
Ten years of parallel theorem proving: a

perspective

Maria Paola Bonacina ⋆

Department of Computer Science – The University of Iowa

Iowa City, IA 52242-1419, USA

E-mail: bonacina@cs.uiowa.edu

1 Introduction

The field of Strategies for Automated Deduction is concerned with the control of
deduction, that is, with the search strategies employed to search for a solution,
e.g., a proof in theorem proving, a model in model building, a normal form in
term rewriting. The definition of the search problem in theorem proving is well
known. The availability of a sound and refutationally complete inference system
I guarantees the existence of a proof (a derivation of a contradiction), for any
inconsistent set H ∪ {¬ϕ}, where H is a set of assumptions and ϕ a conjectured
theorem. However, given an initial state with H and ¬ϕ, I can generate many
derivations, because an inference system is non-deterministic. The search prob-
lem is how to control I so that a proof can be found (fairness) using as little
resources as possible (efficiency). A search plan Σ is the mechanism that decides
at each step how to apply I, so that the derivation generated by I and Σ from
an initial state is unique, and the combination of inference system and search
plan forms a deterministic procedure called a theorem-proving strategy.

A taxonomy of fully-automated, general-purpose, first-order theorem-proving
strategies based on how they search was presented in [3], and Figure 1 shows its
graphical representation. We call ordering-based strategies those strategies that
work on a set of objects (e.g., clauses) and develop implicitly many proof at-
tempts, and subgoal-reduction strategies those strategies that work on one object
at a time (e.g., a goal clause, a goal literal, a sequent) and develop one proof at-
tempt at a time (e.g., a tableau), backtracking when the current proof attempt
cannot be completed into a proof. Ordering-based strategies never backtrack,
because whatever they do may further one of the proof attempts (see Table 1).

Within this taxonomy a formal definition of search plan was developed and
instantiated for all classes of strategies. Let Θ be a first-order signature, LΘ a
Θ-language, P(LΘ) its powerset, and States the set of all possible states of a
theorem-proving search problem H ∪ {¬ϕ}. Depending on the strategy states
may be sets of clauses, or tuple of components. A search plan Σ is made of at
least three components:

– A rule-selecting function ζ:States∗ → I, which selects the next rule to be
applied based on the history of the search so far;

⋆ Supported in part by the National Science Foundation with grant CCR-97-01508.

strategies

expansion-
oriented
strategies

based
contraction-
based
strategies

semantic
or supported
strategies

instance- tableaux-based
strategies

linear-input strategies

theorem-proving strategies

ordering-based strategies

target-oriented strategies

subgoal-reduction strategies

linear
clausal

strategies

Fig. 1. Classes of strategies

Ordering-based Subgoal-reduction

Data set of objects one goal-object at a time

Proof attempts built many implicitly one at a time

Backtracking no yes

Contraction yes no

Table 1. Two main classes of strategies

– A premise-selecting function ξ:States∗ × I → P(LΘ), which selects the ele-
ments of the current state the inference rule should be applied to;

– A termination-detecting function ω:States → Bool, which returns true if
the given state is successful (e.g., empty clause generated, tableau closed),
false otherwise.

If the current state is not successful, ζ selects a rule f and ξ selects premises
ψ1 . . . ψn, the next step will consist of applying f to ψ1 . . . ψn. The sequence of
states thus generated forms the derivation by 〈I,Σ〉 from the given input.

Our objective is to extend the taxonomy of [3] to parallel strategies, and de-
velop notions of parallel search plans. A basic motivation for this undertaking is
that parallelism affects precisely the control of deduction; additional motivations
come from strategy analysis and engineering of theorem provers. Strategy analy-
sis is a new field whose goal is the machine-independent evaluation of theorem-
proving strategies; approaches to strategy analysis involve modelling and ana-
lyzing the searches produced by the various types of strategies, and therefore
hinge on a search-based classification. Extending these tools (e.g., classification,
notion of search plan, model of search) to parallel strategies supports the exten-
sion of the analysis itself (e.g., [1]). The engineering of theorem provers stands

to benefit from any development of formal tools to specify search plans, because
theorem-proving methods are too often specified in terms of inference rules only,
resulting in under-specification of the problem on one hand, and loss of knowl-
edge on the other, since much information on search in theorem proving remains
hidden in the implementations.

This is an extended abstract of [2], which we refer to for a survey of parallel
strategies, comparison with related work, and a bibliography of over seventy
references.

2 Principles of parallelization

Theorem proving can be parallelized in many ways: a distinction among par-

allelism at the term level, parallelism at the clause level, and parallelism at the

search level was introduced in [4]. This classification is based on the granular-
ity of the parallel operations and the data they manipulate, so that these three
types of parallelism aim at representing fine-grain, medium-grain and coarse-
grain parallelism for deduction, respectively (see Figure 2).

In parallelism at the term level, the data accessed in parallel are subexpres-
sions of a formula such as terms or literals (here a “formula” means the basic unit
of the language the inference system is for, e.g., a clause for clausal strategies, an
equation for pure equational strategies), and the parallel operations are subtasks
of an inference step. Thus, parallelism happens below the inference level, as in
parallel matching, parallel unification and parallel term rewriting. The rationale
for parallelism at the term level is that since a strategy executes these low-level
operations very frequently, if one can make them very fast by parallelism, the
overall performance of the strategy should improve.

In parallelism at the clause level, the data accessed in parallel are formulae,
and the parallel operations are inferences, so that parallelism is at the inference

level. Theorem-proving methods with parallel inferences within a single search

(e.g., parallel resolution steps) belong to this category. The motivation is to
speed-up the execution of the strategy by doing many inferences at each step.

Parallelism at the search level means parallel searches, that is, multiple de-
ductive processes, each executing a strategy, developing a derivation and building
its own set of data, search in parallel the space of the problem until one of them
finds a proof. Approaches to parallel search are distinguishable based on how
they differentiate and combine the activities of the deductive processes. One
possibility is to subdivide the search space among the processes by subdividing
the inferences or decomposing the problem: we use distributed search for this
principle, using the word “distributed” in its literal meaning of “giving each a
share of something.” Distributed search aims at obtaining a speed-up over se-
quential search by ensuring that each parallel process has to search only a part
of the whole space.

Another possibility is to let each process handle the problem in its entirety
and differentiate them by having each process use a different search plan: we call
this principle multi-search, because multiple plans are applied. The intuition be-

parallelism at
the term level

parallel

distributed

matching

parallel
rewriting

parallelism at
the clause level

AND-parallelism

inferences

parallelism at
the search level

parallel
unification

of parallel
other forms

OR-parallelism

parallelism in deduction

homogeneous
inference systems

heterogeneous
inference systems

multi-searchsearch

Fig. 2. Types of parallelism in deduction

hind multi-search is that parallel processes executing different search plans will
search the space of the problem in different order. Thus, multi-search aims at
obtaining a speed-up over sequential search by letting each process take advan-
tage of data earlier than its search plan would allow, because such data has been
generated and communicated by other processes following different plans. Note
that also distributed search may induce this effect, because a process barred
from exploring a certain part of the search space may reach sooner deeper parts
of its allowed portion, and send to other processes not only data that they would
not generate because of the partition, but also data that they would generate
much later. Distributed search and multi-search are not mutually exclusive: a
strategy may feature instances of both principles.

A third option is to let each process have the same problem and search plan,
but assign them different inference systems, leading to what is called a hetero-

geneous system. A motivation for heterogeneous systems is to use parallelism to
combine subgoal-reduction and ordering-based inferences, typically by enabling
subgoal-reduction processes to use clauses generated by the ordering-based pro-
cesses as lemmas. If an heterogeneous system is combined with multi-search, each
process executes a different theorem-proving strategy. Parallel search approaches
where all processes have the same inference system are called homogeneous.

In Figure 2, parallel term rewriting overlaps with both parallelism at the
term level (the data accessed in parallel are terms), and parallelism at the clause
level (if each rewrite step is regarded as an inference). Thus, its classification is
affected also by the application: in a context where the whole computation is a
reduction one may consider parallel term rewriting as parallelism at the clause
level; in the context of theorem proving, where the whole computation is better
seen as a search, and each normalization, rather than each rewrite step, may

constitute an inference, it is more natural to consider parallel term rewriting as
parallelism at the term level.

The classification of AND-parallelism and OR-parallelism depends on the
granularity: the traditional concepts of AND-parallelism (try in parallel the con-
juncts of the current goal) and OR-parallelism (apply in parallel many rules to
the selected literal of the current goal) are applied within one derivation, one
search process, and therefore are instances of parallelism at the clause level. In
fact, AND-parallelism may also be considered as parallelism at the term level,
since the data accessed in parallel are the literals of a goal clause, hence subex-
pressions of formulae. However, envision a collection of parallel search processes,
each developing its own derivation (e.g., its own sequence of tableaux) and hav-
ing different AND-rules (i.e., different ξ1) or different OR-rules (i.e., different
ξ2): then such situations represent forms of multi-search.

While in principle everything can be implemented in either shared memory
or distributed memory, most methods with parallelism at the term or clause level
use shared memory, and most parallel search methods use distributed memory.
Tools for parallel programming, however, often let the high-level application
programmer ignore whether the memory is physically shared or distributed,
so that what is relevant is not the physical memory but the logical view of
the memory: for instance, for ordering-based strategies, whether the method
assumes a shared database of clauses, or separate databases and communication
by message passing. In parallel search the processes develop separate derivations,
and therefore require separate databases and communication by message passing;
the latter can be implemented over a network or in a shared memory. Thus,
distributed deduction and distributed strategies have also been used for methods
with parallelism at the search level, especially those with distributed search.

3 A taxonomy of parallel theorem-proving strategies

While parallel theorem proving is still a young field, several approaches to par-
allelization have been tried for various classes of strategies: Figure 3 summarizes
the taxonomy in [2], and combines Figures 1 and 2, with dotted lines linking
types of parallelism and classes of strategies they have been applied to.

The heart of the study in [2] is to consider how the principles of paralleliza-
tion of Section 2 affect the notion of search plan: given a sequential strategy
C = 〈I,Σ〉, assume that we denote by C′ = 〈I,Σ′〉 its parallelization; then the
question is what is Σ′ depending on the applied parallelization principle.

For parallelism at the term level, we find that exactly because the term
level is below the level where the search plan makes decisions, the search plan
is unaffected by the parallelization. Most fine-grained methods choose one of
two approaches. The first one consists of replacing the search plan by a low-
level data-driven form of concurrency, where all conflict-free inferences happen
in parallel; an example is concurrent rewriting. The second approach is to be
strategy-compliant in the sense that the parallel strategy is guaranteed to execute

inferences in the same order as the sequential strategy, so that Σ′ = Σ, and
C′ = C.

For parallelism at the clause level, a study of several parallel methods, both
ordering-based and subgoal-reduction based, shows that the control of the par-
allel strategy is obtained by considering the actions of the sequential strategy as
tasks (e.g., process a given-clause, solve a subgoal), and designing the parallel
search plan as a scheduler that assigns tasks to parallel processes. Indeed, paral-
lelism at the clause level parallelizes the inferences within one derivation, which
are precisely what the search plan is supposed to order; thus, a parallel search
plan for parallelism at the clause level is essentially a scheduler that assigns
inferences to parallel processes.

In parallelism at the search level, each process generates a derivation, and
therefore needs to execute a search plan. In addition to deduction, parallel
search involves controlling communication (for both multi-search and distributed
search) and subdivision of the work (for distributed search). Distributed search
needs communication to preserve completeness and load-balance; multi-search
needs it to allow every process to take advantage of the results of others, and
also for completeness, if some processes employ unfair search plans.

In [2], we classify strategies based on whether the control of deduction and
the control of parallelism are separate, or combined, because in the first case
the search plan is responsible only for the control of deduction like in the se-
quential case. An approach to separate the control of deduction and the control

of parallelism is to establish a hierarchy of parallel processes (e.g., master and
slaves), with different processes playing different roles. The study in [2] covers
master-slaves methods for distributed-search ordering-based strategies, multi--
search ordering-based strategies, multi-search subgoal-reduction strategies, and
heterogeneous systems. In most methods, each slave executes a sequential search
plan to generate its derivation, and all other control issues (e.g., subdivision,
communication, selection of “good” data, user interface) are dealt with in a cen-
tralized way by the master, which does not perform deductions. Thus, a parallel
search plan for such strategies can be seen as a collection of sequential search
plans, one per slave: Σ′ = 〈Σ1, . . . , Σn〉, with Σ1 = . . . = Σn in the case of
distributed search with no multi-search.

Other parallel search methods have no hierarchy, and assume that all pro-
cesses are peers. Among these, the survey in [2] covers distributed-search orde-
ring-based strategies, multi-search ordering-based strategies, and heterogenous
systems based on combinations of theorem provers. If all processes are peers,
there is no central control, and the search plan executed by each process controls
both deduction and parallelism. Thus, this is the situation that truly requires a
parallel search plan.

Parallel search plans We begin by defining the notion of search plan with

communication, which will form the common core to define on one hand a multi-

plan, that is, a search plan for multi-search, and on the other hand a distributed-

search plan, that is, a search plan for distributed search.

In order to describe unambiguously how a strategy generates a derivation, in-
ference rules were characterized already in [3] as functions f :P(LΘ) → P(LΘ)×
P(LΘ), which take as argument a set of premises, say X , and return a pair of
sets, the set of generated data to be added, π1(f(X)), and the set of data to be
deleted, π2(f(X)), where P() is powerset, and π1 and π2 are the projections
π1(x, y) = x and π2(x, y) = y. If f does not apply to X , f(X) = (∅, ∅).

A theorem proving strategy with parallel search features, in addition to an
inference system I, a set M of communication operators, including at least send

and receive. Since communication is among the responsibilities of the search
plan, we intend to view communication acts as steps of the derivation. For this
purpose, we need to define the communication operators in such a way that
communication steps are homogeneous with inference steps. Thus, we define
them as functions that take as argument the set of data being communicated,
and return a set of data to be added and a set of data to be deleted, relative to
the process executing the communication step:

– send:P(LΘ) → P(LΘ) × P(LΘ) such that for all X , send(X) = (∅, ∅),
because send does not modify the database of the sender; and

– receive:P(LΘ) → P(LΘ)×P(LΘ), such that for all X , receive(X) = (X, ∅),
because receive adds the received data to the database of the receiver.

Alternative definitions are discussed in [2].
Since the search plan is in charge of communication, the rule-selecting func-

tion ζ may select not only inference rules, but also communication operators,
yielding ζ:States∗ → I∪M . While this may be sufficient for some strategies, one
may envision methods where rule selection keeps the identity of the process and
the number of processes into account. Assuming that processes are denoted by
natural numbers (e.g., if there are n processes, they are identified by 0, . . . n−1),
we define ζ:States∗ × IN × IN → I ∪M , where the second and third arguments
are the identifier of the process which is doing the selection and the number of
processes.

By applying similar considerations to the premise-selecting function ξ, we
obtain that a search plan with communication for a set I of inference rules and
a set M of communication operators has the form Σ = 〈ζ, ξ, ω〉, where

– ζ:States∗ × IN × IN → I ∪M selects an inference rule or a communication
operator for the next step;

– ξ:States∗ × IN × IN × (I ∪M) → P(LΘ) selects a set of premises from the
current state (e.g., ξ((S0, . . . Si), n, k, f) ⊆ Si); and

– ω:States→ Bool returns true if and only if the given state is successful.

If ζ selects send, the data chosen by ξ will be sent. If ζ selects receive,
whichever data are pending to be received will be received, so that there is
no need of selection of data for receive. If no data are pending, nothing is re-
ceived (i.e., receive(∅) = (∅, ∅)). Thus, this notion of receive function models
not only the act of receiving, but also the act of testing whether there are mes-
sages pending to be received, which is also a responsibility of a search plan with

communication. This notion of search plan with communication applies to both
ordering-based and subgoal-reduction strategies, once States is instantiated ap-
propriately.

Since the essence of multi-search is to use multiple search plans and let each
process take advantage of others’ results through communication, a multi-plan

is simply a collection of search plans with communication, one per process: Σ =
〈Σ0, . . . , Σn−1〉. The survey in [2] includes multi-plans where the ξi’s employ
different goal-oriented heuristics, or different heuristics to decide which clauses
deserve to be broadcast, or select the given clause by different criteria.

A distributed-search plan, on the other hand, needs an additional component
to handle the subdivision. Given a theorem-proving problem S, a subdivision of
the search space among processes p0, . . . pn−1 is a subdivision of the inferences
in the closure S∗

I =
⋃

k≥0
Ik(S) where I0(S) = S, Ik(S) = I(Ik−1(S)) for

k ≥ 1, and I(S) = S ∪ {ϕ| ϕ ∈ π1(f(ϕ1, . . . ϕn)), f ∈ I, ϕ1, . . . ϕn ∈ S}.
Since S∗

I is infinite and unknown, at each stage Si of a derivation the search
plan subdivides the inferences that can be done in Si. Thus, the subdivision is
built dynamically during the derivation. From the point of view of each process
pk, an inference is either allowed (it is assigned to pk in the subdivision), or
forbidden (it is assigned to others). Therefore, the subdivision of the search
space can be modelled by distinguishing between allowed and forbidden steps,
and Σ features a subdivision function α for this purpose. A minimal version of a
subdivision function is α: IN×I×P(LΘ) → Bool, where α(k, f,X) = true/false
means that pk is allowed/forbidden to apply rule f to premises X . However, the
above intuition that since S∗

I is not given, the subdivision is built dynamically,
suggests that in general the subdivision function may keep the partial history of
the derivation and the number of processes into account, yielding α:States∗ ×
IN × IN × I × P(LΘ) → Bool.

Once dependency on the history of the derivation is introduced, it is more
general to allow subdivision functions to be partial functions, according to the
intuition that α may not be defined on premises that have not been gener-
ated. However, if ζ and ξ can select a certain f and X , α should be defined
on their selection. For this purpose it would be sufficient to require that α is
total on existing clauses, but we require that α is total on generated clauses, i.e.,
α((S0, . . . Si), n, k, f,X) 6=⊥ if X ⊆

⋃i

j=0
Sj , because it is undesirable that α

“forgets” its decisions when clauses are deleted by contraction. Another require-
ment is that the subdivision function is monotonic, in the sense of not changing
the status of a step after it has been decided:
α((S0, . . . Si), n, k, f,X) ⊑ α((S0, . . . Si+1), n, k, f,X), where < is the partial or-
dering ⊥< false and ⊥< true.

Thus, a distributed-search plan for a set I of inference rules and a set M
of communication operators has the form Σ = 〈ζ, ξ, α, ω〉, where 〈ζ, ξ, ω〉 is a
search plan with communication, and α is a subdivision function.

The next step is to relate sequential and parallel search plans: a search plan
with communication Σ′ = 〈ζ′, ξ′, ω′〉 corresponds to a sequential search plan
Σ = 〈ζ, ξ, ω〉 for inference system I, if for all (S0, . . . Si) ∈ States∗, n and k,

– if ζ′((S0, . . . Si), n, k) ∈ I, then ζ′((S0, . . . Si), n, k) = ζ(S0, . . . Si) (whenever
ζ′ selects an inference rule, it selects the rule that ζ would select if given the
same partial derivation),

– ∀f ∈ I, ξ′((S0, . . . Si), n, k, f) = ξ((S0, . . . Si), f) (ξ′ selects the premises that
ξ would select if given the same partial derivation and inference rule), and

– ω′ = ω.

A multi-plan Σ′ = 〈Σ′
0, . . . , Σ

′
n−1〉 is a parallelization by combination of the

sequential search plans Σ0, . . . , Σn−1 if for all i, 0 ≤ i ≤ n− 1, Σ′
i corresponds

to Σi.
A distributed-search plan Σ′ = 〈ζ′, ξ′, α, ω′〉 is a parallelization by subdivi-

sion of a sequential search plan Σ = 〈ζ, ξ, ω〉 if 〈ζ′, ξ′, ω′〉 corresponds to Σ.
The name “parallelization by subdivision” captures the fact that the derivations
generated by the parallel processes differ among themselves, and from the se-
quential derivation that Σ would generate from the same input, because of the
subdivision function, which for every process forbids some choices, forcing it to
choose something else.

A homogeneous parallel strategy is defined by a triple 〈I,M,Σ〉, which yields
a multi-search strategy, if Σ is a multi-plan 〈Σ0, . . . , Σn−1〉, and a distributed-

search strategy, or distributed strategy tout court, if Σ is a distributed-search plan
〈ζ, ξ, α, ω〉. A multi-search strategy 〈I,M,Σ′〉 is a parallelization by combination

of n sequential strategies 〈I,Σi〉, for 0 ≤ i ≤ n− 1, if Σ′ is a parallelization by
combination of the Σi’s. A distributed strategy 〈I,M,Σ′〉 is a parallelization by

subdivision of a sequential strategy 〈I,Σ〉, if Σ′ is a parallelization by subdivision
of Σ. A strategy with both distributed search and multi-search can be modelled
by defining a multi-plan which is a collection of distributed-search plans.

A heterogeneous parallel strategy is defined by a vector 〈I0, . . . , In−1,M,Σ〉,
with an inference system per process, and the same options for the search
plan. A heterogeneous multi-search strategy can also be written in the form
〈〈I0,M,Σ0〉, . . . , 〈In−1,M,Σn−1〉〉, grouping together the inference system and
the search plan for each process.

The following definition of parallel derivation covers distributed search, multi-
search, their combination, and both homogeneous and heterogeneous inference
systems. Given a theorem-proving problem S, the parallel derivation generated
by strategy C = 〈I0, . . . , In−1,M,Σ〉, with Σ = 〈Σ0, . . . , Σn−1〉, for processes
p0, . . . pn−1, is a collection of n local derivations S = Sk

0 ⊢C S
k
1 ⊢C . . . S

k
i ⊢C . . . for

k ∈ [0, n− 1], such that for all k and i ≥ 0, if

– ωk(Sk
i) = false,

– ζk((Sk
0 , . . . S

k
i), n, k) = f ∈ Ik,

– either f = receive and there is a set of formulae X pending to be received,
or f 6= receive and ξk((Sk

0 , . . . S
k
i), n, k, f) = X , and

– either f ∈M or αk((Sk
0 , . . . S

k
i), n, k, f,X) = true,

then Sk
i+1 = Sk

i ∪ π1(f(X)) − π2(f(X)).
The strategy, and the derivation, is homogeneous, if I0 = . . . = In−1, het-

erogeneous, otherwise. When ωk(Sk
i) = true, process pk sends a halting mes-

sage to all other processes (note that for a homogeneous inference system it is

ω0 = . . . = ωn−1, because the test for the generation of a refutation is the same
for all processes). For simplicity, the definition has been given for states made
of a single component, but one can replace the Si’s with suitable tuples for the
different types of strategies, either ordering-based or subgoal-reduction.

If Σ = Σ0 = . . . = Σn−1 = 〈ζ, ξ, α, ω〉, C is a distributed-search strategy, and
the above definition yields a distributed-search derivation or distributed deriva-

tion for short.
If the Σi’s are not all equal, and for all i, 0 ≤ i ≤ n − 1, αi is the constant

function equal to true on all arguments (hence no subdivision), C is a multi-
search strategy, and the above definition yields a multi-search derivation.

The above definition of parallel derivation captures the fact that all pro-
cesses are peers, because every process pk makes its decisions locally; indeed, the
functions ζk, ξk, αk, and ωk apply to the partial history of the local derivation
generated by pk.

4 Discussion

Our previous analysis [4] considered factors such as size and monotonicity of
the database during a derivation, conflicts among concurrent inferences, and the
presence of backward-contraction, to suggest that parallelism at the search level
may be overall the most promising, at least for ordering-based strategies.

In this paper, we have extended our analysis to the impact of the paralleliza-
tion approaches on the control of search. We observed that approaches with par-
allelism at the term level may replace the search plan by low-level data-driven
forms of concurrency, or produce strategy-compliant parallelizations. It seems
that the potential problem is a loss of control for the former, and an excess of
control for the latter. Data-driven concurrency may be appropriate for ground
computations that are guaranteed to converge (e.g., computing a congruence
closure for ground completion), but may represent a counter-productive loss of
control in general theorem proving, where the essence, from a practical point of
view, is not saturation (i.e., do all the steps, with the order being a secondary
issue), but effective search (i.e., find a good order to do the steps in order to
avoid doing them all). Strategy-compliant parallelizations, on the other hand,
may be too conservative: they avoid the risk of mixing search with parallelism,
but they renounce using parallelism to try to generate better searches.

Approaches with parallelism at the clause level turn the search plan into
a scheduler of parallel inferences, assigning inferences – viewed as tasks – to a
pool of parallel processes. This type of approach may have been appealing be-
cause it allowed to apply to theorem proving general scheduling techniques (e.g.,
task stealing). However, such techniques may not take specific theorem-proving
knowledge into account (e.g., the differences between expansion tasks and con-
traction tasks). More importantly, the potential problem is one of granularity,
that is, whether processing a given clause or a subgoal is a sufficiently large task.
Intuitively, the risk is that such tasks are too small with respect to the amount of
work required by the theorem-proving problem, so that too much time is spent

in task scheduling and not in inference making. Furthermore, this problem may
become worse as the difficulty of the theorem-proving problem grows (e.g., re-
quiring to process tens of thousands of given clauses or subgoals), against the
expectation that parallel theorem proving makes a difference precisely on the
hardest searches.

In summary, the analysis of parallelization principles from the point of view
of the search plan component of theorem proving, seems to confirm the philos-
ophy of [4] in favor of parallelism at the search level. The evolution of the field
since 1992, when the material in [4] was first written, appears to concur with
this view: the survey in [2] shows a movement from fine or medium-grain par-
allelism towards coarse-grain parallelism, and from master-slaves hierarchies to
peer processes.

Of course, parallel search is not free of obstacles. Problems include the cost of

communication, overlapping searches and scalability. For the first one, a process
may reach a proof faster exactly because it can ignore data handled by others; on
the other hand, a delay in receiving an important clause (e.g., a good simplifier)
may cause a process to perform redundant inferences. For the second one, if
the parallel processes end up exploring overlapping areas of the search space,
their efforts are partly wasted. In distributed search, the strategy induces a
subdivision of the infinite unknown search space lying ahead by subdividing
the generated search space. In these conditions, it is impossible to partition the
search space into disjoint parts, and it is also difficult to minimize the overlap,
especially in the search spaces of theorem proving, which are very redundant (i.e.,
there are many different ways of generating the same logical consequence). In
multi-search, a source of overlap is that the search plans may not be sufficiently
different: seemingly different search plans may turn out to generate searches with
large overlap on some inputs. Part of the problem is that most known fair search
plans are exhaustive, and it may be rare to get significantly different searches
from plans that are all exhaustive in nature. The scarcity of truly diverse search
plans may also be a reason why papers on multi-search methods rarely report
experimental results for more than two or three processes. For parallel search to
be beneficial, however, it may not be necessary to limit the overlap globally: it
may be sufficient that the searches are different early on, so that a process may
get sooner some important clause from some other process.

Scalability is difficult in parallel search, because the addition of a new process
may change dramatically the searches of the others. In distributed search, one
would expect that if we add more processes the performance improves, because
each process should get a smaller portion of space to search. However, this is not
guaranteed to happen, because increasing the number of processes changes the
subdivision not only quantitatively, but also qualitatively. That is, the search
space allowed to process pk in a search with 2n processes may be radically dif-
ferent than the search space allowed to pk in a search with n processes. The
performance is not guaranteed to improve, because the subdivision with 2n pro-
cesses may be worse from the point of view of finding a proof (e.g., it may break
the search space in a way that prevents pk from finding the proof found with

n processes). In multi-search, enriching the pool with an additional search plan
may not help, because the added search plan may not be good for the problem,
or may not interact usefully with the other plans. Similar considerations apply
to heterogeneous systems. One may regard the lack of scalability as a price to
pay for the possibility of super-linear speed-up by parallel search. Super-linear
speed-up is possible because the parallel strategy has a different search plan than
its sequential counterpart.

Parallel theorem proving may be now ten years old (1989–1999), which is a
very short time for a field of research. Therefore, there are many directions for
further research. For instance, Figure 3 shows that not much work has been done
in combining parallel search with semantic strategies, where one may envision
parallel processes reasoning under different interpretations. Also, while multi-
search has been applied to both ordering-based and subgoal-reduction strategies,
distributed search does not seem to have been applied to the latter. A possible
explanation comes from the differences in Table 1: since ordering-based strategies
work with a set of objects, and build many proof attempts implicitly, it is quite
natural to think of subdividing the set of objects, or, better, the inferences
they permit, in order to subdivide the search space, hence the proof attempts.
Subgoal-reduction strategies work on one goal object at a time, building a proof
attempt at a time, so that the idea of a subdivision may be less natural, or
may lead to fall back on OR-parallelism or other forms of parallelism at the
inference level, if the subdivision is done within the single proof attempt. The
application of distributed search to subgoal-reduction strategies will require to
design distributed-search plans for such strategies. In addition to new directions
in design, there is the entire area of analysis of parallel strategies. A formal
analysis of subdivision, overlap and communication was begun in [1], applying
the bounded search spaces methodology to distributed-search contraction-based
strategies. We hope that the formalization of parallel search plans in this paper
will be a preliminary step towards more analyses of parallel-search strategies.

Acknowledgements The author thanks the Fakultät Informatik of the Technische
Universität Dresden where this work was completed.

References

1. Maria Paola Bonacina. Analysis of distributed-search contraction-based strategies.

In Jürgen Dix, Luis Fariñas del Cerro, and Ulrich Furbach, editors, Proc. of the 6th

JELIA, volume 1489 of LNAI, pages 107–121. Springer, 1998. Full version available

as Tech. Rep. 98-02, Dept. of Comp. Sci., Univ. of Iowa, April 1998.

2. Maria Paola Bonacina. A taxonomy of parallel strategies for deduction. Technical

report, Dept. of Comp. Sci., Univ. of Iowa, May 1999.

3. Maria Paola Bonacina. A taxonomy of theorem-proving strategies. In Manuela

Veloso and Michael J. Wooldridge, editors, Artificial Intelligence Today, volume

1600 of LNAI. Springer, 1999. To appear.

4. Maria Paola Bonacina and Jieh Hsiang. Parallelization of deduction strategies: an

analytical study. Journal of Automated Reasoning, 13:1–33, 1994.

inferences

parallelism atparallelism at
the term level

parallel
matching

parallel
rewriting

parallelism at
the clause level

AND-parallelism

other forms
multi-search

the search level

parallel
unification

of parallel search

OR-parallelism

parallelism in deduction

homogeneous
inference systems

heterogeneous
inference systems

subgoal-reduction

or supported

distributed

semantic

strategies

ordering-based

instance-based

expansion-
oriented

contraction-
based

Fig. 3. Matching parallelization principles and classes of strategies

