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ABSTRACT
Data aggregation across multiple research centers is gaining importance in the context of MRI research, driving diverse high-
dimensional datasets to form large-scale heterogeneous sample, increasing statistical power and relevance of machine learn-
ing and deep learning algorithm. Site-related effects have been demonstrated to introduce bias in MRI features and confound 
subsequent analyses. Although Combating Batch (ComBat) technique has been recently reported to successfully harmonize 
multi-scale neuroimaging features, its performance assessments are still limited and largely based on qualitative visualizations 
and statistical analyses. In this study, we stand out by using a robust cross-validation approach to assess ComBat performances 
applied on volume- and surface-based measures acquired across three sites. A machine learning approach based on Multi-Class 
Gaussian Process Classifier was applied to predict imaging site based on raw and harmonized brain features, providing quan-
titative insights into ComBat effectiveness, and verifying the association between biological covariates and harmonized brain 
features. Our findings showed differences in terms of ComBat performances across measures of regional brain morphology, 
demonstrating tissue specific site effect modeling. ComBat adjustment of site effects also varied across regional level of each spe-
cific volume-based and surface-based measures. ComBat effectively eliminates unwanted data site-related variability, by main-
taining or even enhancing data association with biological factors. Of note, ComBat has demonstrated flexibility and robustness 
of application on unseen independent gray matter volume data from the same sites.
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1   |   Introduction

Multimodal neuroimaging data sharing across research com-
munities and sites has become increasingly common, creating a 
growing trend toward forming large-scale datasets from hetero-
geneous samples. Moreover, the integration of data across mul-
tiple sites represents one of the increasingly exploited strategies 
for application of artificial intelligence techniques, since an in-
crease of numerosity of the training set can help reaching better 
accuracies in the learning process. However, multisite neuroim-
aging data are biased by undesirable non-biological sources of 
variability, attribute to the use of different imaging scanners and 
parameters, which can affect reproducibility and consistency 
of subsequent analysis, possibly leading to erroneous findings 
like misclassifications. Since the magnitude of site's effects can 
be larger than diagnosis effects or other effects of interest, ade-
quately addressing these confounding factors becomes of para-
mount importance. A recent software tool that is increasingly 
used to deal with undesired data heterogeneity is Combating 
Batch (ComBat) effects (Johnson, Li, and Rabinovic  2007; 
Pomponio et  al.  2020) originally applied for removing “batch 
effects” from genomic data and then adapted for neuroimag-
ing data. ComBat is now commonly used as preprocessing step 
to remove site effects while preserving site-specific biological 
variability. Specifically, Combat harmonization applies a lo-
cation and scale adjustment model considering input raw data 
as a linear combination of biological and non-biological terms, 
accounting for additive and multiplicative site contributions. 
Recent neuroimaging researches reported ComBat to success-
fully harmonize multi-scale features from different neuroim-
aging data types, for example, diffusion tensor imaging (Fortin 
et  al.  2017), functional magnetic resonance imaging (fMRI) 
(Yu et  al.  2018; Tassi et  al.  2023), and structural MRI (sMRI) 
(Pomponio et  al.  2020; Fortin et  al.  2018; Beer et  al.  2020; 
Radua et  al.  2020). As regards the latter technique, ComBat 
performances have been tested on regional cortical thickness 
(CT; Fortin et al. 2018; Beer et al. 2020; Radua et al. 2020), re-
gional gray matter volume (GMV; Pomponio et al. 2020; Radua 
et  al.  2020), voxel-based morphometry (Takao, Hayashi, and 
Ohtomo  2011), and regional surface area (Radua et  al.  2020) 
features. Nevertheless, quantitative evidence for ComBat effec-
tiveness in removing site-related variability while preserving 
the effects of interest is still limited, with some studies showing 
no added values of ComBat over standard linear regression ap-
proaches (Zavaliangos-Petropulu 2019). Moreover, within these 
studies, the assessment of ComBat performances was based on 
statistical analyses on site differences in the analyzed features, 
or by exploratory visualization of feature-site associations aimed 
to compare how much raw and harmonized data are clustered 
by imaging sites (Yu et al. 2018; Fortin et al. 2018). In addition, 
clustering was employed to discover any site-related clusters in 
raw and harmonized feature sets (Yamashita et al. 2019). So far, 
only one study applied supervised machine learning (ML) tech-
niques to evaluate ComBat performances (Fortin et  al.  2018). 
Furthermore, a consensus on ComBat pipeline has not been 
reached, since some studies estimate and remove site effects in 
the same dataset (Pomponio et al. 2020; Yu et al. 2018; Fortin 
et al. 2018; Beer et al. 2020; Yamashita et al. 2019) other employ 
cross-validation (CV) frameworks that separate fitting and ap-
plication of harmonization parameters in different feature sets 
(Radua et al. 2020). Specifically, a recent ENIGMA study (Radua 

et al. 2020) introduced the idea of adapting ComBat functions 
allowing harmonization of a test set based on parameters esti-
mated in a training set, thus addressing the inclusion of ComBat 
within a CV approach.

By considering previous studies evaluating reliability of ComBat 
technique (Fortin et al. 2017; Fortin et al. 2018), with this mul-
tisite study, we aimed to quantitatively and comprehensively ad-
dress ComBat performances on brain morphological measures 
using both volume-based and surface-based measures and for 
each of them diverse atlases via a robust CV approach. To this 
end, we applied a ML approach based on Multi-Class Gaussian 
Process Classifier (MCGPC) aimed to predict imaging site from 
the raw and harmonized brain features, revealing quantitative in-
sights into site effect removal after ComBat application. Further, 
we estimated, before and after harmonization, the association 
between biological covariates and brain features using linear re-
gression analyses as well as tailored ML, providing information 
on ComBat capability to effectively control for biological feature 
variability. Notably, by the adoption of a CV framework, we tested 
ComBat performances in harmonizing unseen independent brain 
features from the same centers across surface-based and volume-
based measures of brain morphology. This flexibility and robust-
ness analysis of ComBat on independent test sets would support 
the emerged importance in clinical practice of extracting devi-
ations created by differences in acquisition site across multisite 
clinical datasets and apply them on independent datasets from 
the same site, without replicating site effects estimation with an 
independent algorithm. Thus, a detailed evaluation of ComBat 
performances within a CV framework would be considered as 
an important adjunctive step for facilitate screening deviations 
effect in unseen independent dataset from the same site.

We hypothesized that (1) ComBat can be used to remove un-
wanted site-related variability in the data while preserving 
the site-unrelated biological variability; (2) after training on a 
multisite dataset, ComBat can be used to harmonize new inde-
pendent data from the same sites by applying the coefficients es-
timated on the training set; and (3) ComBat estimates the highest 
coefficients for the site associated with the maximum distance 
from the others in terms of feature values before harmonization. 
Aside verifying foundational capability of ComBat, this study 
aims to highlight the importance of evaluating ComBat perfor-
mances by applying a tissue-specific analysis and employing a 
variety of metrics. Further, beyond the functionality of ComBat 
on harmonizing independent test sets, we aim to perform a de-
tailed and comparative analysis evaluating the flexibility and 
robustness of ComBat performances within a CV framework 
across different regional-based measures.

2   |   Material and Methods

2.1   |   Dataset

The dataset included in our analysis is composed of sMRI 
data acquired from 294 healthy volunteers (154 females, 140 
males, 32.98 ± 8.71 years) across four sites of the StratiBip net-
work, which stemmed from the ENPACT network (Delvecchio 
et  al.  2021; Maggioni et  al.  2017). The four sites are: Azienda 
Ospedaliera Universitaria Integrata of Verona, Italy (AOUV, 
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Site 1), University Hospital of Jena, Germany (JUH, Site 2), 
IRCCS Ospedale San Raffaele of Milan, Italy (OSR, Site 3) and 
Fondazione IRCCS Santa Lucia of Rome, Italy (FSL, Site 4). The 
sample characteristics are reported in Table 1. Structural brain 
images were acquired using 3 T MRI scanners and T1-weighted 
sequences that differed across the four sites, described in Table 2. 
Using a holdout pipeline, the dataset was split into training (75%) 
and test (25%) sets by maintaining the balance across sites, ob-
taining 220 subjects in training set and 74 subjects in test set.

For continuous variables, mean standard deviations are indi-
cated. Kruskal Wallis test (KW) for age differences across sites: 
p = 0.39; Chi-squared test for sex differences: p = 0.83. Kruskal 
Wallis test for inter-site differences of age for both training and 
test: (i) training: p = 0.89, (ii) test: p = 0.17. Fisher's test for inter-
site differences of sex for training and test: (i) training: p = 0.28, 
(ii) test: p = 0.38; MPRAGE: T1 Magnetization Prepared Rapid 
Gradient Echo; FFE: T1-Fast Field Echo.

2.2   |   sMRI Data Preprocessing and Feature 
Extraction

The multisite T1-weighted images were processed on the same 
workstation using MATLAB R2021b (The MathWorks Inc., 
Natick) for the extraction of volume- and surface-based brain 
morphology measurements. The computational anatomy tool-
box (CAT12: https://​neuro​-​jena.​github.​io/​cat/​) within the 
Statistical Parametrical Mapping software (SPM12: http://​www.​
fil.​ion.​ucl.​ac.​uk/​spm/​) (Penny et  al.  2011) was used for image 
preprocessing and estimation of regional GMV and CT. The pre-
processing included tissue segmentation, spatial normalization 
to the standard Montreal Neurological Institute space template, 
brain tissue segmentation, adjustment of segmented tissues for 
volume alterations during registration (i.e., modulation), and 
spatial smoothing via convolution with a 3D Gaussian kernel 
(6 mm). Thus, smoothed, modulated, and normalized GM vol-
umes were employed for the extraction of GMV and CT from 
brain regions defined according to probabilistic atlases. For each 
subject, mean GMV values were extracted for regions of the 
volume-based Cobra (n = 52) and Neuromorphometrics (n = 136) 
atlases (Park  2014), whereas mean CT values were extracted 
for regions of the surface-based Desikan-Killiany (n = 72) and 
Destrieux (n = 152) atlases (Destrieux et al. 2010; Desikan 2006). 
Among them, GMV features from 42 regions of interest (ROIs) of 
Cobra atlas and 122 ROIs of Neuromorphometrics atlas were ex-
tracted, after having excluded the ROIs with only white matter 
(WM). CT features from 144 ROIs of Destrieux atlas and 64 ROIs 
of Desikan-Killiany atlas were selected based on the availabil-
ity of CT regional measures across subjects. In addition, global 

measures related to cerebrospinal fluid, gray matter, and WM 
volumes and total intracranial volumes (TIVs) were extracted.

2.3   |   ComBat-Based Feature Harmonization

The removal of site effects from GMV and CT features was per-
formed via the ComBat harmonization procedure proposed by 
Johnson, Li, and Rabinovic (2007). This technique considers the 
data as a linear combination of site effects, composed of multi-
plicative (δ) and additive (γ) effects, and biological covariates. 
ComBat harmonization procedure is as follows. First, each fea-
ture is standardized to obtain similar overall mean and variance 
across batches (i.e., site). The standardized data were assumed 
to be normally distributed, and the mean and variance of site-
specific distributions were identified as site effects estimators, 
following Normal and Inverse Gamma prior distributions, re-
spectively. Hyperparameters of such prior distributions, were 
calculated empirically from the previously standardized data 
with the use the methods of moments. As last, non-harmonized 
standardized features were adjusted based on the site effects and 
resulting in harmonized feature values.

The model can be written as follows:

where yijv is the feature value from the regional structural atlas 
(i.e., GMV, CT) of the imaging site i, participant j and feature val-
ues v. �v is the average feature CT or GMV for the reference site 
i for feature v (relative to a single ROI), XTij  is the design matrix 
for covariates of interest, and �v is the vector of regression coef-
ficient related to X. The error terms �ijv follow a normal distri-
bution with mean 0 and variance σ2v . �

∗
iv

 and �∗iv indicate additive 
and multiplicative site effects of imaging site i for feature value v. 
The ComBat-harmonized values can be defined as:

In our study, ComBat harmonization was performed using a 
publicly available MATLAB-based package (https://​github.​com/​
Jfort​in1/​ComBa​tHarm​oniza​tion). Before the ROI-based feature 
harmonization, the TIV was harmonized with the other global 
volumes, while considering age and sex as biological covariates. 
ComBat was then applied to GMV and CT features, considering 
the features from each atlas as a separate feature set, within a 
CV framework. ComBat was first applied to the training sets, 
while considering age, sex contributions for GMV and age, sex, 

(1)yijv = �v + XTij�v + � iv + �iv�ijv

(2)yComBatijv =
yijv − �v + XTij�v − �∗

iv

�∗iv
+ �v + XTij�v

TABLE 1    |    Demographic information of the entire sample.

ID Location N of subjects Age range (years)
Age mean ± std. 

(years) N of males/females

Site1 AOUV 73 25–54 31.72 ± 6.08 35/38

Site2 JUH 74 25–55 32.02 ± 8.05 34/40

Site3 OSR 67 19–62 35.03 ± 12.74 35/32

Site4 FSL 80 24–47 33.29 ± 6.82 36/44
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and harmonized TIV contributions for CT. By considering the 
degree of nuisance correlation of CT with TIV, TIV was included 
as covariate for ComBat harmonization applied on CT.

At this stage, additive and multiplicative site effects were es-
timated. The GMV and CT test sets were then harmonized by 
applying the ComBat site-effect correction coefficients esti-
mated on the relative training set. A flowchart indicative of our 
ComBat harmonization pipeline is reported in Figure 1.

2.4   |   Sites Effect

2.4.1   |   Visual Inspection of ComBat Coefficients

An exploratory visualization analysis was employed to evaluate 
site effects in terms of multiplicative and additive coefficients. 
In addition, to quantify site effects, for each site i the mean val-
ues of δ and γ coefficients across features of each type were ex-
tracted (i.e., �mean, γmean) as follows:

TABLE 2    |    Description of MRI scanner and sequence parameters.

Site Location Manufacturer Sequence
Magnetic 
field (T) Matrix size

Voxel size 
(mm × mm × mm)

1 AOUV Magnetom Allegra Syngo 
(Siemens, Erlangen, Germany)

T1 MPRAGE 3 256 × 256 × 160 1.00 × 1.00. ×1.00

2 JUH Siemens Tim Trio (Siemens, 
Erlangen, Germany)

T1 MPRAGE 3 256 × 256 × 192 1.00 × 1.00. ×1.00

3 OSR Philips Intera (Philips, 
Best, the Netherlands)

FFE 3 256 × 256 × 220 0.9 × 0.9 × 0.8

4 FSL Philips Medical Systems 
(Philips, Best, the Netherlands)

T1 MPRAGE 3 432 × 432 × 190 0.54 × 0.54 × 0.9

FIGURE 1    |    Flowchart describing the cross-validation approach to assess ComBat performances applied on volume- and surface-based measures 
acquired across three sites.
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where N indicates the number of regions included in the ROI-
based feature v. �mean and γmean are indicative of the total average 
magnitude of site effects. Thus, sites were rated based on the 
amounts of the estimated site effects. As last, the total average 
magnitude of site's estimators (�mean + �mean) was also extracted, 
representing a composite metric indicative of the overall site ef-
fects, summarizing additive and multiplicative sources.

2.5   |   ComBat Performance Test: Removal 
of Sites Effect

ComBat performances were assessed using a combination of 
previously proposed and novel approaches, all of which com-
pared a specific metric before and after ComBat application. 
The use of multiple metrics allowed us to test ComBat in terms 
of site effect removal (site-related metrics) and biological vari-
ability preservation (biology-related metrics). As for ComBat 
application, all these tests were performed separately for each 
GMV (Cobra and Neuromorphometrics) and CT (Destrieux and 
Desikan-Killiany) atlas.

2.5.1   |   Feature Comparison Among Sites

Nonparametric KW tests were applied to quantify any differ-
ence among sites in the median values of all features within 
each feature set, before and after applying ComBat harmoniza-
tion, separately for training and test sets. As follow, if significant 
differences emerged (p < 0.05, Bonferroni corrected with n = 4, 
number of feature sets), post hoc multiple pairwise comparison 
results were extracted.

2.5.2   |   Visual Inspection of Site Effect via Principal 
Component Analysis

For each set of features, a principal component analysis (PCA) 
was performed in the training and test sets, before and after 
ComBat harmonization. The scatterplot of the first two principal 
component (PC) scores was visualized by representing different 
sites with different colors to qualitatively assess the amount of 
site-related variation captured by the PCA. In case of significant 
feature differences among sites, we expected the PC scores to be 
associated with site, that is, showing samples from the same site 
clustered together in the PCA scatterplot. For each feature set, we 
also visually compared the scatterplot of the first PC scores before 
and after ComBat harmonization in the training and test sets.

2.5.3   |   Site Classification Models

PRONTO (Schrouff 2013) MCGPC was adapted for application to 
ROI-based features by employing in-house MATLAB scripts and 

used to classify the site from each feature set, using separately 
training and test sets, before and after ComBat harmonization. The 
MCGP, which operates a probabilistic kernel-based algorithm, re-
sults well-suited for sorting instances into multiple categories and 
thus informing predictive probabilities of multiclass membership 
(Rasmussen and Williams  2006; Wegrzyn et  al.  2015). Indeed, 
MCGP strength lies in its ability to handle multi-class problems 
and the capacity to yield probabilistic predictions.

The comparison of site classification accuracies provided a 
quantitative measure of the extent of site effect removal after 
ComBat application. Specifically, good harmonization perfor-
mance should reduce the accuracy of site classification obtained 
from the harmonized features with respect to non-harmonized 
ones. For the training set, the MCGPC training classifica-
tion performance was assessed through a 10-fold CV scheme. 
Further, MCGPC test classification performance was evaluated 
by a k-fold CV automatically chosen by PRONTO. Classification 
performances were measured using standard metrics including 
balanced accuracies (BAs), class- (i.e., site-) and specific accura-
cies (CA). Specifically, CA is computed by considering disjoint 
subsets of the whole testing data, where each subset contains 
only test samples from one class (i.e., site). Based on CA sets, BA 
could be computed as the average accuracy obtained on either 
class, thus giving indices of performance that consider the dif-
ferent size of the groups. A single value of BA, CA, sensitivity, 
specificity, and precision were extracted as the average values 
across folds.

The performance significance was tested by permuting the 
outcome label, represented by the imaging site (N = 1000). 
p-Values were validated based on permutation tests. The 
differences between the drops in BA from before to after 
ComBat harmonization obtained in training and test sets (i.e., 
ΔBA drops = BA dropstrain − BA dropstest) were extracted to assess 
the differential performance of ComBat from the training to the 
independent test set. Furthermore, sites were ranked in terms 
of the average CA drop after ComBat harmonization across fea-
ture sets.

2.6   |   Preservation of Biological Variability

2.6.1   |   Linear Regression Analysis

ComBat harmonization on the association between biologi-
cal factors with both individual and median values of the fea-
tures in each feature set, and separately for training and test, 
was quantitatively assessed via linear regression using in-house 
MATLAB scripts. Before and after Combat application, linear 
regression models were fitted, using age and sex as independent 
variables, and each feature as dependent variable. Harmonized 
and non-harmonized feature sets were compared in terms of 
T-statistics and relative p-values, as well as the percentage of 
variation in the dependent variable (i.e., the selected feature) ex-
plained by age and sex, that is, the coefficient of determination 
R2. In these analyses, significance threshold was set to p = 0.05. 
No multiple-hypothesis testing was performed, given the only 
interest in comparing the associations before and after ComBat 
harmonization, and not in testing the absolute significance of 
these associations.

(3)�mean,iv =

∑N
n=1 δn

N

(4)γmean,iv =

∑N
n=1 γn

N
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2.6.2   |   Kernel Ridge Regression for Age Prediction

We quantified the capability to predict age from harmonized 
and non-harmonized values of each feature set using Kernel 
ridge regression (KRR) algorithm from PRONTO toolbox, sepa-
rately for training and test sets. Mean-squared error (MSE) was 
employed as performance metric and compared before and after 
ComBat harmonization. A fivefold CV on leave-one-subject-out 
with hyperparameter optimization was used for the CV internal 
loop, whereas leave-one-subject-out scheme was used for the CV 
external loop.

2.6.3   |   Binary Support Vector Machine 
for Sex Prediction

We quantified the capability to classify sex from harmonized 
and non-harmonized values of each feature set using binary 
support vector machine (SVM), separately for training and test 
sets. Sex classification accuracy was compared before and after 
ComBat harmonization. For the CV inner loop, hyperparameter 
optimization was performed through fivefold CV, while 10-fold 
CV on leave-one-subject-out was used for outer loop to estimate 
model performance. A selected balanced sample of males and 
females was employed for both training and test application.

3   |   Results

In this section, additive and multiplicative site effects estimated 
by ComBat are first inspected and discussed. Further, the main 
findings of the ComBat performance tests in terms of site effect 
removal and preservation of biological variability are presented.

3.1   |   Sites Effect

3.1.1   |   Visual Inspection of ComBat Coefficients

Figure S1 shows ComBat multiplicative (δ) and additive (γ) co-
efficient absolute values (magnitude) for GMV features from 
Neuromorphometrics atlas and CT features from Desikan-
Killiany atlas.

For each feature set and site, the features associated with the 
highest multiplicative and additive coefficient values are listed 
in Tables S1–S5, together with the average magnitude �mean and 
�mean coefficients across features, as well as the total average 
magnitude of site's estimators (�mean + �mean). For GMV features 
from both Neuromorphometrics and Cobra atlases, the site with 
the highest was Site 1, while Site 2 was associated with the low-
est one. In both feature sets, the highest value was found in Site 
3; conversely, the lowest were found in Site 4 and Site 1 for the 
Neuromorphometrics and Cobra atlases, respectively. In both 
feature sets, the site with the highest �mean + �mean was Site 3. 
The CT features from both Desikan-Killiany and Destrieux 
atlases were characterized by highest in Site 1, while Site 4 
showed the lowest value. For both feature sets, the highest and 
lowest additive effects were found in Sites 3 and 1, respectively. 
As for GMV features, Site 3 was the site associated with high-
est. Among CT feature sets, Desikan-Killiany features showed 

higher than Destrieux ones. Consistently among GMV and CT 
features, the multiplicative coefficients were found to be maxi-
mum for Site 1, whereas additive coefficients were maximum for 
Site 3. Among all four feature sets, the highest sum of average 
additive and multiplicative coefficients across sites was found in 
Desikan-Killiany CT features. Within GMV and CT feature sets, 
differences were found between atlases and highlighted higher 
values for the CT features from the Desikan-Killiany atlas com-
pared to CT features from the Destrieux one.

3.2   |   ComBat Performance Test Removal of Sites 
Effects

3.2.1   |   Feature Comparison Among Sites

After multiple comparison correction applied on KW analyses, 
we showed differences among sites in the median values of non-
harmonized GMV and CT features, in both training (p < 0.001, 
surviving to Bonferroni's correction) and test (p < 0.005, surviv-
ing to Bonferroni's correction) sets. The post hoc pairwise com-
parisons showed that, for both training and test sets, the median 
GMV and CT values in Site3 were significantly lower than in 
the other sites. After ComBat harmonization, for both training 
and test sets, no significant differences in median feature values 
among sites were found for any of the GMV or CT feature sets.

3.2.2   |   Visual Inspection of PCs

The scatterplot of the first two PCs related to GMV and CT 
features before and after ComBat were extracted. Scatterplots 
for GMV and CT training and test feature set is represented in 
Figures S2 and S3. The PCs are colored by site, enabling the vi-
sualization of their associations. Before ComBat harmonization, 
training set PCs were more clearly clustered by site compared 
to test set ones, probably due to the lower number of test set 
subjects from each site. Such clustering is not observable after 
ComBat harmonization.

3.2.3   |   Site Classification Model

The accuracies of site classification models based on GMV and 
CT features before and after ComBat harmonization are re-
ported in Table 3, for the training set, and Table 4, for the test set. 
Specifically, measures of BA, CA, specificity, sensitivity, and pre-
cision values reported in Tables 3 and 4 are calculated as the aver-
age value across folds. The BA and CA values were higher for the 
site classification models built on CT features compared to GMV 
features. Specifically, in the training set, the BA values of site 
classification based on Cobra and Neuromorphometrics GMV 
features were found to decrease of 65.17% and 80.25%, respec-
tively, after ComBat harmonization, whereas classification mod-
els built on Destrieux and Desikan-Killiany CT features showed 
a reduction of BA values of 90.75% and 82.75%, respectively, after 
ComBat application. In the test set, ComBat application resulted 
in a BA reduction of 55.83% for Cobra GMV features, 26.25% 
for Neuromorphometrics GMV features, 48.33% for Destrieux 
CT features, and 47.8% for Desikan-Killiany CT features. In the 
training set, the models based on CT features were associated 
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with the highest drop in BA values from before to after ComBat 
harmonization. Differently, in the test set, the highest BA drop 
was observed in the classification models built on Cobra GMV 
features, followed by the ones relying on CT features. By evalu-
ating BAtrain − BAtest, the lowest difference was found for Cobra 
GMV features (9.34%) followed by Desikan-Killiany CT (35.67%), 
Destrieux CT (42.42%), and GMV Neuromorphometrics (54%) 
ones. On average, such difference was greater for GMV fea-
tures (31.67%) compared to CT ones (39.04%), indicating better 
ComBat performances on independent test sets for CT features 
than for GMV ones. In addition, Site 3 was associated with the 
highest drop of CA values, on average across the four feature 
sets, in both training (90%) and test (64%) sets.

Figures  2 and 3 show the histograms of distributions of aver-
age BA across folds and across permutations, before and after 
ComBat harmonization, as violin plots. Specifically, the left side 
of the violin plots represents the BA distribution of the model 
(colored in green in the “before harmonization” panels and dark 
pink in the “after harmonization” panels), while the right side 
corresponds to the distribution of average BA with permuted 
labels (colored in gray in the “before harmonization” panels, 
and purple in the “after harmonization” panels). Furthermore, 
as a summary measure across CV folds, the multiclass confu-
sion matrices for the training and the test set are reported in 
Figures  S4 and S5, representing the average confusion matrix 
across CV folds matrices.

TABLE 3    |    Training set MCGP accuracies for GMV and CT features.

Not Harmonized GMV Cobra GMV Neuromorphometrics CT Destrieux
CT Desikan-

Killiany

BA 79.67% 90.58% 97.17% 95.25%

Sensitivity 79.55% 90.54% 97.32% 95.12%

Specificity 93.02% 96.82% 99.09% 98.33%

Precision 79.56% 90.55% 97.26% 95.23%

CA CA1: 71.33% CA1: 87% CA1: 96% CA1: 92.67%

CA2: 80% CA2: 87.67% CA2: 100% CA2: 98.33%

CA3: 94% CA3: 96% CA3: 96% CA3: 100%

CA4: 73.33% CA4: 91.67% CA4: 96.67% CA4: 90%

BA p-value permutation test p < 0.05 p < 0.05 p < 0.05 p < 0.05

Harmonized GMV Cobra GMV Neuromorphometrics CT Destrieux
CT Desikan-

Killiany

BA 14.50% 10.33% 6.42% 12.50%

Sensitivity 12.64% 9.15% 6.44% 11.59%

Specificity 71.67% 70.12% 68.67% 70.86%

Precision 14.42% 10.18% 6.51% 12.51%

CA CA1: 2% CA1: 0% CA1: 8.33% CA1: 23.33%

CA2: 18.33% CA2: 13.33% CA2: 7.67% CA2: 13%

CA3: 6% CA3: 8% CA3: 8% CA3: 2%

CA4: 31.67% CA4: 20% CA4: 1.67% CA4: 11.67%

BA p-value permutation NS NS NS NS

Accuracy Drop Before—After 
Harmonization GMV Cobra GMV Neuromorphometrics CT Destrieux

CT Desikan-
Killiany

Drop in BA 65.17% 80.25% 90.75% 82.75%

Drop in CA CA1: 69.33% CA1: 87% CA1: 87.67% CA1: 69.34%

CA2: 61.67% CA2: 74.34% CA2: 92.33% CA2: 85.33%

CA3: 88% CA3: 88% CA3: 88% CA3: 98%

CA4: 41.66% CA4: 71.67% CA4: 95% CA4: 78.33%

Abbreviations: BA, balanced accuracies; CA, class- (i.e., site-) and specific accuracies.
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8 of 15 Human Brain Mapping, 2024

In the training set, before ComBat harmonization, significant p-
values from the permutation tests were found for the BA values 
for all feature sets, indicating the rejection of the null hypothesis 
of independence between samples (i.e., GMV and CT features) 
and classes (i.e., sites). After harmonization, the same BA metrics 
were associated with nonsignificant p-values from the permuta-
tion tests.

In the test set, before ComBat harmonization, the permutation 
tests resulted in significant p-values for BA values for all fea-
ture sets. Differently, after harmonization, only GMV Cobra 
features resulted in nonsignificant BA differences between per-
muted and true labels. Differently, GMV Neuromorphometrics, 

Destrieux and Desikan-Killiany CT feature sets were associated 
with significant BA differences.

3.3   |   Preservation of Biological Variability

3.3.1   |   Linear Regression Analysis

The linear regression statistics relative to the associations be-
tween biological factors (age and sex) and median feature values 
are reported in Table 5, for the training set, and Table 6, for the 
test set. Overall, ComBat harmonization strengthened the asso-
ciation of age and sex with the median GMV and CT features in 

TABLE 4    |    Test set MCGP accuracies for GMV and CT features.

Not Harmonized GMV Cobra GMV Neuromorphometrics CT Destrieux
CT 

Desikan-Killiany

BA 73.75% 75% 88.75% 86.25

Sensitivity 81.54% 78.54% 92.01% 95.12%

Specificity 93.95% 92.60% 97.30% 98.33%

Precision 81.35% 77.87% 92.16% 95.23%

CA CA1: 72.22% CA1: 77.78% CA1: 94.44% CA1: 77.78%

CA2: 63.16% CA2: 73.68% CA2: 84.21% CA2: 94.74%

CA3: 100% CA3: 100% CA3: 100% CA3: 100%

CA4: 90% CA4: 60% CA4: 90% CA4: 85%

BA p-value permutation p < 0.05 p < 0.05 p < 0.05 p < 0.05

Harmonized GMV Cobra GMV Neuromorphometrics CT Destrieux
CT 

Desikan-Killiany

BA 17.92% 48.75% 40.42% 39.17%

Sensitivity 12.64% 50.44% 42.25% 41.54%

Specificity 71.67% 83.27% 80.82% 80.34%

Precision 14.42% 50.08% 41.92% 40.97%

Site's specific accuracy CA1: 22.22% CA1: 55.56% CA1: 33.33% CA1: 44.44%

CA2: 21.05% CA2: 36.84% CA2: 63.16% CA2: 47.37%

CA3: 0% CA3: 52.94% CA3: 41.18% CA3: 47.06%

CA4: 30% CA4: 55% CA4: 30% CA4: 25%

BA p-value permutation NS p < 0.05 p < 0.05 p < 0.05

Accuracy Drop Before–After 
Harmonization GMV Cobra GMV Neuromorphometrics CT Destrieux

CT 
Desikan-Killiany

Drop in BA 55.83% 26.25% 48.33% 47.08%

Drop in CA CA1: 50% CA1: 22.22% CA1: 61.11% CA1: 33.34%

CA2:42.11% CA2:36.84% CA2: 21.05% CA2: 47.37%

CA3: 100% CA3: 47.06% CA3: 58.82% CA3: 52.94%

CA4:60% CA4:5% CA4:60% CA4: 60%

Abbreviations: BA, balanced accuracies; CA, class- (i.e., site-) and specific accuracies.
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the training set, whereas this association was reinforced only 
for GMV features in the test set. In the training set, for all fea-
ture sets, the R2 coefficient from the linear regression model in-
creased after harmonization, indicating a post-harmonization 
increase in the percentage of variation in the response variable 
(median feature value) explained by age and sex. On the other 
hand, in the test set, the R2 coefficient increased from before to 
after harmonization only for GMV features, whereas a slight de-
crease was observed for the CT features.

Regarding age, in the training set, for both GMV and CT fea-
tures, a significant association between age and median feature 
values was maintained from before to after ComBat harmoniza-
tion; moreover, the absolute value of the T-statistics relative to 
the age regressor increased after harmonization. In the test set, 
the significant associations between age and non-harmonized 
median feature values, which was observed for the GMV 
Neuromorphometrics and CT Destrieux feature sets, were main-
tained after harmonization. In the same line, nonsignificant as-
sociations observed for the GMV Cobra and CT Desikan-Killiany 
feature sets before harmonization remained nonsignificant after 
ComBat harmonization. Regarding the sex factor, in the train-
ing set, the magnitude of its association with median GMV fea-
ture values (i.e., the T-statistics) increased after harmonization, 
maintaining a significant p-value. Differently, median CT fea-
tures showed a nonsignificant association with sex both before 
and after harmonization. As in the training set, in the test set the 
strength of the association between sex and median GMV fea-
tures from both Cobra and Neuromorphometrics increased from 
before to after harmonization, maintaining a significant p-value. 
The median CT features were not significantly associated with 
sex both before and after ComBat harmonization. Regarding the 
linear regression analyses assessing the associations between in-
dividual GMV and CT features and biological factors, we found 
that, overall, in both training and test sets, after ComBat har-
monization, an increased number of ROIs were significantly as-
sociated with age and sex for most of the feature sets, except for 
CT Desikan-Killiany atlas with sex in the training set and GMV 
Neuromorphometrics atlas with age in the test set.

The findings on the individual features are summarized 
in terms of numerosity of significant associations before 
and after ComBat harmonization. In the training set, be-
fore harmonization, we found 30 GMV Cobra, 115 GMV 
Neuromorphometrics, 121 CT Destrieux, and 59 Desikan-
Killiany features significantly associated with age, and 39 
GMV Cobra, 118 GMV Neuromorphometrics, 32 Destrieux, 
and 16 Desikan-Killiany features significantly associated with 
sex. After harmonization, the number of features significantly 
associated with sex increased for all feature sets except for CT 
Destrieux one, whereas the number of features significantly 
associated with age did not increases after harmonization. 
Specifically, 27 GMV Cobra, 112 GMV Neuromorphometrics, 
120 CT Destrieux, and 58 Desikan-Killiany features were sig-
nificantly associated with age, and 40 GMV Cobra, 120 GMV 
Neuromorphometrics, 31 Destrieux, and 16 Desikan-Killiany 
features were significantly associated with sex. In the test 
set, before harmonization, we assessed that none of GMV 
Cobra, 62 GMV Neuromorphometrics, 69 CT Destrieux and 35 
Desikan-Killiany features were significantly associated with 

age. Further, 33 GMV Cobra, 103 GMV Neuromorphometrics, 
4 CT Destrieux and 1 Desikan-Killiany regions had a signifi-
cant association with sex. Of note, differently from the train-
ing set, the number of regions significantly associated with 
age after the test set harmonization increased for all sets ex-
cept for Neuromorphometrics atlas, whereas the regions as-
sociated with sex after test set harmonization increased for 
all the GMV and CT atlases. Specifically, we found 2 GMV 
Cobra, 59 GMV Neuromorphometrics, 74 CT Destrieux, 36 
CT Desikan-Killiany features significantly associated with 
age after harmonization, while 37 GMV Cobra, 109 GMV 
Neuromorphometrics, 12 CT Destrieux, and 6 CT Desikan-
Killiany were significantly associated with sex.

3.3.2   |   KRR for Age

The results of KRR application for prediction of age based on 
GMV and CT features from the training and test sets are reported 
in Tables S5 and S6, respectively. In the training set, for all fea-
ture sets, the KRR performed better after ComBat harmonization 
compared to before harmonization, as indicated by a decrease of 
MSE from before to after ComBat harmonization for all models 
(ΔMSE pre−post harm: GMV Cobra, 2.97; GMV Neuromorphometrics, 
7.76; CT Destrieux, 8.51; CT Desikan-Killiany, 6.91). On the other 
hand, for the test set, ComBat harmonization improved the KRR 
prediction accuracy (i.e., decreasing MSE) of age in the models 
built on CT features, whereas the age prediction performances 
remained unchanged in the models built on GMV features from 
before to after Combat harmonization (ΔMSE pre−post harm: GMV 
Cobra, 0; GMV Neuromorphometrics, 5.05; CT Destrieux, 0.44; 
CT Desikan-Killiany, 7.29).

3.3.3   |   Binary SVM for Sex Classification

In the training set, ComBat harmonization improved the sex 
classification accuracy only when GMV features were used, 
whereas for the models relying on CT features the performance 
decreased after ComBat harmonization. This result has con-
firmed that the biological variability associated with sex was 
preserved, and even strengthened, in the harmonized GMV 
features (ΔAccuracy drops post−pre harm: GMV Cobra, 4.82; GMV 
Neuromorphometrics, 2.68; CT Destrieux, −3.32; CT Desikan-
Killiany, −8.5). In the test set, the sex classification perfor-
mances increased when harmonized GMV features compared 
to non-harmonized GMV features were used. Differently from 
the training set, ComBat improved the sex classification accu-
racy in the models relying on CT Destrieux features. As in the 
training set, a drop in sex classification accuracy from before 
to after ComBat harmonization was observed for CT Desikan-
Killiany features (ΔAccuracy drops post−pre harm: GMV Cobra, 1.67; 
GMV Neuromorphometrics, 10.41; CT Destrieux, 12.92; CT 
Desikan-Killiany, −2.92).

4   |   Discussion

Neuroscientific advances have recently brought to the genera-
tion of large amounts of neuroimaging data that are increasingly 
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FIGURE 2    |    Histogram of distribution of average balanced accuracy across folds and across permutations as a violin plot in training set, reported 
before and after ComBat harmonization. The left side of each violin plots (colored in green before harmonization and dark pink after harmonization) 
represents the balanced accuracy distribution of the model, while the right side of each plots (colored in gray before harmonization and purple after 
harmonization) corresponds to the distribution of average balanced accuracy with permuted labels.

FIGURE 3    |    Histogram of distribution of average balanced accuracy across folds and across permutations as a violin plot in test set, reported be-
fore and after ComBat harmonization. The left side of each violin plots (colored in green before harmonization and dark pink after harmonization) 
represents the balanced accuracy distribution of the model, while the right side of each plots (colored in gray before harmonization and purple after 
harmonization) corresponds to the distribution of average balanced accuracy with permuted labels.
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shared among centers to respond to a range of research ques-
tions. Within this context, the ComBat tool is gaining impor-
tance as harmonization technique for removing non-biological 
variability in neuroimaging data, such as the one induced by 
site-specific acquisition parameters.

In this study, we applied ComBat to multisite sMRI data in-
cluding diverse brain regional types of features and diverse 
types of atlases per feature via a CV framework, and quanti-
tatively tested its performance by comparing harmonized and 
non-harmonized features. For the first time, surface-based and 
volume-based measures of regional brain morphology from mul-
tiple atlases were considered, and multiple performance metrics 
relative to both non-biological (site-related) and biological vari-
ability in the data were extracted, enabling an extensive char-
acterization of the ComBat harmonization pipeline. Of note, in 
our study, ComBat harmonization effectiveness was tested in a 
sample that is representative of most multisite samples investi-
gated in literature.

Specifically, besides the use of standard statistical tests to evalu-
ate Combat ability to remove site-related differences in features, 
ML classification based on MCGP was applied. By employing a 
classification model to estimate site effect removal, we ensured a 
quantitative assessment of non-biological site-related variability 

based on various performance metrics, including accuracy and 
sensitivity, further assessing the robustness of these metrics 
through permutation tests. Additionally, using ML classifica-
tion models, the robustness of harmonization on independent 
sets was derived, as well as the best predictive features for the 
site's classification.

Our results support the flexibility and robustness of ComBat 
across multiple surface- and volume-based measures of brain 
morphology, valuing its usefulness in removing site effect also 
on independent data from the same sites and in preserving bio-
logical variability across participants in the data. Furthermore, 
differences in terms of ComBat performances were found to 
varied across measures of regional brain morphology, and thus 
demonstrating tissue specific site effects' modeling. Moreover, 
ComBat adjustment of site effects also varied across the regional 
level of each specific volume-based and surface-based measures. 
Overall, so far, few studies quantitatively evaluated ComBat effi-
cacy on MRI data, and among them, even fewer provided statis-
tical metrics of harmonization performances. Of note, only one 
study focused on sMRI features (Yu et al. 2018; Fortin et al. 2018; 
Yamashita et al. 2019; Richter et al. 2022; Maikusa et al. 2021). 
Specifically, they employed statistical analysis and unsuper-
vised dimensionality reduction to relatively test for sites effects 
and to visually explore if data's variation remained associated 

TABLE 5    |    Statistical results from linear regression model applied on training set with dependent variables of age and sex and median GMV and 
CT measures as outcome.

Age

GMV Cobra GMV Neurom CT Destrieux CT Desikan-Killiany

PreHarm PostHarm PreHarm PostHarm PreHarm PostHarm PreHarm PostHarm

tStats −4.87 −5.03 −6.59 −6.66 −7.46 −8.09 −7.77 −8.25

p value p < 0.05 p < 0.05 p < 0.05 p < 0.05 p < 0.05 p < 0.05 p < 0.05 p < 0.05

Sex

GMV Cobra GMV Neurom CT Destrieux CT Desikan-Killiany

PreHarm PostHarm PreHarm PostHarm PreHarm PostHarm PreHarm PostHarm

tStats 6.71 8.36 8.21 10.69 −1.19 −0.78 −1.26 −0.98

p value p < 0.05 p < 0.05 p < 0.05 p < 0.05 NS NS NS NS

R2 23.8% 30.3% 33.6% 42% 20.9% 23.4% 22.3% 24.2%

TABLE 6    |    statistical results from linear regression model applied on test set with dependent variables of age and sex and median GMV and CT 
measures as outcome.

Age

GMV Cobra GMV Neurom CT Destrieux CT Desikan-Killiany

PreHarm PostHarm PreHarm PostHarm PreHarm PostHarm PreHarm PostHarm

tStats −1.08 −1.28 −3.05 −3.06 −3.07 −3.05 −2.88 −2.83

p value NS NS p < 0.05 p < 0.05 p < 0.05 p < 0.05 NS NS

Sex

GMV Cobra GMV Neurom CT Destrieux CT Desikan-Killiany

PreHarm PostHarm PreHarm PostHarm PreHarm PostHarm PreHarm PostHarm

tStats 4.89 5.61 3.55 4.08 −0.78 −0.55 −0.70 −0.67

p value p < 0.05 p < 0.05 p < 0.05 p < 0.05 NS NS NS NS

R2 29.30% 35.41% 29% 32.50% 11.70% 11.60% 10.51% 10.10%
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with sites after harmonization. Similarly, recent fMRI studies 
applied statistical analysis (Yu et  al.  2018), and unsupervised 
clustering methods (Yamashita et al. 2019) as well as a multi-
scale assessment of harmonization efficacy to evaluate a specific 
quality control metric (Tassi et al. 2023). Nevertheless, the appli-
cation of ComBat to the entire dataset has impeded the external 
validation of site classification accuracy and the assessment of 
result reproducibility, specifically for cross-validated ComBat 
application. To our knowledge, our study is the first to assess the 
flexibility and robustness of ComBat in harmonizing indepen-
dent test sets, providing supportive evidence that is relevant for 
many ML applications.

4.1   |   Multiplicative and Additive Site Effects 
Analysis

In the panorama of ComBat applications (Pomponio et al. 2020; 
Fortin et  al.  2017; Tassi et  al.  2023; Fortin et  al.  2018; Beer 
et al. 2020; Radua et al. 2020; Yamashita et al. 2019; Chen 2022), 
our study is innovative for focusing on the separate analysis of 
additive and multiplicative coefficient differences across sites. 
Within our application, we found an overall homogeneity of 
these effects across surface- and volume-based measures, but 
with heterogeneous distributions of multiplicative coefficients 
with respect to additive ones. Specifically, Sites 3 and 1 were as-
sociated with the highest multiplicative and additive coefficients, 
respectively, consistently across GMV and CT atlases. Thus, our 
evidence suggests that site-related variability in sMRI data are 
reflected evenly in both volume-based and surface-based fea-
ture sets.

4.2   |   Site Effects Removal

For the first time, we employed the MCGP for site classification 
based on both non-harmonized and harmonized features for 
quantifying ComBat performances. The comparison of site clas-
sification accuracy metrics between training and test sets and 
across feature sets provided novel information on ComBat per-
formances, especially in the context of sMRI studies.

In terms of BA, our results showed a drop from before to after 
ComBat application for both GMV and CT features, with the 
higher drop observed on Destrieux CT features for the training 
set, on Cobra GMV features for test set. The permutation test 
results showed that ComBat harmonization on training fea-
ture sets removed the non-biological site-related variability, and 
hence the association between labels (i.e., imaging sites) and fea-
tures. Otherwise, ComBat was found to be more effective in re-
moving site-to-site variation from independent (test) samples for 
volume-based. Accordingly, the performance differences from 
training to test set were on average bigger for GMV features 
compared to CT ones. Furthermore, the comparison among sites 
in terms of drop in CA after harmonization led to results that are 
consistent with the inter-site differences in multiplicative and 
additive effects. Specifically, in both training and test sets, the 
site associated with highest multiplicative coefficients was also 
characterized by the highest CA drop on average across GMV 
and CT features. These results also suggest that scale differences 
across sites, modeled through multiplicative coefficients, were 

determinant for site classification. Overall, our findings suggest 
that the inclusion of ComBat in a CV framework might leave 
some of the undesired site-related variability in brain morpho-
logical features, especially those extracted using surface-based 
approaches. These results have highlighted the importance of 
analyzing ComBat harmonization performances on diverse 
types of measurements, including both volume-based and 
surface-based features, as well as diverse atlases for each of 
them. Therefore, we introduced the need to carefully consider 
the dataset properties before applying the method since not all 
feature types might be suitable for ComBat application in CV 
frameworks. The different performances observed in the test 
sets are probably due to the inclusion of ComBat in the CV 
framework. Since ComBat takes into account the effects of the 
biological covariates estimated on the training set, its applica-
tion to the test set might have implied a less accurate consider-
ation of biological variability, affecting in turn the magnitude 
of association between covariates and harmonized features. 
The observed discrepancies between GMV and CT features 
might also result from differences in their association with age. 
ComBat performances might thus vary across feature sets due 
to differences in the relative relationships with biological fea-
tures, remarking the need to develop customized pipelines. 
Interestingly, previous studies have reported dynamic changes 
in CT, volume and surface area throughout the adult life span, 
underlying vulnerability of specific regions to age-related modi-
fications (Storsve 2014). However, the nonlinearity of age trends 
in a wide number of brain features seems to be reduced in adult-
hood compared to adolescence (Pomponio et al. 2020). Thus, in 
our adult sample, we could assume discardable nonlinear age-
related modifications in GMV and CT features. Differently, the 
results of the linear regression models for the variable of sex 
showed that, in the training set, ComBat strengthened the re-
lationship between GMV features and sex, while the strength 
of the association of sex with CT measures decreased after the 
harmonization. Nevertheless, in the independent test set, the 
association strength increased for all the feature sets except for 
CT Desikan-Killiany ones. Likely, previous findings on CT data 
have shown no effects of ComBat harmonization on the associa-
tion between features and sex (Fortin et al. 2018). Furthermore, 
results related to ML classification of sex in the training set were 
consistent with linear regression ones, showing that harmoni-
zation improved the classification of sex from GMV features. 
Given the paucity of studies addressing this issue, our findings 
need replication on independent sets before drawing firm con-
clusions on the impact of ComBat on the relationships between 
brain morphological features and sex.

Therefore, our quantification of site effect removal on unseen 
independent datasets from the same site confirms ComBat 
flexibility and robustness on independent gray matter data, 
highlighting its potential for broader applications. Thus, it 
would facilitate screening deviations effects in independent 
datasets, without the need of re-deriving specific site effects' 
coefficients.

5   |   Limitations

Potential limitations related to the application of ComBat may 
arise and need to be discussed. As first ComBat technique relies 
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on strong assumptions for the parametric prior distributions of 
site effects, assuming that multiplicative and additive effects 
follow normal and inverse gamma distributions, respectively. 
Such parametric prior distributions might not generalize to all 
possible scenarios for input features. Moreover, this hypothesis 
poses three main implications. As first implication, ComBat 
does not account for heteroscedastic distributions of target 
features. Thus, it considers the features drawn from the same 
distribution with single mean and variance for each site and 
furthermore forces all sites to align with a single homoscedas-
tic noise term distribution. As second implication, the standard 
deviation of target features is considered as constant, loosing 
important biological meaning in the data that may exist by con-
sidering heteroscedastic features' distributions. Finally, the ad-
justment of site effects might be unbalanced in the case of large 
differences in the sample size across sites, leading a heavily ad-
justment for the sites with less data with respect to sites with 
higher sample size. Nevertheless, ComBat is funded on an em-
pirical Bayes step, which ensures robustness toward outliers and 
solid performances in small-to-large samples (Johnson, Li, and 
Rabinovic 2007; Fortin et al. 2018; Radua et al. 2020; Bayer 2022; 
Chen et  al.  2011). Although the performance of ComBat has 
been demonstrated to be stable across different samples (with 
N > 25) (Fortin et al. 2017; Bayer 2022; Chen et al. 2011), future 
research could extend our sample in terms of numerosity and 
age range covered and employ subsampling strategies to verify 
the effect created by the training sample size on the site effect 
estimation, thereby clarifying the extent to which the sample 
size could influence the harmonization within an independent 
test set.

However, our training and test sets were balanced among sites, 
guaranteeing a robust batch effect adjustment in this context. 
Nonetheless, besides implications ComBat have demonstrated 
robustness and widely reliable results in harmonizing ROI-
based neuroimaging features, as well as voxel-based (Pomponio 
et  al.  2020; Fortin et  al.  2018; Beer et  al.  2020; Chen  2022). 
Within this context, alternative prior distributions' set-up, as 
the use of non-parametric hierarchical Bayesian priors in the 
batch effect parameters should be applied to evaluate the dif-
ferences in ComBat harmonization performances based on 
different priors' distribution. However, fully non-parametric 
Bayesian approach may require approximation of too complex 
and high-dimensional functions. Nevertheless, each Bayesian 
design suffers from specific issues, thus comparative analysis on 
multiplicative and additive site effects based on parametric and 
nonparametric prior are needed.

Furthermore, in this study we compared across features and 
sites the total average magnitude of site's estimators (i.e., 
�mean + �mean), identified based on a composite index indicative 
of the sum of the magnitudes related to multiplicative and ad-
ditive site effects. Although the composite index of the overall 
site effect represents a single metric that helped us to localize, 
evaluate and compare the summary of multiplicative and ad-
ditive sources among feature sets and sites, we considered it 
a “suboptimal” indicator of the overall site effects estimated 
by ComBat, thus considering that the magnitudes of both site 
effects sources are not easily integrable. Indeed, the correct re-
moval of the overall inter-site variability relies on the ComBat 
equations, taking into account diverse factors including the 

multiplicative and additive effects, as well as covariates and 
error terms.

Moreover, our sample of young adults limited the possibility of 
further age sensitivity analyses, such as the assessment of bio-
logical factors' preservation over development. Even if our data-
set covered a relatively wide age range, subjects covering a life 
span, from childhood to elderhood, were absent. Future analy-
ses should include the investigation of ComBat capability to pre-
serve age effects on lifespan samples and subsamples belonging 
to different age sections.

In addition, our analysis may be limited by the specific division 
of the data in training and test set. Alternative analyses based 
on multiple iterations in the splitting process might be applied 
to enhance reliability of ComBat performances on training and 
test sets. Further, in this study, we ensured sample sizes and bi-
ological covariates balanced across sites to perform as best the 
aim of quantitative evaluation of the ComBat harmonization 
effectiveness. However, our approach might not be representa-
tive of practical applications characterized by imbalance among 
sites in sample sizes and covariates. Although the robustness of 
ComBat demonstrated toward imbalanced conditions in litera-
ture (Johnson, Li, and Rabinovic 2007; Fortin et al. 2018), within 
an imbalanced dataset the correct harmonization and mainte-
nance of biological factors could not be guaranteed. Mitigation 
strategies could be applied, including the estimation of site ef-
fects parameters within balanced subsamples from the different 
sites (Gupta et al. 2022).

Another limitation of ComBat is the assumption of indepen-
dency of the biological effects with respect to the site effects. 
Although ComBat ensures to preserve biological effects ac-
counted for in the algorithm, any kind of multicollinearity be-
tween sites and covariates is not modeled thus leading ComBat 
to over- or under-correct the feature values of the site with this 
collinearity by forcing them to align with a linear covariate tra-
jectory. Nevertheless, by considering a wide young adults' age 
range we might exclude heavy over and under adjustments due 
to large nonlinear covariate effects. Making a specific focus on 
the risk for over-correction, we considered limited the risk of re-
moving effects of interest, such as the ones covarying with site, 
since the removal of site-related heterogeneity was in most cases 
generalizable to the multisite independent test set, especially for 
GMV features, showing nonsignificant BA differences between 
permuted and true labels. A further issue to be considered is 
related to the repetition of site labels entered in the permuta-
tion framework. However, over-correction's risk within ComBat 
framework needs to be validated on independent samples with 
heterogeneous characteristics across sites, as well as how much 
this over adjustment could interfere with the effects of interest 
estimation.

The nonsignificant differences age ranges across sites in 
our study should have guaranteed a more stable batch effect 
correction with respect to age-disjoint studies (Pomponio 
et al. 2020; Bayer 2022). Thus, these results underlined the im-
portance of considering possible unmodeled site-by-covariate 
interactions acting on feature sets in the context of ComBat 
application. The main limitation of our study regards the 
non-consideration of harmonization methods different from 
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ComBat one. Alternative methods, including Combat variants, 
should be applied in the future. Among them, ComBat-GAM 
has been introduced for modeling nonlinear covariate effects 
on input features (Pomponio et  al.  2020) ComBat provides 
harmonization of site-specific covariance patterns across fea-
tures (Chen 2022) and ComBat longitudinal approach can be 
applied on repeated measurements of the same subjects (Beer 
et al. 2020).

Future studies would benefit from replicate these findings on 
larger sample size, wider age range and more sites involved. 
Thus, replication of our findings on larger datasets would pro-
vide a quantitative advantage on ComBat performance's estima-
tion leading to a more solid and robust estimate of tissue specific 
site effects, as well as an opportunity to verify flexibility, robust-
ness, and generalizability on unseen dataset.

Further, next critical steps should provide more detailed infor-
mation on ComBat performances in terms of maintenance of 
biological variability within single GMV and CT features. This 
would ensure the assessment not only across multiple types of 
features, but also at finer spatial scales, providing further in-
formation at the ROI and sub-ROI levels. However, looking at 
which brain regions are more affected by ComBat could be mis-
leading, as these brain regions can vary greatly depending on 
the dataset used.

As last, the employment of traveling subjects' design may repre-
sent a valuable future validation of ComBat performances, tak-
ing into account also the site-specific samples' effect.

6   |   Conclusion

Our study has quantitatively assessed ComBat multisite har-
monization performance on different types of regional brain 
morphology metrics via a novel CV approach. Using a robust 
ML and statistical tools, we found that ComBat is effective at 
removing nuisance variability in the data associated with site, 
while generally preserving or even strengthening data asso-
ciation with biological factors. In our application, especially 
for GMV features, ComBat has shown flexibility and robust-
ness of application on unseen independent GMV data from the 
same sites. If reproduced on larger independent samples, this 
evidence might provide a conclusive insight into ComBat ef-
fectiveness in the context of ML studies on regional brain mor-
phological features. Thus, especially the results of ComBat 
CV strategy may have considerable implications in the field 
of developing classification tools for psychopathological disor-
ders based on large multisite clinical datasets, remarking the 
importance of transfer the site-specific coefficients on unseen 
data from the same sites.
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