly,. .\ s bounded and continuous, it can be extended to a continuous functional @, : W x W — R, bounded by
M = sup,ecpor) $(2); hence, by (17),

lim / D, (x,n) R, (dx,dn) = / @, (x,n) Ry(dx,dn).
WxW WxW

n—oo

Let us estimate the term

T,, = / (@, (x.m) — poA) R, (dx,dn)
WxW

nyv s

for n € N (including then the case n = 0). We have
T,, < / |®, (x,1) — poA| R, (dx,dn) = / |®, (x,m) — poA| R, (dx,dn)
WxW Wx(W\V,)
<2MR, (Wx(W\V))=2M (1-R,(WxV,)).
Hence, by (18) and its consequence

lim supT,, =0.

v—+00 n>0

Finally, for all n > 1 and v > 0,

| / (poA)dR, — / (q_':oA)dRo‘
WxW WxW

< / @, (x.n) R,(dx.dn) — / @, (x.n) Ro(dx.dm| + T, + Ty,
WxW WxW

and therefore

lim sup
h—0o0

/ (¢poA)dR, - / (¢poA)dR,
WxW WxW

which, by passing to the limit as v — 0, yields the desired conclusion. [ |

<2supT,,, Vv>0
n>0
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