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a b s t r a c t

In the last decades many filters have been proposed to solve the problem of pose estimation that
naturally arises in robotics, both for manipulators and mobile robots. The dynamics of mobile robots
can be mathematically described by exploiting the theory of Lie groups embedding holonomic and
nonholonomic constraints. In this paper we design a second-order-optimal filter for the so-called
Chaplygin sleigh, that is a mechanical system with a nonholonomic constraint. In particular we
examine the importance to know the exact dynamic equations, and to exploit the underline Lie
group structure of the system. Moreover, we investigate the conditions that ensure the preservation
of the nonholonomic constraint by properly choosing the affine connection which guarantees that the
orthogonal velocity is equal to zero. In this work the sensing system consists of a GPS-like configuration
(Global Positioning System) obtained by using two antennas attached to the planar rigid body and an
INS-like unit (Inertial Navigation System) to measure the velocities.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

The problem of estimating the pose and velocity is crucial
n mechanical and robotic applications since in many cases the
vailable sensors do not provide their direct measurements.
oreover, measurements are affected by noise that it is necessary

o filter out. Accurate estimations are also important to effectively
olve the tracking problem.
In the last decades many observers and filters have been pro-

osed in the literature. The most famous approach is the Kalman
ilter [1], that uses a recursive algorithm to produce estimates
f state variables by updating a joint probability distribution
t each timeframe. The Kalman filter is optimal only for linear
ystems with Gaussian noises, however, generalizations aiming at
xtending it to nonlinear systems, such as the extended Kalman
ilter (EKF), have been proposed [2]. The EKF computes at each
tep the linear approximation of the dynamic and measurement
quations. One way to overcome the Gaussian assumption is by
sing the unscented Kalman filter [3] and the Particle filter [4]
hat approximate the probability density function with a certain
umber of sampling points and updates their values according to
he past state and current measurements.

Another generalization to nonlinear mechanical systems can
e made by solving a minimum-energy optimization problem
eneratingprogressive realizableapproximationsof theminimum-
nergy functional as done in [5]. The solution is then obtained by

∗ Corresponding author.
E-mail address: damiano.rigo@univr.it (D. Rigo).
ttps://doi.org/10.1016/j.sysconle.2023.105568
167-6911/© 2023 Elsevier B.V. All rights reserved.
differentiating the boundary conditions of the associated optimal
control problem. Starting from this work, the authors of [6–8]
proposed a second-order-optimalminimum-energy filter carrying on
the idea of exploiting the Lie group structure of the phase space
of a mechanical system to minimize the square of the estimation
error (energy). The main theoretical result in [8] is given for a
generic Lie group, and the authors specify that in the case of a
(dynamic) mechanical system this group is the tangent bundle of
a smaller Lie group. It is called second-order-optimal in the sense
that it is a truncation of the exact solution that would be an infinite
dimensional system. The filter takes the formof a gradient observer
coupled with a Riccati-like differential equation that updates its
gain (similarly to the standard Kalman filter).

If nonholonomic constraints, that naturally arise in planning
and tracking problems, are taken into account, further geometric
adaptations are needed. An example of a nonholonomic system
is the so-called Chaplygin sleigh (see e.g. [9,10]), that models a
platform, supported on two points and on a blade. The blade is
free to rotate, but it cannot slide in the orthogonal direction.

In this paper we extend the second-order-optimal minimum
energy filter of [8,11], designed for Lie groups, to the nonholo-
nomic realm, and specifically to the Chaplygin sleigh system. We
stress that this work is not a simple application of the previous
results since the presence of a nonholonomic constraint changes
significantly the dynamic behavior and the geometric structures;
precisely, it restricts the space of admissible velocities and it does
not allow to describe the phase space as the tangent bundle (of a
Lie group in this specific case). Thus in the filter design particular
attention has to be given to the use of Hamel’s coordinates, and

https://doi.org/10.1016/j.sysconle.2023.105568
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left-trivialized) dynamics that put in evidence the Lie group
tructure of the state space. In this paper we will focus on the
inite-horizon estimation problem on SE(2)×R2. This formulation
ill then be the starting point for studying steady-state stability
nd robustness in the future.
The paper is organized as follows. In Section 2 we report the

otations used in this paper. Section 3 is divided into two parts,
n Section 3.1 we describe the Chaplygin sleigh dynamics while
n Section 3.2 we recall the structure of the SE(2)×R2 group and
ts Lie algebra. The explicit filter for the nonholonomic case con-
tructed considering the Cartan–Schouten (0)-connection is pre-
ented in Section 4. In Section 5 we investigate the conditions to
esign a filter that satisfies the nonholonomic constraint, whose
mplementation could be relevant for control purposes. Section 6
s devoted to some numerical simulations and comparison of the
wo filters, and conclusions are drawn in Section 7.

. Notation

Notation on the structure of Lie groups adapted to the case
f the Chaplygin sleigh that will be studied in this paper. For a
etailed discussion on Lie groups see, e.g., [12–14].

= (ω, v)
¯ = (g, V )

= (θ, x, y, ω, v)

= se(2)
¯ = g × R2

g

V
= (ηω, ηv)

ḡ
= (ηg , ηV )

: R3
→ se(2)

x
= (ηθ , ηx, ηy, ηω, ηv)

eL̂ḡ (η
x) = (θ ′, x′, y′, ω′, v′)

dX : R5
→ R5

eLḡ : R5
→ R5

element of the Lie group G =

SE(2)
element of the Lie group R2

element of the Lie group Ḡ =

G × R2

vector representation of an
element in Ḡ
Lie algebra of G
Lie algebra of Ḡ
element of the Lie algebra g
element of the Lie algebra R2

element of the Lie algebra ḡ
Lie algebra isomorphism
element of the Lie algebra R5

vector form of an element in
Tḡ Ḡ
matrix representation of the
adjoint operator adX : ḡ → ḡ
matrix representation of the
tangent map TeLḡ : ḡ → Tḡ Ḡ

. The Chaplygin sleigh and its geometric structure

.1. The Chaplygin sleigh

The Chaplygin sleigh is a nonholonomic system that models a
lanar rigid body supported at three points, two of which slide
reely while the third is a blade at distance a from the center of
ass and that cannot move perpendicularly. Let Σb =

{
eb1, e

b
2

}
e the right-handed body frame attached to the Chaplygin sleigh
entered at the contact point between the blade and the ground
ith the eb1-axis aligned with the blade, and let Σi =

{
eix, e

i
y

}
be

n inertial frame (also called space frame) fixed in space as shown
n Fig. 1.

The configuration space is SE(2) with coordinates q = (θ, x, y),
here (x, y) denote the position of the contact point of the blade

n the plane, and θ is the angle that the blade forms with the
orizontal axis eix. The velocity components, also named quasi
r Hamel’s velocities, with respect to the body frame Σb are
ω, v, v⊥), where ω is the angular velocity, v and v⊥ are the
(linear) velocities of the body along the eb1 and eb2 axes, respec-
tively. The nonholonomic constraint imposes that the orthogonal
component v of the velocity with respect to the blade vanishes,
⊥

2

Fig. 1. Planar rigid body where the blade is indicated with a thicker segment
and the two passive supporting wheels as •.

namely v⊥ = 0. In the inertial frame, where (θ̇ , ẋ, ẏ) are the
components of the velocity, the constraint reads as

ẋ sin θ − ẏ cos θ = 0. (1)

The velocities (θ̇ , ẋ, ẏ) and quasi-velocities (ω, v, v⊥) are related
y

˙ = v cos θ, ẏ = v sin θ, θ̇ = ω. (2)

The nonholonomic constraint (1) defines a constant rank-2 dis-
tribution D on the configuration space locally generated by

Xv = cos θ
∂

∂x
+ sin θ

∂

∂y
, Xω =

∂

∂θ
, (3)

called constrained manifold. The state space, that is the con-
strained manifold, can be therefore identified with SE(2)×R2 and
parameterized by (θ, x, y, ω, v).

The center of mass (xc, yc) is settled at distance a from the
contact point (x, y) according to the equations

(xc, yc) = (x + a cos θ, y + a sin θ ). (4)

We denote by J the inertia along the axis passing to the center of
mass and orthogonal to the plane and withm the mass of the rigid
body. The control inputs u(t) = (uω(t), uv(t)) are functions of
time that act respectively as a torque applied around the contact
point and a force applied to the center of the body frame along
eb1 as shown in Fig. 1.

In order to put in evidence the geometric structure of the
dynamics, it is useful to consider Hamel’s approach to the equa-
tions of motion of a nonholonomic system (see [15,16]). Hamel’s
equations with external input are then

mv̇ = maω2
+ uv,

(J + ma2)ω̇ = −mavω + uω.
(5)

Eqs. (5) together with (2) define the motion of the Chaplygin
sleigh with external forces. We stress the fact that the constrained
manifold D can be identified with SE(2)×R2, and therefore it can
be endowed with a Lie group structure.

Since we assume that our model is not perfectly accurate,
we add a model error that consists on an additive term that
takes into account unmodeled dynamics and uncertainty on the
parameters’ values. According to [8], it only affects the evolution
of the velocity of the system and not the kinematics. This error
is denoted by ξ(t) = (ξ (t), ξ (t))T and is modeled as a Gaussian
ω v



D. Rigo, N. Sansonetto and R. Muradore Systems & Control Letters 178 (2023) 105568

w
v

[

f
w

(

hite noise with zero mean and diagonal and positive definite
ariance Σ .
The controlled Chaplygin sleigh equations are then (see e.g.

15])⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

θ̇ (t) = ω(t)

ẋ(t) = v(t) cos θ (t)

ẏ(t) = v(t) sin θ (t)

ω̇(t) = −
ma

J+ma2
ω(t)v(t) +

1
J+ma2

uω(t) + ξω(t)

v̇(t) = aω(t)2 +
1
muv(t) + ξv(t)

(6)

or, in compact form,

ẋ(t) = fx(x(t)) + fu(u(t)) + (0, 0, 0, ξω(t), ξv(t))T (7)

where x(t) = (θ (t), x(t), y(t), ω(t), v(t))T , and fx : R5
→ R5,

fu : R2
→ R5 are two functions given by

fx(x(t)) =

⎡⎢⎢⎢⎢⎢⎣
ω(t)

v(t) cos θ (t)
v(t) sin θ (t)

−
ma

J+ma2
ω(t)v(t)

aω(t)2

⎤⎥⎥⎥⎥⎥⎦ , fu(u(t)) =

⎡⎢⎢⎢⎢⎢⎢⎣

0
0
0

1
J+ma2

uω(t)
1
muv(t)

⎤⎥⎥⎥⎥⎥⎥⎦ . (8)

Let y(tk) ∈ Rp be the measurement vector at time tk, where
{tk}k∈N is a sequence of sampling instants such that tk = kTs
with Ts the sampling time. This sequence represents the set of
instants when the measurements are available. The measurement
equation is given by

y(tk) = h(x(tk)) + ε(tk) (9)

where

h(x(tk)) =

⎡⎢⎢⎢⎢⎢⎣
x(tk) + ℓ cos(θ (tk))
y(tk) + ℓ sin(θ (tk))
x(tk) − ℓ cos(θ (tk))
y(tk) − ℓ sin(θ (tk))

ω(tk)
v(tk)

⎤⎥⎥⎥⎥⎥⎦ , (10)

represents a GPS-like system that provides the position of two
antennas on the rigid body located at distance ℓ to the origin
of the body frame Σb (see Fig. 2), and an INS-like system that
measures the angular velocity ω and the linear velocity v along
the eb1 axis. The measurement noise ε is modeled as a Gaussian
white noise with zero mean and diagonal and positive definite
variance Λ.

Remark 1. This hypothesis of Gaussianity for the model and mea-
surement errors is not necessary for the filter since it considers
the errors as unknown deterministic functions of time. We chose
it only for the simulations.

3.2. The SE(2) × R2 structure

In this paper we identify elements of groups and algebras with
their matrix representations. An element g ∈ SE(2) is represented
by a 3 × 3 matrix

g =

[cos θ − sin θ x
sin θ cos θ y
0 0 1

]
. (11)

Given the Lie algebra se(2) of SE(2), we introduce the Lie algebra
isomorphism ∧

: R3
→ se(2)

Ω =

[
ηθ

ηx

y

]
↦−→ Ω∧

= ηg
=

⎡⎣ 0 −ηθ ηx

ηθ 0 ηy

⎤⎦ (12)

η 0 0 0

3

Fig. 2. Planar rigid body with two antennas.

rom the Lie algebra (R3, ⋆) to the matrix Lie algebra (se(2), [·, ·]),
here ⋆ : R3

× R3
→ R3 is the Lie bracket operation defined as[

ηθ1

ηx1

ηy1

]
⋆

[
ηθ2

ηx2

ηy2

]
=

⎡⎣ 0
ηy1ηθ2 − ηθ1ηy2

ηθ1ηx2 − ηx1ηθ2

⎤⎦ , (13)

and [·, ·] is the usual matrix commutator (see, e.g., [14]).
The tangent bundle TSE(2) is isomorphic to SE(2) × se(2) via

left translation; since we impose the nonholonomic constraint
v⊥ = 0, a sub-bundle of it describes the admissible velocities. The
velocity pair V = (ω, v)T is an element of R2 that is a Lie group
with respect to the sum operation, with abelian Lie algebra R2.
The elements of such Lie algebra are denoted by ηV

= (ηω, ηv).
An element ḡ = (g, V ) ∈ Ḡ := SE(2) × R2 can be represented

by a 6 × 6 matrix

ḡ =

[ g 03×2 03×1
02×3 I2×2 V
01×3 01×2 1

]
, (14)

and the group operation is defined by

(g, V ) · (f ,W ) = (gf , V + W ) (15)

with unit element e = (I3×3, 02×1) and inverse (g, V )−1
=

g−1, −V ). The Lie algebra ḡ = se(2)×R2 of Ḡ can be identified, up
to Lie algebra isomorphism, with R5. We exploit this isomorphism
to work on R5 and to report the operators that appear in the
optimal filter equations in their matrix forms.

Let ηḡ
= (ηg , ηV ) be an element of ḡ, the matrix form of the

adηḡ operator is given by the 5 × 5 matrix

adηḡ =

⎡⎢⎣ 0 0 0 01×2
ηy 0 −ηθ 01×2

−ηx ηθ 0 01×2
02×1 02×1 02×1 02×2

⎤⎥⎦ . (16)

Finally, the matrix representation of the tangent map is

TeLḡ =

⎡⎢⎣ 1 0 0 01×2
0 cos θ − sin θ 01×2
0 sin θ cos θ 01×2

02×1 02×1 02×1 I2×2

⎤⎥⎦ (17)

whose dual map matrix representation TeL∗

ḡ satisfies TeL∗

ḡ =

T .
(TeLḡ )
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. The second-order-optimal filter

We now report the main contribution of this paper, that is the
esign of the second-order-optimal filter for the Chaplygin sleigh
resented in Section 3. The general formulation of this filter, [8],
xploits the dynamic programming principle in order to provide
he Hamilton–Jacobi–Bellman equation for the value function.
he advantage of this method is that it is possible to compute the
ilter online and preserve the optimality. The non-trivial aspect of
pplying the general equation in a particular mechanical system
s that the solution must be approximated since the analytical one
ould be an infinite dimensional system.
In the following we will denote with ·̂ an estimated quantity.
e rewrite Eq. (7) using the geometric structure outlined in

ection 3.2 as
˙̄ (t) = ḡ(t)(λ(ḡ(t), u(t)) + Bξ̄(t)), ḡ(t0) = ḡ0, (18)

here ḡ(t) = (g(t), V (t)) ∈ Ḡ is the state, u(t) ∈ R2 is the
nput, ξ̄(t) = (ξ̄ω(t), ξ̄v(t))T is a Gaussian white noise with zero
mean and unit variance, B : R2

→ ḡ is a linear map with matrix
representation B ∈ R5×2

B =

[
03×2
B2

]
, B2 =

[
bω 0
0 bv

]
(19)

uch that ξ(t) = B2ξ̄(t) is a zero mean white Gaussian noise with
ariance Σ = BTB, and λ : G × R2

→ ḡ is the left-trivialized dy-
amics (21). From now on, we often drop the explicit dependence
n time of the signals from our notation. The function λ can be
ewritten splitting it into its SE(2) and R2 components obtaining

−1ġ = λg
∧, V̇ = λV +

[
ξω

ξv

]
(20)

here λ = (λg
∧, λV ) ∈ ḡ. In particular, the expressions for λg and

V are

g (ḡ, u) =

[
ω

v

0

]
, λV (ḡ, u) =

[
−

ma
J+ma2

ωv +
1

J+ma2
uω

aω2
+

1
muv

]
. (21)

The measurement Eq. (9) can be then rewritten as

(tk) = h(ḡ(tk)) + Dε̄(tk) (22)

where h : Ḡ → R6 is the output map (10), ε̄ ∈ R6 is the
measurement error and D : R6

→ R6 is an invertible linear map
with the property that ε = Dε̄ (i.e., Λ = DTD, ε̄ is a Gaussian
white noise with zero mean and unit variance).

Given the input u and the measurement output y, the second-
order-optimal filter presented in [8] gives the best estimate of the
state ḡ(·) which minimizes the cost functional

J(ξ, ε, ḡ0; t, t0) := m(ḡ0, t, t0) +

∫ t

t0

l(ξ(τ ), ε(τ ), t, τ )dτ , (23)

where l : R5
× R6

× R × R → R is the incremental cost defined
by

l(ξ, ε, t, τ ) :=
1
2
e−α(t−τ )(R(ξ) + Q(ε)), (24)

ith α ∈ R, α ≥ 0 the forgetting factor, and

: R2
→ R, ξ ↦→ ξTRξ

Q : R6
→ R, ε ↦→ εTQε

two quadratic forms with matrix representations R = diag (rω, rv)
and Q = diag (q1, . . . , q6). The function m : Ḡ × R × R → R is
the initial cost

m(ḡ0, t, t0) :=
1
e−α(t−t0)m0(ḡ0) (25)
2
4

with known initial data

m0(ḡ) =
1
2
∥I − ḡ−1(t)ḡ0∥2

F (26)

where ∥ · ∥
2
F stands for the Frobenius norm.

In the simulations we will consider α = 0, R = I2×2, B2 =

diag (bω, bv), D = diag (d1, . . . , d6), Q = I6×6. We define the
weighted output error ỹ as

y =

[
diag

(
q1
d21

,
q2
d22

,
q3
d23

,
q4
d24

,
q5
d25

,
q6
d26

)]
(y − ŷ) ∈ R6. (27)

To design the filter it is necessary to choose an affine connec-
ion on the state space. A left-invariant affine connection ∇ on Ḡ
s characterized by its bilinear connection function ω : g× g → g

hrough the identity ∇ḡX (ḡY ) = ḡω(X, Y ) for all X , Y ∈ ḡ (see,
.g., [17,18]). Thus ∇XY ∈ ḡ, and, since this map is R-linear, it
s a multiplication in ḡ. We choose skew-symmetric connection
unction of the form ∇XY = λ[X, Y ], λ ∈ R (see e.g. [19,20]). The
hoices λ = 0, 1

2 , 1 define the (−), (0), (+) connections, that have
negative, null and positive torsion, respectively. In this section we
use the Cartan–Schouten (0)-connection given by ω(0)

=
1
2ad [7].

The following proposition is an extension of the theorems
n [8,11] to the nonholonomic case, and represents the second-
rder-optimal filter tailored for the Chaplygin sleigh case. The
perators and functions are given with respect to the Lie group
5 instead of ḡ.

roposition 1. The second-order-optimal filter for the nonholo-
nomic dynamic system (6) with measurement Eq. (10) and with
respect to the cost functional (23)–(25) is given by

g−1 ˙̂g = (ω̂, v̂, 0)∧ + (K11rg + K12rV )∧ (28)

˙̂V =

[
−

ma
J+ma2

ω̂v̂ +
uω

J+ma2

aω̂2
+

uv

m

]
+ (K21rg + K22rV ) (29)

here the residual r is

=

[
rg

rV

]T

=

⎡⎢⎢⎢⎢⎢⎣
−(̃y1 − ỹ3)ℓ sin θ̂ + (̃y2 − ỹ4)ℓ cos θ̂

(̃y1 + ỹ3) cos θ̂ + (̃y2 + ỹ4) sin θ̂

−(̃y1 + ỹ3) sin θ̂ + (̃y2 + ỹ4) cos θ̂

ỹ5
ỹ6

⎤⎥⎥⎥⎥⎥⎦

T

. (30)

he optimal gain K = (K11, K12; K21, K22) : (R5)∗ → R5 (with
11 ∈ R3×3, K12 ∈ R3×2, K21 ∈ R2×3 and K22 ∈ R2×2) is the solution
f the perturbed matrix Riccati differential equation

˙ = −αK + AK + KAT
− KEK + BR−1BT

−W (K , r)K − KW (K , r)T
(31)

here

=

⎡⎢⎢⎢⎢⎢⎣
0 0 0 1 0
0 0 ω̂ 0 1
v̂ −ω̂ 0 0 0
0 0 0 −

ma
J+ma2

v̂ −
ma

J+ma2
ω̂

0 0 0 2aω̂ 0

⎤⎥⎥⎥⎥⎥⎦ , (32)

=

⎡⎢⎢⎢⎣
a1,1 a1,2 a1,3 0 0
a2,1 2 0 0 0
a3,1 0 2 0 0
0 0 0 1 0

⎤⎥⎥⎥⎦ (33)
0 0 0 0 1
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ith

1,1 =(̃y1 − ỹ3)ℓ cos θ̂ + (̃y2 − ỹ4)ℓ sin θ̂ + 2ℓ2,

1,2 = −
1
2
(̃y2 + ỹ4) cos θ̂ +

1
2
(̃y1 + ỹ3) sin θ̂ ,

1,3 = +
1
2
(̃y2 + ỹ4) sin θ̂ +

1
2
(̃y1 + ỹ3) cos θ̂ ,

2,1 = +
1
2
(̃y2 + ỹ4) cos θ̂ −

1
2
(̃y1 + ỹ3) sin θ̂ ,

3,1 = −
1
2
(̃y2 + ỹ4) sin θ̂ −

1
2
(̃y1 + ỹ3) cos θ̂ ,

nd

(K , r) =

[ 1
2ad(K11rg+K12rV )∧ 03×2

02×3 02×2

]
. (34)

he initial conditions for the Eqs. (28)–(29) and (31) are given byˆ̄g(t0) = ḡ(t0) (35)
K (t0) = I5×5. (36)

roof. The proof is split into a few sections for the sake of read-
bility. In what follows we will use ηx

= (ηθ , ηx, ηy, ηω, ηv)T ∈ R5

o indicate the vector form of an element of the Lie algebra ḡ and
ith TeL̂ḡ (η

x) = (θ ′, x′, y′, ω′, v′)T the vector form of an element
f the tangent space T̂ḡ Ḡ.

.1. Computation of r

According to [8,11], the residual r ∈ (R5)∗ is given by

(̂ḡ) = TeL∗ˆ̄g [(
(D−1)∗ ◦ Q ◦ D−1(y − h(̂ḡ))

)
◦ dh(̂ḡ)

]
. (37)

his term considers the difference between the real measure-
ents and the estimated ones. Through this operator the estima-

ion errors, that belong to R6, are mapped onto the dual of the
ie algebra ḡ, that is isomorphic to R5. From the definition of the
atrices D and Q it follows that

D−1)∗ ◦ Q ◦ D−1(y − h
(

¯̂g
)
) = (y − ŷ)T . (38)

iven TeL̂ḡ (η
x) ∈ R5, the differential of h in ˆ̄g applied to TeL̂ḡ (η

x)
is

dh
( ˆ̄g )

(TeL̂ḡ (η
x))

=
d
ds

⏐⏐⏐
s=0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂(s) + ℓ cos θ̂ (s)

ŷ(s) + ℓ sin θ̂ (s)

x̂(s) − ℓ cos θ̂ (s)

ŷ(s) − ℓ sin θ̂ (s)

ω̂(s)

v̂(s)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂′
− ℓ θ̂ ′ sin θ̂

ŷ′
+ ℓ θ̂ ′ cos θ̂

x̂′
+ ℓ θ̂ ′ sin θ̂

ŷ′
− ℓ θ̂ ′ cos θ̂

ω̂′

v̂′

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(39)

and we can write the operator dh
( ˆ̄g )

as

dh
( ˆ̄g )

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−ℓ sin θ̂ 1 0 0 0
+ℓ cos θ̂ 0 1 0 0
+ℓ sin θ̂ 1 0 0 0
−ℓ cos θ̂ 0 1 0 0

0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (40)
0 0 0 0 1
5

Using (40) and (38) we obtain(
(D−1)∗ ◦ Q ◦ D−1(y − h(̂ḡ))

)
◦dh(̂ḡ)

=

⎡⎢⎢⎢⎢⎢⎣
−(̃y1 − ỹ3)ℓ sin θ̂ + (̃y2 − ỹ4)ℓ cos θ̂

ỹ1 + ỹ3
ỹ2 + ỹ4

ỹ5
ỹ6

⎤⎥⎥⎥⎥⎥⎦

T

.
(41)

Evaluating TeL∗ˆ̄g on (41) we finally get (30).

4.2. Computation of A

The expression for the operator A : R5
→ R5 is

A = d1λ(̂ḡ, u) ◦ TeL̂ḡ − adλ(̂ḡ,u) − Tλ(̂ḡ,u). (42)

The operator A represents the coefficient of the linear part of
the Riccati equation (31). The first term d1λ(̂ḡ, u) ◦ TeL̂ḡ is the
differential of the left-trivialized dynamics with respect to the
group elements, adλ(̂ḡ,u) is the adjoint operator with respect to
λ, the last term Tλ(̂ḡ,u) is the torsion and takes care of the choice
of the connection function adopted.

Given TeL̂ḡ (η
x) ∈ R5, the differential of λ is

d1λ(̂ḡ, u)(TeL̂ḡ (η
x)) =

d
ds

⏐⏐⏐
s=0

[
λg (s)
λV (s)

]

=
d
ds

⏐⏐⏐
s=0

⎡⎢⎢⎢⎢⎢⎢⎣

ω̂(s)
v̂(s)
0

−
maω̂(s)̂v(s)
J+ma2

+
uω

J+ma2

aω̂2(s) +
uv

m

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣

ω̂′

v̂′

0

−
ma(ω̂v̂′

+v̂ω̂′)
J+ma2

2aω̂ω̂′

⎤⎥⎥⎥⎥⎥⎥⎦
(43)

nd thus

1λ(̂ḡ, u) ◦ TeL̂ḡ =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

0 0 0 −
mâv

J+ma2
−

maω̂
J+ma2

0 0 0 2aω̂ 0

⎤⎥⎥⎥⎥⎥⎦ . (44)

he adjoint matrix representation (16) implies

dλ(̂ḡ,u) =

⎡⎢⎢⎣
0 0 0 01×2

0 0 −ω̂ 01×2

−v̂ ω̂ 0 01×2

02×1 02×1 02×1 02×2

⎤⎥⎥⎦ . (45)

ince we consider the Cartan–Schouten (0)-connection form ω(0)

=
1
2ad, the torsion function Tλ(̂ḡ,u) vanishes (see [21]), thus, in

matrix form it is given by

Tλ(̂ḡ,u) =

[
03×3 03×2
02×3 02×2

]
. (46)

Using (44), (45) and (46) we obtain (32).

4.3. Computation of E

The operator E : R5
→ (R5)∗ takes the form

E = −TeL∗ˆ̄g◦ [ (
(D−1)∗ ◦ Q ◦ D−1(y − h(̂ḡ))

)T̂ḡ ḡ
◦Hessh(̂ḡ) − (dh(̂ḡ))∗ ◦ (D−1)∗

−1 ˆ ] (47)
◦Q ◦ D ◦ dh(ḡ) ◦TeL̂ḡ ,
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a
I
o
m

(

T(
i(

ˆ

a

ˆ

nd represents the second-order term of the Riccati equation (31).
t is worth highlighting that E does not depend on the choice
f the connection function. From (40) and the definitions of the
atrices D and Q we can find the composition

dh
( ˆ̄g )

)∗ ◦ (D−1)∗ ◦ Q ◦ D−1
◦ dh

( ˆ̄g )
= diag

(
2ℓ2, 2, 2, 1, 1

)
.

(48)

he function

(D−1)∗ ◦ Q ◦ D−1(y − h(̂ḡ))
)

: R6
→ (R6)∗

n lifted through the exponential functor (·)T̂ḡ Ḡ to the linear map

(D−1)∗ ◦ Q ◦ D−1(y − h(̂ḡ))
)T̂ḡ Ḡ : L(T̂ḡ ḡ,R6) → L(T̂ḡ ḡ, (R6)∗)

defined as(
(D−1)∗ ◦Q ◦D−1(y−h(̂ḡ))

)T̂ḡ (ξ ) =
(
(D−1)∗ ◦Q ◦D−1(y−h(̂ḡ))

)
◦ξ .

Let TeL̂ḡ (η
x1 ) = (̂θ ′

1, x̂
′

1, ŷ
′

1, ω̂
′

1, v̂
′

1)
T , TeL̂ḡ (η

x2 ) = (̂θ ′

2, x̂
′

2, ŷ
′

2, ω̂
′

2,

v′

2)
T

∈ T̂ḡ Ḡ be two vector fields, then the Hessian matrix is defined
by

Hess h(̂ḡ)(TeL̂ḡ (η
x1 ))(TeL̂ḡ (η

x2 )) =

d(dh(̂ḡ)(TeL̂ḡ (η
x2 )))(TeL̂ḡ (η

x1 ))

− dh(̂ḡ)(∇Te L̂ḡ (η
x1 )(TeL̂ḡ (η

x2 ))),
(49)

from the choice of Cartan–Schouten (0)-connection, we get

∇Te L̂ḡηx1 (TeL̂ḡη
x2 ) =

1
2
TeL̂ḡ (adηx1 η

x2 ). (50)

The Hessian evaluated in TeL̂ḡη
x1 and TeL̂ḡη

x2 is therefore

Hessh(̂ḡ)(TeL̂ḡη
x1 )(TeL̂ḡη

x2 )

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−θ̂ ′

1̂θ
′

2ℓ cos θ̂ −
1
2 θ̂

′

2̂y
′

1 +
1
2 θ̂

′

1̂y
′

2

−θ̂ ′

1̂θ
′

2ℓ sin θ̂ +
1
2 θ̂

′

2̂x
′

1 −
1
2 θ̂

′

1̂x
′

2

+θ̂ ′

1̂θ
′

2ℓ cos θ̂ −
1
2 θ̂

′

2̂y
′

1 +
1
2 θ̂

′

1̂y
′

2

+θ̂ ′

1̂θ
′

2ℓ sin θ̂ +
1
2 θ̂

′

2̂x
′

1 −
1
2 θ̂

′

1̂x
′

2

0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

(51)

From (38) and (51) it follows that(
(D−1)∗ ◦ Q ◦ D−1(y − h(̂g))

)T̂ḡ ḡ ◦ Hessh(̂ḡ) =⎡⎢⎢⎢⎣
a1,1 −

1
2 (̃y2 + ỹ4) 1

2 (̃y1 + ỹ3) 01×2
1
2 (̃y2 + ỹ4) 0 0 01×2

−
1
2 (̃y1 + ỹ3) 0 0 01×2

02×1 02×1 02×1 02×2

⎤⎥⎥⎥⎦ ,
(52)

1,1 = − ỹ1ℓ cos θ̂ − ỹ2ℓ sin θ̂ + ỹ3ℓ cos θ̂ + ỹ4ℓ sin θ̂ .

In conclusion, combining (48) and (52) with TeL∗ˆ̄g and TeL̂ḡ , the
matrix (33) is obtained.

4.4. Computation of W

The operator W represents the second-order term of the Ric-
cati equation (31) that depends on the choice of the connection
function. From the adjoint matrix form (16) and the Cartan–
Schouten (0)-connection (see, e.g., [6,7]), we have

W (K , r) =
1
2
ad((K11rg+K12rV )∧, (K21rg+K22rV )∧)

=

[ 1
2ad(K11rg+K12rV )∧ 03×2

]
.

(53)
02×3 02×2
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4.5. Initial condition

The initial condition for the filter is given by

ḡ0 = argmin
ḡ∈Ḡ

m0(ḡ), (54)

while the initial condition for the gain is K (t0) = X−1
0 where the

operators X0 : ḡ → ḡ∗ satisfies

X0 = TeL∗ˆ̄g0 ◦ Hess m0 (̂ḡ) ◦ TeL̂ḡ0 . (55)

From the definition of m0 in (26) it is easy to see that ˆ̄g(t0) =

ḡ(t0). Since dm0 (̂ḡ)(∇Te L̂ḡ (η
x1 )(TeL̂ḡ (η

x2 ))) = 05×5 we have that

Hessm0 (̂ḡ)(TeL̂ḡ (η
x1 ))(TeL̂ḡ (η

x2 )) =

d(dm0 (̂ḡ)(TeL̂ḡ (η
x2 )))(TeL̂ḡ (η

x1 )).
(56)

Thus, the Hessian and the X0 operator are the identity matrix, and
so is K (t0).

This computation ends the proof. □

Remark 2. If one considers the case where only GPS measure-
ments (the first four lines in (10)) are available, then the residual
r and the matrix E become:

r =

⎡⎢⎢⎢⎣
−(̃y1 − ỹ3)ℓ sin θ̂ + (̃y2 − ỹ4)ℓ cos θ̂

(̃y1 + ỹ3) cos θ̂ + (̃y2 + ỹ4) sin θ̂

−(̃y1 + ỹ3) sin θ̂ + (̃y2 + ỹ4) cos θ̂

02×1

⎤⎥⎥⎥⎦
T

, (57)

E =

⎡⎢⎣ a1,1 a1,2 a1,3 01×2
a2,1 2 0 01×2
a3,1 0 2 01×2
02×1 02×1 02×1 02×2

⎤⎥⎦ . (58)

The state is still observable using a computation similar to [22].
♦

5. The second-order-optimal filter with nonholonomic con-
straint

The aim of this section is to investigate under which condi-
tions the filter preserves the nonholonomic constraint (1), that
the formulation in Section 4 cannot guarantee. The preservation
of the nonholonomic constraint produces more feasible trajecto-
ries that will be more suitable for control implementations.

We first observe that, if the dynamics does not present model
errors, the nonholonomic information is enclosed by the left
trivialized dynamics, in particular by its ‘‘group’’ part

λg (ḡ, u) =

[
ω

v

0

]
, (59)

where the last entry is equal to 0, because it represents v⊥, that
is the orthogonal projection of the linear velocity with respect
to the first axis direction. In order to preserve the constraint, it
is necessary to ‘‘force’’ the filter to keep such value equal to 0
in the right-hand side of the Eqs. (28)–(29). It is not possible to
act directly on the filter parameters in order to impose the third
component of the residual (30) be always 0, thus, it is necessary
to operate on the gain operator K structure whose dynamics is
governed by the Riccati equation (31).

Whenever the third row and column of the operator K in (31)
are 0, the product KEK has the third row and column equal to
0, whatever the components of E. Moreover, since the system
has only model errors that apply to the dynamics that model

the evolution of the velocity and not to the kinematics, the
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Fig. 3. Nominal (black), measured (blue), filtered with λ = 1/2 (green) and filtered with λ = 0 (red) trajectories on the left and their corresponding errors on the
right with GPS and INS in the case Ts = 10 ms. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
T

term BR−1BT has non-null components only on the last 2 × 2
submatrix. The analysis can be therefore limited to the study
of the operators A and W and on the choice of the connection
function. Continuing working with skew-symmetric connection
functions (see e.g. [19,20]), a choice of the connection could be
∇XY = λ[X, Y ] with λ ∈ R. A generic version of the operator A
provided in (32) suggests, for our purposes, to set λ = 0, which
corresponds to the Cartan Schouten (-)-connection ω(−)

= 0 and
produces

A =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 −

ma
J+ma2

v̂ −
ma

J+ma2
ω̂

0 0 0 2aω̂ 0

⎤⎥⎥⎥⎥⎥⎦ . (60)

With this choice, the operator W is represented by

W = 05×5, (61)

the null 5 × 5 matrix, and then the products W (K , r)K and
K TW (K , r) have the third rows and columns equal to 0. The new
matrix representation for the operator E becomes:

E =

⎡⎢⎢⎢⎣
a1,1 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 1 0
0 0 0 0 1

⎤⎥⎥⎥⎦ (62)

with

a1,1 =(̃y1 − ỹ3)ℓ cos θ̂ + (̃y2 − ỹ4)ℓ sin θ̂ + 2ℓ2.

The preservation of the nonholonomic constraint is then
granted by choosing the initial conditions of the operator K as

K (t0) =

[12×2 02×1 02×2
01×2 01×1 01×2
02×2 02×1 12×2

]
. (63)

6. Simulations

In this section we show how the second-order-optimal filter

applied to the Chaplygin sleigh works in simulated scenarios. We
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set J = 6.125 kgm2, m = 125 kg, a = 0.3 m and ℓ = 0.2
m. We consider the control inputs uω(t) = 10 sin ((1/2)t) and
uv(t) = (1/2) sin ((1/5)t). The total simulation time is T = 20 s.
he initial conditions are θ (0) = π/6 rad, x(0) = 1m, y(0) = 2m,

ω(0) = 0 rad/s and v(0) = 0m/s. For the matrix D we choose
d1 = d2 = d3 = d4 = 0.4, d5 = d6 = 0.2, while for the matrix B2
we choose bω = bv = 10. To solve all the differential equations
we used a Runge–Kutta 4th order method with steps Ts = 10ms
and Ts = 1ms.

Figs. 3 and 4 show how the filters work with a sample time of
10 ms in the cases of Cartan–Schouten (-)-connection (λ = 0) and
Cartan–Schouten (0)-connection (λ = 1/2) using both GPS and
INS devices and only GPS. The estimation errors are calculated
with respect the nominal values

δθ ≜ θ − θ̂ , δx ≜ x − x̂, . . . .

Figs. 5 and 6 show the same trajectories and errors in the case of a
sample time of 1 ms. Tables 1 and 2 compare the mean, standard
deviation and root mean square values of the errors obtained by
applying the second-order filter in the GPS + INS and GPS cases,
with both connection functions, using Ts = 10ms and Ts = 1ms,
respectively.

The filter designed on the Chaplygin sleigh using the Cartan–
Schouten (0)-connection provides a good estimation both for the
pose and the velocity, even if the two antennas do not mea-
sure directly the position of the contact point of the blade nor
the orientation. The filter designed using the Cartan–Schouten
(-)-connection has less accurate estimations but preserves the
nonholonomic constraint. With no INS measurements, the accu-
racy of the velocities for the Cartan–Schouten (-)-connection gets
worse, but it allows to gain precision on the positions. Instead,
for the Cartan–Schouten (0)-connection the addition of the INS
measurements improves all the estimations. In both cases, a finer
sampling of measurements greatly improves the accuracy of the
estimates as can be seen by comparing the Ts = 10ms and
Ts = 1ms cases.

7. Conclusions

In this paper we designed a second-order-optimal filter for
the Chaplygin sleigh, which is a rigid body with a nonholonomic
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Fig. 4. Nominal (black), measured (blue), filtered with λ = 1/2 (green) and filtered with λ = 0 (red) trajectories on the left and their corresponding errors on the
right with only GPS in the case Ts = 10 ms. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
Fig. 5. Nominal (black), measured (blue), filtered with λ = 1/2 (green) and filtered with λ = 0 (red) trajectories on the left and their corresponding errors on the
right with GPS and INS in the case Ts = 1 ms. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
Table 1
Mean, standard deviation and root mean square values of the errors for Ts = 10 ms for the cases λ = 1/2 and
λ = 0 (in bracket).

GPS + INS GPS

µ σ rms µ σ rms

δθ [mrad] 28.7 41.1 50.1 −2.1 180.5 180.4
(71.1) (32.7) (78.2) (−6.8) (194.7) (194.8)

δx [mm] −0.3 19.2 19.2 4.9 66.8 67.0
(−37.8) (122.6) (128.3) (−13.8) (77.9) (79.1)

δy [mm] −20.5 30.9 37.1 −11.6 59.3 60.4
(−281.0) (177.6) (332.3) (−51.9) (103.2) (115.5)

δω [mm/rad] 12.3 94.2 95.0 −2.5 208.8 208.8
(12.3) (94.2) (95.0) ( 4.4) (203.8) (203.8)

δv [mm/rad] 4.9 99.4 99.5 0.0 249.5 249.4
( 4.8) (99.4) (99.4) (15.4) (251.9) (252.3)
constraint. This filter exploits the theory of Lie groups and pro-
vides good estimations for both pose and velocity. We studied
8

the conditions for which the filter preserves the nonholonomic
constraint and the effects of the choice of different connection
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Fig. 6. Nominal (black), measured (blue), filtered with λ = 1/2 (green) and filtered with λ = 0 (red) trajectories on the left and their corresponding errors on the
right with only GPS in the case Ts = 1 ms. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
Table 2
Mean, standard deviation and root mean square values of the errors for Ts = 1 ms for the cases λ = 1/2 and λ = 0
(in bracket).

GPS + INS GPS

µ σ rms µ σ rms

δθ [mrad] −0.1 6.6 6.6 −6.1 44.4 44.8
( 4.9) ( 9.2) (10.4) (−4.0) (57.0) (57.1)

δx [mm] 8.3 9.5 12.6 5.5 20.9 21.7
(−0.4) (18.0) (18.0) (−8.8) (31.9) (33.1)

δy [mm] −6.1 7.3 9.5 −5.1 16.3 17.1
(−28.6) (22.0) (36.1) (−33.5) (36.6) (49.6)

δω [mm/rad] 1.5 31.2 31.2 −1.1 54.2 54.2
( 1.5) (31.2) (31.2) (−0.4) (57.1) (57.1)

δv [mm/rad] −1.8 33.9 33.9 2.8 77.1 77.2
(−1.9) (33.9) (33.9) ( 1.0) (80.0) (80.0)
functions. To design the filter it is of particular importance the left
trivialization map, which arises in the study of Lie groups dynam-
ics and includes the information of the nonholonomic constraint.
In the future we will study a generic formulation of the filter
for nonholonomic systems that behave as the Chaplygin sleigh,
for example nonholonomic systems with symmetries that satisfy
the so-called vertical symmetry condition [23,24] and we will
tackle the convergence of the filter by studying the stability of
the differential equations for the state and the gain operator for
t → ∞.
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