
Annals of Mathematics and Artificial Intelligence 27 (1999) 149–199 149

A model and a first analysis of distributed-search

contraction-based strategies ∗

Maria Paola Bonacina a,∗∗

a Department of Computer Science – The University of Iowa
Iowa City, IA 52242-1419, USA
E-mail: bonacina@cs.uiowa.edu

While various approaches to parallel theorem proving have been proposed, their
usefulness is evaluated only empirically. This research is a contribution towards
the goal of machine-independent analysis of theorem-proving strategies. This paper
considers clausal contraction-based strategies and their parallelization by distributed
search, with subdivision of the search space and propagation of clauses by message-
passing (e.g., à la Clause-Diffusion). A model for the representation of the parallel
searches produced by such strategies is presented, and the bounded-search-spaces
approach to the measurement of search complexity in infinite search spaces is ex-
tended to distributed search. This involves capturing both its advantages, e.g., the
subdivision of work, and disadvantages, e.g., the cost of communication, in terms of
search space. These tools are applied to compare the evolution of the search space
of a contraction-based strategy with that of its parallelization in the above sense.

1. Introduction

The difficulty of fully-automated theorem proving has led to investigate ways
of enhancing theorem-proving strategies with parallelism. Many approaches have
been proposed, and the interested reader can find a description of the state of the
art up to the early Nineties in [26,17,44], and a more recent overview in [15]. Since
theorem-proving strategies are complex objects, parallelism can be introduced at
different levels. A distinction among parallelism at the term level, parallelism at
the clause level, and parallelism at the search level was introduced in [17]. In brief,
parallelism at the term level means parallelizing the inner algorithms of the strat-
egy (e.g., parallel term rewriting), parallelism at the clause level means parallel
inferences within a single search (e.g., parallel resolution steps), and parallelism
at the search level means parallel search. This paper considers parallel search:

∗ This paper is a significantly extended and revised version of “Analysis of distributed-search
contraction-based strategies,” Proc. of JELIA-98, Springer, LNAI 1489, 107–121, 1998, and
“On the representation of parallel search in theorem proving,” Proc. of FTP-97, Technical
Report 97-50, RISC, J. Kepler Universität, Linz, 22–28, 1997.

∗∗ Supported in part by National Science Foundation grants CCR-94-08667 and CCR-97-01508.

150 Maria Paola Bonacina / A model and a first analysis of distributed-search

concurrent deductive processes search in parallel the search space of the theorem-
proving problem; each process executes a theorem-proving strategy, develops its
own derivation and builds its own set of data (e.g., clauses or equations); the
parallel search halts successfully as soon as one of the processes finds a proof.

In systems with parallel search, the deductive processes maintain separate
databases (i.e., logically distributed memory), and communicate by message-
passing. Since a shared memory is not needed, parallel search can be implemented
on networks of workstations or multiprocessors, with either distributed or shared
memory, and if there is a shared memory, it is used for message passing. Libraries
for parallel programming (e.g., MPI [29]) allow the developer to write a parallel
theorem prover with message passing, and then compile it on either a network or
a multiprocessor.

There are many approaches to parallel search, which differ in how they dif-
ferentiate and combine the activities of the deductive processes. In some meth-
ods the processes have the same inference system but different search plans (e.g.,
Team-Work [5,24] and see also [45] for combination of search plans in a sequential
prover). In other methods the processes may have also different inference systems
(e.g., [48,28,27]). Yet other methods let all processes have the same inference sys-
tem and search plan, but subdivide the search space among the processes (e.g.,
Clause-Diffusion [18,12]); and this classification is not meant to be exhaustive.
Furthermore, these principles are not mutually exclusive: for instance, Clause-
Diffusion allows both subdivision of the search space and multiple search plans
[19], and the method of [27] also features problem decomposition by splitting
clauses. In this paper, we use distributed search for the methods that subdivide
the search space, using the word “distributed” in its literal meaning of “giving
each a share of something.” For methods with multiple search plans, we suggest
multi-search. In all these approaches, the processes need to communicate: dis-
tributed search needs communication to preserve completeness and load-balance;
multi-search needs communication to merge the results of the processes, and also
for completeness, if unfair search plans are used, and load-balance, if the problem
is decomposed. This paper begins an analysis of distributed search; an analysis
of multi-search is a direction for future work.

Parallel search may be applied to theorem-proving strategies in general.
This paper studies contraction-based strategies, such as those originated from the
Knuth-Bendix and term-rewriting paradigm on one hand, and the resolution-
paramodulation paradigm on the other (e.g., [25,41,42,20,8] for general treat-
ments and references). These strategies work mostly by forward reasoning (i.e.,
by deriving consequences from the assumptions and the negation of the target
theorem), and therefore operate on a database of generated clauses. Their defin-
ing characteristics are a well-founded ordering on the data domain, a notion of
redundancy of data based on the ordering, contraction inference rules to delete re-
dundant data, restrictions of expansion inference rules to prevent the generation
of redundant data, and an eager-contraction search plan. Examples of contrac-

Maria Paola Bonacina / A model and a first analysis of distributed-search 151

tion rules are rewriting by equations and subsumption. Examples of restrictions
of expansion are critical pair criteria (e.g., [6]), ordered inference rules (e.g., [31])
and basic inference rules (e.g., [9]). Among the features of these strategies, this
paper is concerned with contraction and eager contraction, leaving the analysis
of restrictions of expansion, as well as reasoning modulo a theory, to future work.
Eager contraction means that the search plan selects an expansion inference rule
only when no contraction rule is applicable. The purpose is to maintain the
database maximally reduced, so that the strategy does not run out of memory.
This requires to insert in the database only normalized clauses (forward contrac-
tion), and to keep the clauses already in the database normalized with respect to
the insertions (backward contraction).

There has been a lot of interest in parallelizing contraction-based strategies
(e.g., [18,24,23,12,33,22,27] and [26,17,44] for earlier references), because they
behave well sequentially. Many theorem provers developed in recent years (e.g.,
Otter [37], Reveal [2], RRL [49], EQP [38], SPASS [47], Barcelona [40], and
Gandalf [45]) implement these strategies, and also thanks to them succeeded
in solving challenge problems (e.g., [2,32,1,39]). However, their parallelization is
difficult, because of the size and variability of the database. Backward contraction
means that the clauses used as premises are subject to contraction. It follows
that the database is highly dynamic, and eager backward contraction is in conflict
with eager parallel inference, because eager backward contraction imposes to
inter-reduce before expanding, and this reduces the degree of concurrency of the
inferences. The qualitative analysis in [17] pointed out how these factors may
affect adversely approaches based on parallelism at the term or clause level.

One of the ideas behind the approach of subdividing the search space is that
if each parallel process is allowed to consider only part of the search space and
ignore the rest (because it is taken care of by others), it may find a proof sooner
than a sequential process, which has to deal with the whole search space. The
downside is that in order to preserve completeness (and eager contraction) in the
presence of subdivision, the processes need to communicate. Furthermore, the
subdivision may not be effective, so that the processes overlap and duplicate work.
The problem then is: how can we represent and measure the advantages (e.g.,
subdivision) and disadvantages (e.g., communication and overlap) of distributed
search, in order to balance them and see whether one dominates the other? It
should be emphasized that building the mathematical tools to carry out this type
of analysis is probably at least as important as an answer to the question. This is
because the search spaces of theorem proving are infinite. Therefore, one cannot
analyze subdivision and overlap in terms of total size of the search space. Neither
can one rely on the classical complexity measure of time to capture the cost of
communication, because theorem-proving strategies are semidecision procedures
that may not halt, so that “time” is not defined. For the same reason, the stan-
dard approach in algorithm analysis – compare the worst-case time complexity
of the fastest known sequential algorithm with the worst-case time complexity of

152 Maria Paola Bonacina / A model and a first analysis of distributed-search

the parallel algorithm – does not apply.
In recent work [21], we proposed an approach to the analysis of sequen-

tial forward-reasoning strategies with contraction, comprising a model for the
representation of search, a notion of complexity of search in infinite spaces, and
measures of this complexity, termed bounded search spaces. These tools were
applied to compare contraction-based strategies of different contraction power.
In this paper we extend this approach to distributed search, in order to begin
addressing the question outlined above. We emphasize that this paper aims at
providing tools for the analysis, and demostrate their applicability by obtaining a
first set of results, rather than giving a final answer. Also, this type of analysis is
not supposed to replace, but to complement the experimental evaluation of strate-
gies (e.g., [13,14] for most recent Clause-Diffusion experiments), like algorithm
analysis complements experiments in other areas of computer science.

1.1. Organization and contents of the paper

Section 2 gives the basic definitions for the type of parallel strategies under
analysis. Since parallelism belongs to the control part of a strategy, a central
notion is that of distributed-search plan with a subdivision function to distribute
the inferences. Section 3 studies three properties of distributed-search plans:
monotonicity of the subdivision, fairness and eager contraction. For fairness, we
give sufficient conditions for the parallelization of a fair strategy to be fair. For
eager contraction, we point out that it is not obvious that a parallelization of a
contraction-based strategy is contraction-based. We clarify what it means for a
distributed strategy to be contraction-based, and we give sufficient conditions for
this property also.

Section 4 presents the model for the representation of distributed search.
The approach of [21] to the modelling of search was motivated by the need of
extending the classical sequential model (e.g., [34]) with contraction. They key
point is that a strategy with contraction not only visits, but also modifies the
search space. In distributed search the modelling problem becomes more com-
plicated, because not only contraction, but also subdivision and communication
modify the search space. Furthermore, many processes are active in parallel.
Our solution is based on distinguishing the search space and the dynamics of the
search, and yet representing them together in a parallel marked search graph. The
structure of the graph represents the search space of all the possible inferences,
while the marking represents the dynamics of the search, including contraction,
subdivision and communication for all the processes.

Section 5 turns to the problem of measuring benefits and costs of distributed
search. The methodology of [21] is based on the observation that for infinite
search spaces it is not sufficient to consider the generated search space. It is
necessary to measure also the effects of the actions of the strategy on the infi-
nite space that lies ahead. An exemplary case is that of contraction, where the

Maria Paola Bonacina / A model and a first analysis of distributed-search 153

deletion of a clause may prevent the generation of others. These two domains
are called the present and the future of the derivation. The future is the prob-
lematic part, because it is infinite. Our approach is to enrich the search space
with a notion of distance. Once such a metric is in place, one can consider the
bounded search space made of the clauses whose distance from the input is within
a given bound. The infinite search space is reduced to an infinite succession of
bounded search spaces. Since they are finite, they can be compared, eliminating
the obstacle of the impossibility of comparing infinite spaces. More precisely,
they are defined as multisets of clauses, so that they can be compared in the
multiset extension of a well-founded ordering on clauses. The second key prop-
erty of the bounded search spaces is that they are dynamic: they depend on the
steps selected by the strategy. Contraction affects the bounded search spaces by
making clauses unreachable (infinite distance); subdivision excludes paths from
the bounded search spaces; on the other hand, communication may undo in part
the effect of subdivision, because the strategy uses communication to preserve
fairness (hence completeness) in the presence of a subdivision. In addition to
studying the bounded search spaces of the parallel processes independently, we
give a formal definition of overlap, and we introduce parallel bounded search spaces
for the distributed derivation as a whole.

Section 6 contains the analysis. We study first eager contraction: its essence
is to delete a redundant clause before it is used to generate other clauses. In
distributed search, eager contraction needs communication (e.g., to bring to a
process a needed simplifier). We discover two patterns of behaviour, called late
contraction and contraction undone, where the interaction of communication and
contraction causes eager contraction to fail. The subtlety of this analysis is that
it requires to study not only redundant clauses, but also redundant inferences.
Second, we analyze the overlap: there are two kinds of overlap, overlap due to
inaccurate subdivision, and overlap due to communication. Sufficient conditions
to avoid the former and minimize the latter are given. Third, we put all the
previous observations together by showing how the different kinds of actions in
a distributed derivation (expansion, contraction, subdivision, communication)
modify the bounded search spaces. The last task is to compare a sequential
contraction-based strategy C with its parallelization C ′. We analyze the evolution
of their respective bounded search spaces, and we prove that while all clauses
deleted or made unreachable by C are deleted or made unreachable also by C ′,
it is possible to exclude that the parallel bounded search spaces may be greater
than the sequential ones, only if the overlap were minimized and propagation
of clauses were immediate. This result is based on a worst-case analysis of the
relation of communication and contraction. It may be interpreted on one hand
as a negative result on the parallelizability of contraction-based strategies, and
on the other hand as a limit that strategies may approximate: for instance, it
justifies formally the intuition of improving performance by devising subdivision
criteria that reduce the overlap (e.g., the ancestor-graph oriented criteria of [13]).

154 Maria Paola Bonacina / A model and a first analysis of distributed-search

1.2. Related work

Most studies of complexity in deduction analyze the length of propositional
proofs as part of the NP 6= co−NP quest (e.g., see [46] for a survey and ref-
erences), or work with Herbrand complexity and proof length to obtain lower
bounds for sets of clauses (e.g., see [35] for a survey and references). The study
in [43] analyzes measures of duplication in the search spaces generated by se-
quential theorem-proving strategies (see [21] for further discussion of these lines
of research and more references). Our problem is how distributed search affects
the complexity of searching for a proof.

The terms “distributed search” and “multi-search” are used in parallel al-
gorithms (e.g., [3,4,10,11]). In algorithms, the search problem in its basic formu-
lation is: given a universe U partitioned into n segments σ1 . . . σn, and a point
q, determine which segment q belongs to. This notion of search problem and the
search problem in theorem proving are very different. For instance, the universe
U is finite, while the search space of theorem proving is infinite in general. The
partition is statically given and it is part of the definition of the problem (e.g., U
may be a dictionary divided into sections), whereas in theorem proving there is
no partition. A subdivision (usually not a partition) may be built dynamically
by a distributed strategy as part of the method to solve the problem in parallel.
Furthermore, the partition of U is ordered in the sense that there are elementary
operations to decide whether q ∈ σi, q ∈

⋃i−1
j=1 σj , q ∈

⋃n
j=i+1 σj. There is no

such structure in the search spaces of theorem proving. The search problem in
theorem proving can be considered an instance of the search problem in Artificial
Intelligence, with the infinity of the space as a key characteristic.

2. Parallelization by subdivision

2.1. Inference rules and communication operators

Let Θ be a first-order signature, LΘ the language of all the clauses on Θ,
and P(LΘ) its powerset. A theorem-proving problem in clausal form consists in
deciding whether S |= ϕ, where S ∈ P(LΘ) is a set of assumptions, and ϕ ∈ LΘ is
the target theorem. Refutationally, the problem is to determine whether S∪{¬ϕ}
is inconsistent. Inconsistency is shown if a derivation

S ∪ {¬ϕ} = S0 ` S1 ` S2 ` . . .
generates the empty clause (denoted by

�
). Si represents the state of the deriva-

tion after i steps, usually the set (or multiset) of clauses that have been generated
and are presently retained by the strategy. Depending on the strategy, Si may
be replaced by a tuple of sets of clauses with various meanings. We use States
for the set of states and States∗ for sequences of states.

The first component of a theorem-proving strategy is the inference system.
Expansion inference rules generate new clauses, while contraction inference rules

Maria Paola Bonacina / A model and a first analysis of distributed-search 155

delete existing clauses and possibly replace them by smaller clauses in a well-
founded ordering �. For example, resolution and paramodulation are expansion
rules, while tautology deletion, proper subsumption and simplification via equa-
tions are contraction rules. A typical choice for � is the multiset extension of
a complete simplification ordering [30] on the atoms. The following definition
captures both types of rules, by characterizing an inference rule as a function,
which takes a tuple of premises and returns a set of clauses to be added and a
set of clauses to be deleted:

Definition 2.1. Given a signature Θ, an inference rule f n of arity n is a function
fn:Ln

Θ → P(LΘ) ×P(LΘ).

An inference rule fn may not apply to a tuple x̄, and in such case f n(x̄) =
(∅, ∅). In the following, we may treat sets as multisets, and, given a tuple x̄ =
(ϕ1, . . . ϕn), denote byX the multiset {ϕ1, . . . ϕn}. Using the projection functions
π1(x, y) = x and π2(x, y) = y we define:

Definition 2.2. Given a well-founded ordering on clauses (LΘ,�), an inference
rule fn is an expansion inference rule if for all premises x̄ ∈ Ln

Θ, π2(f
n(x̄)) = ∅. It

is a contraction inference rule with respect to � if either π1(f
n(x̄)) = π2(f

n(x̄)) =
∅, or π2(f

n(x̄)) 6= ∅ and X − π2(f
n(x̄)) ∪ π1(f

n(x̄))≺mul X, where �mul is the
multiset extension of �.

Definition 2.3. An expansion rule is sound if X |= π1(f
n(x̄)), a contraction rule

is sound if X |= π1(f
n(x̄)) and X − π2(f

n(x̄)) ∪ π1(f
n(x̄)) |= π2(f

n(x̄)).

Given a set of clauses S and an inference system I, the closure of S with respect
to I, written S∗

I , contains all clauses derivable from S by I: S∗
I =

⋃

k≥0 I
k(S),

where I0(S) = S, Ik(S) = I(Ik−1(S)) for k ≥ 1 and I(S) = S ∪ {ϕ| ϕ ∈
π1(f(ϕ1, . . . ϕn)), f ∈ I, ϕ1, . . . ϕn ∈ S}.

Clauses deleted by contraction are redundant, in the sense that they are not
necessary to prove the theorem (see, e.g., [20,8] for the development of the notion
of redundancy and references). A redundancy criterion is a mapping R on sets
of clauses, such that R(S) is the set of clauses that are redundant with respect
to S according to R. The following definition is from [7]:

Definition 2.4. A mapping R:P(LΘ) → P(LΘ) is a redundancy criterion if

1. S −R(S) |= R(S) (soundness),

2. if S ⊆ S′, then R(S) ⊆ R(S ′) (monotonicity) and

3. if (S′ − S) ⊆ R(S′), then R(S ′) ⊆ R(S) (irrelevance of redundant clauses to
establish redundancies).

156 Maria Paola Bonacina / A model and a first analysis of distributed-search

A reason for defining redundancy criteria and not only contraction rules is that a
redundancy criterion also captures the redundancy of clauses that are not in the
existing set, since R(S) does not have to be a subset of S. For instance, a clause
that may be generated from a redundant clause in S may also be redundant,
so that it is in R(S) but not in S. A strategy can delete redundant clauses by
contraction, and prevent the generation of redundant clauses, also by contraction,
and by restrictions of expansion. The notion of redundancy can be generalized
from clauses to inferences: an inference that uses a redundant clause without
deleting it is a redundant inference1.

Definition 2.5. A redundancy criterion R and a set of contraction rules, denoted
IR, correspond if, for all sets S:

1. for all fn ∈ IR and x̄ ∈ Sn, π2(f
n(x̄)) ⊆ R(X − π2(f

n(x̄)) ∪ π1(f
n(x̄)))

(whatever is deleted by IR is redundant according to R), and

2. for all ϕ ∈ S ∩ R(S − {ϕ}), there exist f n ∈ IR and x̄ ∈ Sn, such that
π1(f

n(x̄)) = ∅ and π2(f
n(x̄)) = {ϕ} (if a clause in S is redundant with respect

to S, IR can delete it without adding other clauses (to make it redundant)).

IR and R are based on the same well-founded ordering �, and Si `I Si+1 implies
R(Si) ⊆ R(Si+1) by Conditions 2 and 3 in Definition 2.4. In the following, we
write I = IE ∪ IR to distinguish expansion and contraction rules in I.

A distributed strategy also features a system M of communication operators.
We define the communication operators send and receive as functions, which take
as argument the tuple of clauses being communicated, and return a set of clauses
to be added and a set of clauses to be deleted:

Definition 2.6. Given a signature Θ, the communication operators send and
receive are two functions send:L∗

Θ → P(LΘ)×P(LΘ) and receive:L∗
Θ → P(LΘ)×

P(LΘ), such that for all x̄ ∈ L∗
Θ, send(x̄) = (∅, ∅) and receive(x̄) = (x̄, ∅).

This definition captures the effect of send and receive on the database of the pro-
cess that executes the operation: receive(x̄) = (x̄, ∅), because a receive operation
adds the received clauses to the database of the receiver, and send(x̄) = (∅, ∅), be-
cause a send operation does not modify the database of the sender. Alternatively,
one may define send(x̄) = (∅, x̄), which implies that sent data are discarded by
the sender. This behavior can be rendered by a send operation as in Definition 2.6
followed by the deletion of x̄. In some cases, send(x̄) = (∅, ∅) can be simulated
by send(x̄) = (∅, x̄) followed by receive(x̄) = (x̄, ∅), e.g., the case of a broadcast
operation where the sender also receives the message. We adopt send(x̄) = (∅, ∅),
because sending a datum does not imply that the sender deletes it.

1 Note that a clause generated by a redundant inference may not be redundant, since the same
clause may also be generated by a non-redundant inference.

Maria Paola Bonacina / A model and a first analysis of distributed-search 157

Definitions 2.1 and 2.6 characterize inference rules and communication op-
erators, respectively, in terms of additions and deletions, because we are inter-
ested in the effect of the acts of a process on its database. Accordingly, Defini-
tion 2.6 abstracts from other information, such as the destination of sent clauses.
This can be added by refining the definition of send into send:L∗

Θ × P(IN) →
P(LΘ) × P(LΘ), where send(x̄, Q) means that x̄ is sent to the subset Q of pro-
cesses. (We assume that processes are denoted by natural numbers, e.g., if there
are n processes, they are identified by the numbers 0, . . . n − 1.) This covers
sending to one process (Q is singleton), to many (multicast) and to all (broad-
cast). The next section uses Definitions 2.1 and 2.6 to build a notion of derivation
including both inference and communication steps.

2.2. Distributed-search plans

The other major component of a theorem-proving strategy is the search
plan, whose task is to choose the inference rule and the premises at each step of
a derivation. In distributed search, it also controls the communication and the
subdivision of the search space among the deductive processes.

For the selection of the next inference, the search plan features a rule-
selecting function and a premise-selecting function. The selections are made based
on the partial history of the derivation (e.g., S0 `I . . . Si), the number of deductive
processes, and the identifier of the process that is executing the selection. There-
fore, the domain is States∗ × IN × IN. The rule-selecting function is a function
ζ:States∗ × IN × IN → I ∪M , where I is the set of inference rules, and M is the
set of communication operators of the strategy. The premise-selecting function
is a function ξ:States∗ × IN × IN × (I ∪M) → L∗

Θ, which also takes as argument
the inference rule or operator chosen by ζ. If ζ selects an inference rule f and ξ
selects a tuple of premises x̄, the inference step consists of applying f to x̄.

For communication, at each step of a derivation the search plan may select
a communication operator, rather than an inference rule. If ζ selects send, the
clauses chosen by ξ will be sent. If ζ selects receive, whichever clauses are pending
to be received will be received. There is no selection of clauses, because every
process receives whatever it is sent.

A subdivision of the search space is a subdivision of the inferences in the
closure S∗

I . Since S∗
I is infinite and unknown, at each stage Si of a derivation

the search plan subdivides the inferences that can be done in Si. Thus, the
subdivision is built dynamically during the derivation. From the point of view of
each process pk, an inference is either allowed (it is assigned to pk), or forbidden (it
is assigned to others). Therefore, we model the subdivision of the search space
by distinguishing between allowed and forbidden steps. For this purpose, the
search plan includes a subdivision function α:States∗× IN× IN× I×L∗

Θ → Bool,
whose arguments also include the tuple of premises chosen by ξ. A subdivision
function is partial in general: we use ⊥ to denote “undefined”. Where defined, α

158 Maria Paola Bonacina / A model and a first analysis of distributed-search

returns true if the process is allowed to perform the step, and false otherwise.
The ability of detecting termination completes the definition of search plan:

Definition 2.7. A distributed-search plan Σ for a set I of inference rules and a
set M of communication operators is a 4-tuple Σ = 〈ζ, ξ, α, ω〉, where

1. ζ:States∗ × IN × IN → I ∪M is the rule-selecting function,

2. ξ:States∗ × IN × IN × (I ∪M) → L∗
Θ is the premise-selecting function:

ξ((S0, . . . Si), n, k, f
m) ∈ Sm

i (i.e., it selects clauses in the current state),

3. α:States∗ × IN × IN × I ×L∗
Θ → Bool is the subdivision function, and

4. ω:States → Bool is the termination-detecting function, such that ω(S) =
true if and only if S contains the empty clause.

This definition generalizes that of sequential search plan in [21]: a sequential
search plan only has the components ζ, ξ and ω, with ζ:States∗ → I and
ξ:States∗ × I → L∗

Θ.
We have all the elements to define a distributed strategy as a triple 〈I,M,Σ〉,

with inference system I, communication operatorsM , and distributed-search plan
Σ. The execution of a distributed strategy by n processes p0, . . . pn−1 yields a
distributed derivation. All processes have the same inference system and search
plan, and their activities are differentiated by the subdivision function, which
allows every process to execute certain steps and forbids others:

Definition 2.8. Given a theorem-proving problem S, the distributed deriva-
tion generated by strategy C = 〈I,M,Σ〉, with Σ = 〈ζ, ξ, α, ω〉, for pro-
cesses p0, . . . pn−1 (n > 0), is a collection of n local derivations S =
Sk

0 `C S
k
1 `C . . . S

k
i `C . . ., for k ∈ [0, n− 1], such that for all k and i ≥ 0, if

• ω(Sk
i) = false,

• ζ((Sk
0 , . . . S

k
i), n, k) = f ,

• either f = receive and there is a tuple x̄ pending to be received, or f 6= receive
and ξ((Sk

0 , . . . S
k
i), n, k, f) = x̄, and

• either f ∈M or α((Sk
0 , . . . S

k
i), n, k, f, x̄) = true,

then Sk
i+1 = Sk

i ∪ π1(f(x̄)) − π2(f(x̄)).

Ideally, all local derivations start in parallel; in practice, there is typically
a process that starts first and initiates all the others. Subsequently, the local
derivations are asynchronous in general: any two processes pj and pk are not
expected to be in stage i simultaneously, and if pk sends a clause ϕ to pj at stage
i of pk’s derivation, there is no assumption on which stage of pj’s derivation ϕ is
received. All decisions are made locally, with no central control: the functions ω,
ζ, ξ, and α apply to the partial history of the local derivations.

Maria Paola Bonacina / A model and a first analysis of distributed-search 159

Definition 2.9. A distributed-search plan Σ′ = 〈ζ ′, ξ′, α, ω〉 is a parallelization
by subdivision of a sequential search plan Σ = 〈ζ, ξ, ω〉 for inference system I, if
for all (S0, . . . Si) ∈ States∗, n and k,

1. if ζ ′((S0, . . . Si), n, k) ∈ I, then ζ ′((S0, . . . Si), n, k) = ζ(S0, . . . Si) (whenever
ζ ′ selects an inference rule, it selects the rule that ζ would select if given the
same partial derivation), and

2. ∀f ∈ I, ξ′((S0, . . . Si), n, k, f) = ξ((S0, . . . Si), f) (ξ′ selects the premises that
ξ would select if given the same partial derivation and inference rule).

A distributed strategy C ′ = 〈I,M,Σ′〉 is a parallelization by subdivision of a
sequential strategy C = 〈I,Σ〉, if Σ′ is a parallelization by subdivision of Σ. The
local derivations controlled by Σ′ differ from the sequential derivation controlled
by Σ, because of the subdivision function, which for every process forbids some
choices, forcing the process to choose something else, and the communication
steps. Since subdivision is one of the reasons for communication, the subdivision
is the main principle that differentiates the derivations.

3. Properties of distributed-search plans

3.1. Monotonicity of the subdivision

If ζ and ξ can select a certain f and x̄, α needs to be defined on their
selection. For this purpose it would be sufficient to require that α is total on
existing clauses. However, we do not want the subdivision function to “forget”
its decision when a clause is deleted by contraction. Thus, we require that α is
total on generated clauses:

Definition 3.1. A subdivision function α is total on generated clauses if for all
S0 ` . . . Si ` . . ., k, n, fm, x̄, if x̄ ∈ (

⋃i
j=0 Sj)

m then α((S0 . . . Si), n, k, f
m, x̄) 6=⊥.

Next, since it is undesirable that the subdivision function changes the status
of a step after it has been decided, we require that it is monotonic with respect
to the partial ordering ⊥ � false and ⊥ � true on its range Bool:

Definition 3.2. A subdivision function α is monotonic if for all S0 ` . . . Si ` . . .,
n, k, f , x̄, i ≥ 0, α((S0 . . . Si), n, k, f, x̄) v α((S0 . . . Si+1), n, k, f, x̄).

In the rest of the paper we assume that the subdivision functions are total on
generated clauses and monotonic.

Example 3.1. In Clause-Diffusion [18,12] the search space is subdivided by as-
signing clauses to processes and allowing inferences accordingly (e.g., a process

160 Maria Paola Bonacina / A model and a first analysis of distributed-search

may paramodulate into a clause only if it owns it). Such a mechanism corre-
sponds to a partial subdivision function, because it is not known whether a step
is allowed until after its premises have been generated and assigned. It is a total
function on generated clauses, because clauses are assigned right after generation
and forward contraction. (Raw clauses – clauses before forward contraction –
cannot be selected as premises, so that the subdivision function does not need
to be defined on them. When describing the state of a derivation more in detail,
we use a separate component for raw clauses, so that they are not in Si.) On
the other hand, the subdivision functions of Clause-Diffusion are not monotonic.
The cause is subsumption of variants. Consider a process pk which generates a
clause ψ, and receives a variant ψ′ which subsumes ψ. If ψ belongs to pk and
ψ′ does not, or vice versa, the assignment of the clause in the database of pk

changes. However, it cannot change indefinitely. Since variants are equivalent in
the subsumption ordering, variant subsumption in Clause-Diffusion is controlled
by a well-founded ordering which combines lexicographically the subsumption
ordering and some other well-founded ordering on attributes of the clauses (e.g.,
their identifiers) [16]. Since this ordering is well-founded, there cannot be an
infinite sequence of subsumptions of variants. Thus, the assignment of a clause
stabilizes eventually in the database of all processes. It follows that Clause-
Diffusion satisfies a weaker form of monotonicity: if α((S0, . . . Si), n, k, f, x̄) be-
comes defined at some stage i, it remains defined at all following stages, and
there is a stage j ≥ i beyond which the decision does not change, i.e., ∀r > j,
α((S0, . . . Sr), n, k, f, x̄) = α((S0, . . . Sj), n, k, f, x̄).

3.2. Fairness

A derivation is successful if ω(Sk
i) = true for some pk and i; a strategy

is complete if it succeeds whenever the input is inconsistent; completeness is
made of refutational completeness of the inference system (there exist successful
derivations whenever the input is inconsistent), and fairness of the search plan
(the search plan drives the strategy to generate a successful derivation whenever
successful derivations exist). A sufficient condition for fairness is uniform fairness:
whatever can be inferred from persistent non-redundant premises is generated
eventually. This notion of fairness is widely used for forward-reasoning theorem
proving. We report here its formulation in [7] and refer to [20] for more references
and a discussion of this concept of fairness:

Definition 3.3. Given an inference system I and a redundancy criterion R, a
derivation S0 ` . . . Si ` . . . is uniformly fair with respect to I and R if I(S∞ −
R(S∞)) ⊆

⋃

j≥0 Sj, where S∞ =
⋃

j≥0

⋂

i≥j Si is the set of persistent clauses.

Maria Paola Bonacina / A model and a first analysis of distributed-search 161

A search plan Σ is uniformly fair w. r. t. I and R if all its derivations are2.
In a distributed derivation, Sk

∞ =
⋃

j≥0

⋂

i≥j S
k
i is the set of persistent clauses

at pk, and S∞ =
⋃n−1

k=0
Sk
∞. A process only needs to be fair with respect to what

is allowed to do by the subdivision function α. Since α is monotonic, being
allowed (i.e., ∃j ≥ 0 such that α((Sk

0 , . . . S
k
j), n, k, fm, x̄) = true) is equivalent

to being persistently allowed after a certain stage (i.e., ∃i ≥ 0 such that ∀j ≥ i,
α((Sk

0 , . . . S
k
j), n, k, fm, x̄) = true).

Definition 3.4. A local derivation Sk
0 ` Sk

1 ` . . . Sk
i ` . . . is uniformly fair with

respect to I, R and α, if ϕ ∈ I(Sk
∞ − R(Sk

∞)), and ∃i ≥ 0, such that ∀j ≥ i,
α((Sk

0 , . . . S
k
j), n, k, fm, x̄) = true, where ϕ ∈ π1(f

m(x̄)), imply ϕ ∈
⋃

j≥0 S
k
j .

For fairness of the distributed derivation, the search plan needs to ensure
that for every inference from a tuple of persistent non-redundant premises, there
is a process which is allowed to do it (fairness of subdivision), and has all its
premises (fairness of communication):

Definition 3.5. A distributed derivation Sk
0 `C S

k
1 `C . . . S

k
i `C . . ., for k ∈ [0, n−

1], controlled by Σ = 〈ζ, ξ, α, ω〉, is uniformly fair with respect to I and R, if:

1. ∀fm ∈ I, ∀x̄ ∈ (S∞ −R(S∞))m, such that π1(f
m(x̄)) 6= ∅, ∃ pk such that

(a) x̄ ∈ (Sk
∞ −R(S∞))m (fairness of communication), and

(b) ∃i ≥ 0 ∀j ≥ i, α((Sk
0 . . . S

k
j), n, k, fm, x̄) = true (fairness of subdivision).

2. ∀pk, S
k
0 `C . . . S

k
i `C . . . is uniformly fair w. r. t. I, R and α (local fairness).

Definition 3.5 is adequate in the sense that a distributed derivation which
is uniformly fair according to Definition 3.5 satisfies Definition 3.3:

Theorem 3.1. If a distributed derivation Sk
0 `C S

k
1 `C . . . S

k
i `C . . . (for k ∈ [0, n−

1]) is uniformly fair with respect to I andR, then I(S∞−R(S∞)) ⊆
⋃n−1

k=0

⋃

j≥0 S
k
j .

Proof: for all ϕ ∈ I(S∞ − R(S∞)), ϕ is generated by an inference rule fm ∈ I
applied to a tuple of persistent premises x̄ ∈ (S∞ − R(S∞))m. By fairness of
communication, there exists a process pk such that x̄ ∈ (Sk

∞ − R(S∞))m. Since
Sk
∞ ⊆ S∞, ψ 6∈ R(S∞) implies ψ 6∈ R(Sk

∞) by monotonicity of R. Thus, x̄ ∈ (Sk
∞−

R(Sk
∞))m. By fairness of the subdivision function, α((Sk

0 , . . . S
k
j), n, k, fm, x̄) =

true for all j ≥ i for some i ≥ 0. By local fairness, the derivation by pk is
uniformly fair. Since ϕ ∈ I(Sk

∞ −R(Sk
∞)), and the step generating ϕ is allowed,

ϕ ∈
⋃

j≥0 S
k
j . Therefore, ϕ ∈

⋃n−1
k=0

⋃

j≥0 S
k
j .

�

2 For all properties defined for derivations, we say that a search plan has the property if all its
derivations do.

162 Maria Paola Bonacina / A model and a first analysis of distributed-search

Then, Definition 3.5 gives the sufficient conditions for the parallelization by
subdivision of a fair search plan to be fair:

Theorem 3.2. Let Σ be a uniformly fair search plan with respect to I and R,
and Σ′ a parallelization by subdivision of Σ. If Σ′ has fairness of communication
and fairness of subdivision, Σ′ is uniformly fair with respect to I and R.

Proof: Σ′ inherits local fairness from the fact that Σ is uniformly fair, so that it
satisfies all the conditions of Definition 3.5.

�

A sufficient condition for fairness of communication is propagation of clauses
up to redundancy:

Definition 3.6. A distributed derivation has propagation of clauses up to redun-
dancy if for all ϕ ∈ S∞ −R(S∞), for all pk, there exists a j such that ϕ ∈ Sk

j .

In turn, sufficient conditions for propagation of clauses up to redundancy are
that for all ϕ ∈ S∞ − R(S∞), there are pk and i such that pk broadcasts ϕ
at stage i, and all sent messages are received eventually3. Contraction affects
neither fairness of communication nor propagation of clauses up to redundancy,
because both requirements apply only to persistent non-redundant clauses. The
asynchronous nature of the derivation does not affect them either, because it is
sufficient that sent messages are received eventually. In practice, a strategy does
not know which clauses are persistent, and therefore satisfies Definition 3.6 by
propagating more clauses. For example, Clause-Diffusion strategies [18] let each
process broadcast the clauses it owns, and Modified Clause-Diffusion strategies
[12] let each process broadcast the non-trivial normal forms of the clauses it
generates (i.e., clauses are broadcast after generation and forward contraction).

3.3. Eager contraction

Let C =< IE ∪ IR,Σ > be a strategy such that IR contains only contrac-
tion rules that delete clauses without generating any, Σ is uniformly fair with
respect to IE and R, and C is complete. If I ′R is a set of contraction rules
that replace clauses redundant according to R by smaller clauses, the strategy
C′ =< IE ∪ IR ∪ I ′R,Σ > is also complete [7]. This means that uniform fairness
with respect to IE and R is sufficient for completeness. This result of [7] assumes
implicitly that for all input sets S, S∗

I = S∗
IE

, that is, everything that can be
generated can be generated by expansion. This assumption is traditionally left
implicit, because the known inference systems satisfy it. We make this assumption
in the following, together with uniform fairness with respect to IE and R. How-
ever, it is very well-known from both theoretical studies (e.g., [30,7,20,17,8,21])

3 This is the characterization of fairness of communication given in [12] for specific strategies.

Maria Paola Bonacina / A model and a first analysis of distributed-search 163

and experiments with theorem provers (e.g., [2,32,1,37,47,38–40,45]), that con-
traction is crucial for the practical effectiveness of forward reasoning, and not
only applicable contractions should be done, but it is better to do them eagerly,
in order to prevent redundant clauses from generating other redundant clauses.
Eager-contraction can be defined as follows:

Definition 3.7. A derivation S0 `I S1 `I . . . Si `I . . . has eager contraction, if for
all i ≥ 0 and ϕ ∈ Si, if there are fm ∈ IR and x̄ ∈ Sm

i , such that π2(f
m(x̄)) = {ϕ},

then there exists an l ≥ i such that Sl ` Sl+1 deletes ϕ, and ∀j, i ≤ j ≤ l,
Sj ` Sj+1 is not an expansion inference, unless the derivation succeeds sooner.

A sequential strategy is contraction-based, if its inference system includes
contraction rules and its search plan has eager contraction. The parallelization
of eager contraction is a difficult problem. First, each local derivation needs to
have eager contraction:

Definition 3.8. A distributed derivation has local eager contraction, if for all pk,
i ≥ 0 and ϕ ∈ Sk

i , if there are fm ∈ IR and x̄ ∈ (Sk
i)m, such that π2(f

m(x̄)) =
{ϕ}, then there exists an l ≥ i such that Sk

l ` Sk
l+1

deletes ϕ, and ∀j, i ≤ j ≤ l,

Sk
j ` Sk

j+1 is neither an expansion nor a send step, unless pk halts sooner.

Note that the definition has “pk halts sooner” instead of “succeeds” as in
the sequential case, because pk halts if it succeeds or another process succeeds. A
local property, however, is not sufficient; since in a distributed derivation multiple
processes generate clauses independently, we need to consider the behavior of the
strategy with respect to the situation where a clause ϕ at pk can be contracted
by premises generated elsewhere:

Definition 3.9. A distributed derivation has distributed global contraction, if for
all pk, i ≥ 0, and ϕ ∈ Sk

i , if there are fm ∈ IR and x̄ ∈ (
⋃n−1

h=0
Sh

i)m, such that
π2(f

m(x̄)) = {ϕ}, then there exists an l ≥ i such that Sk
l ` Sk

l+1
deletes ϕ, unless

pk halts sooner. It has global eager contraction if, in addition, ∀j, i ≤ j ≤ l,
Sk

j ` Sk
j+1 is neither an expansion nor a send step.

Global eager contraction is the generalization of eager contraction to dis-
tributed derivations, while distributed global contraction4 is a weaker requirement
which guarantees contraction, but not priority over expansion. Since processes
have separate databases, contraction with respect to

⋃n−1
h=0

Sh
i rests on communi-

cation. The following lemmas show how to combine local eager contraction with
propagation of clauses up to redundancy to obtain global contraction properties.

4 The name distributed global contraction was used in [18] to indicate techniques to keep a
distributed database inter-reduced without centralizing contraction.

164 Maria Paola Bonacina / A model and a first analysis of distributed-search

First, propagation of clauses alone implies that all processes know eventually
whether a clause is redundant:

Definition 3.10. A distributed derivation has propagation of redundancy, if ϕ ∈
R(

⋃n−1
h=0

Sh
i) implies that for all ph there exists a j such that ϕ ∈ R(Sh

j).

Lemma 3.1. Propagation of clauses up to redundancy implies propagation of
redundancy.

Proof: assume that ϕ ∈ R(
⋃n−1

h=0
Sh

i). By properties 2 and 3 in Definition 2.4, ϕ ∈
R(S∞−R(S∞)). Let {ψ1, . . . ψm} be a minimal multiset of clauses in S∞−R(S∞)
such that ϕ ∈ R({ψ1, . . . ψm}). By propagation of clauses up to redundancy,
for all ph, for all ψk, 1 ≤ k ≤ m, there exists a jk such that ψk ∈ Sh

jk
. Let

j = max{jk|1 ≤ k ≤ m}. Since ψ1, . . . ψm are persistent, ψ1, . . . ψm ∈ Sh
j and

ϕ ∈ R(Sh
j).

�

With local eager contraction the redundant clauses are indeed contracted:

Lemma 3.2. Local eager contraction and propagation of clauses up to redun-
dancy imply distributed global contraction.

Proof: assume that for some ϕ ∈ Sk
i , fm ∈ IR and x̄ ∈ (

⋃n−1
h=0

Sh
i)m, it is

π2(f
m(x̄)) = {ϕ}. We need to show that pk deletes ϕ unless it halts sooner.

Let M = X − π2(f
m(x̄)) ∪ π1(f

m(x̄)). By Definition 2.5, ϕ ∈ R(M). Let
X − π2(f

m(x̄)) = {ψ1, . . . ψr}. There are two cases.

1. If for all ψq, 1 ≤ q ≤ r, ψq ∈ S∞ − R(S∞), by propagation of clauses
up to redundancy, for all ψq, there exists a jq such that ψq ∈ Sk

jq
. Let

j = max{jq|1 ≤ q ≤ r}. Since ψ1, . . . ψr are persistent, ψ1, . . . ψr ∈ Sk
j . By

local eager contraction, there exists an l ≥ j such that Sk
l ` Sk

l+1 deletes ϕ
unless pk halts sooner.

2. If for some ψq, 1 ≤ q ≤ r, ψq 6∈ S∞ − R(S∞), this specific contraction step
may not be done, but we show that pk still deletes ϕ unless it halts sooner. If
π1(f

m(x̄)) = ∅, ϕ ∈ R(M) means ϕ ∈ R({ψ1, . . . ψr}), hence ϕ ∈ R(
⋃n−1

h=0
Sh

i)
and ϕ ∈ R(S∞) by the properties of R (Definition 2.4). If π1(f

m(x̄)) 6= ∅,
since everything that can be generated by contraction can be generated by
expansion, by uniform fairness with respect to IE and R, and again the
properties of R, it is ϕ ∈ R(S∞). By Definition 2.5, there are fm ∈ IR and
ȳ = (ψ′

1, . . . ψ
′
m), ψ′

1, . . . ψ
′
m ∈ S∞ − R(S∞) such that π2(f

m(ȳ)) = {ϕ} and
π1(f

m(ȳ)) = ∅. Like in Case 1, by propagation of clauses up to redundancy
and local eager contraction, pk deletes ϕ unless it halts sooner.

�

By local eager contraction, pk performs no expansion or communication between
stage j (when ϕ becomes reducible with respect to the local database of pk) and

Maria Paola Bonacina / A model and a first analysis of distributed-search 165

stage l (when pk deletes ϕ). That is, pk deletes ϕ eagerly with respect to the
local database. However, pk may perform expansion or communication, possibly
using ϕ as premise, in the interval between stage i (when ϕ is reducible with
respect to the global database) and stage j. Thus, local eager contraction and
propagation of clauses up to redundancy imply distributed global contraction,
not global eager contraction, which requires a stronger property:

Definition 3.11. Assume ϕ ∈ S∞ − R(S∞) and let i be the earliest stage such
that ϕ ∈

⋃n−1
k=0

Sk
i . A distributed derivation has immediate propagation of clauses

up to redundancy if ∀pk ϕ ∈ Sk
i .

Lemma 3.3. Local eager contraction and immediate propagation of clauses up
to redundancy imply global eager contraction.

Proof: the proof is the same as for Lemma 3.2 with the following modification of
Case 1: if for all ψq, 1 ≤ q ≤ r, ψq ∈ S∞−R(S∞), then, by immediate propagation
of clauses up to redundancy, ψ1, . . . ψr ∈ Sk

i . By local eager contraction there
exists an l ≥ i such that Sk

l ` Sk
l+1 deletes ϕ, and ∀j, i ≤ j ≤ l, Sk

j ` Sk
j+1 is

neither an expansion nor a send step, unless pk halts sooner.
�

Distributed strategies with asynchronous communication cannot have imme-
diate propagation. Therefore, we say that a distributed strategy is contraction-
based, if its inference system includes contraction rules, and its search plan has
local eager contraction and distributed global contraction. We use immediate
propagation as a limit property to study problems and express results.

In order to establish sufficient conditions for the parallelization by subdi-
vision of a contraction-based strategy to be contraction-based, we consider next
the compatibility of subdivision and eager contraction:

Theorem 3.3. Let C = 〈I,Σ〉 be a contraction-based strategy, and C ′ =
〈I,M,Σ′〉, with Σ′ = 〈ζ ′, ξ′, α, ω′〉, a parallelization by subdivision of C. If Σ′

propagates clauses up to redundancy and for all f ∈ IR, α((Sk
0 . . . S

k
i), n, k, f, x̄) =

true, for all i, n, k and x̄, then C ′ is a distributed contraction-based strategy.

Proof: C′ has contraction rules, because it has the inference system of C. Since
Σ′ is a parallelization by subdivision of Σ, Σ′ selects the same inferences as Σ.
Since contraction inferences are allowed to all processes, the subdivision has no
effect on contraction, and local eager contraction follows from the hypothesis
that Σ is eager-contraction. Distributed global contraction follows from local
eager contraction and propagation of clauses up to redundancy by Lemma 3.2.

�

The requirement that all contraction inferences are allowed to all pro-
cesses is a strong one, especially in equational problems, where contraction, e.g.,

166 Maria Paola Bonacina / A model and a first analysis of distributed-search

simplification, is not only deletion but also deduction of new equations. As-
sume that the subdivision function α may forbid contraction inferences, e.g.,
f(x̄) = ({ψ1, . . . ψm}, {ϕ1, . . . ϕp}). Consider a strategy that lets a process delete
the ϕj , but not generate the ψi, when ζ selects f , ξ selects x̄, and α forbids the
step. It is sufficient to guarantee that at least one process generates and propa-
gates the ψi to preserve completeness. The proof of Theorem 3.3 applies also to
such a strategy; let C and C ′ be as in Theorem 3.3:

Theorem 3.4. If Σ′ propagates clauses up to redundancy, and whenever
ζ((Sk

0 . . . S
k
i), n, k) = f ∈ IR, ξ((Sk

0 . . . S
k
i), n, k, f) = x̄, α((Sk

0 . . . S
k
i), n, k, f, x̄) =

false, Sk
i+1 = Sk

i − π2(f(x̄)), then C ′ is a distributed contraction-based strategy.

Clause-Diffusion strategies [18] are contraction-based by Theorem 3.3, be-
cause they propagate clauses up to redundancy and allow all contractions to
all processes. Modified Clause-Diffusion strategies [12] are contraction-based by
Theorem 3.4: they propagate clauses up to redundancy; forward contractions
and contractions that do not generate clauses are allowed to all processes; back-
ward simplifications may be forbidden, but when a process selects a forbidden
backward-simplification step, it deletes the reducible equation without generating
its normal form.

4. Search graphs for distributed search

4.1. The structure of the search space

The structure of the search space of a theorem-proving problem depends on
the problem and the inference system, so that it is the same regardless of whether
the space is searched in parallel or sequentially. Therefore, the representation of
the structure of the search space is the same as in the sequential case [21].

Given a theorem-proving problem S on signature Θ and an inference system
I, the search space is modelled as a search graph, more precisely a hypergraph.
The vertices represent the clauses in the closure S∗

I , and the hyperarcs represent
the inferences. Given a hypergraph (V,E), an arc-labelling function is a function
h:E → I from hyperarcs to inference rules. A vertex-labelling function is an
injective function l:V → LΘ/

•
= from vertices to equivalence classes of clauses,

where
•
= is equivalence up to variable renaming. Thus, all variants of a clause

are associated to a unique vertex. For simplicity, we refer to l(v) as a clause,
meaning a representative of a class of variants.

Definition 4.1. Given a theorem-proving problem S on signature Θ and a set
of inference rules I, the search space induced by S and I is represented by the
search graph G(S∗

I) = (V,E, l, h), where V is the set of vertices, l is a vertex-
labelling function l:V → LΘ/

•
=, h is an arc-labelling function h:E → I, and

Maria Paola Bonacina / A model and a first analysis of distributed-search 167

if fn(ϕ1, . . . ϕn) = ({ψ1, . . . ψm}, {γ1, . . . γp}) for fn ∈ I, E contains a hyperarc
e = (v1, . . . vk;w1, . . . wp;u1, . . . um), where h(e) = fn, and

• v1 . . . vk are labelled by the premises that are not deleted: l(vj) = ϕj and
ϕj 6∈ {γ1, . . . γp}, ∀j, 1 ≤ j ≤ k, where k = n− p,

• w1 . . . wp are labelled by the deleted clauses: l(wj) = γj , ∀j, 1 ≤ j ≤ p, and

• u1 . . . um are labelled by the generated clauses: l(uj) = ψj , ∀j, 1 ≤ j ≤ m.

In the sequel, we use interchangeably vertices and their labels. Without
loss of generality, we consider hyperarcs in the form (v1, . . . vn;w;u), where at
most one clause is added or deleted. For instance, a resolution arc has the
form (v1, v2;u), where u is a resolvent of v1 and v2; a simplification arc has
the form (v;w;u), where v reduces w to u; and a normalization arc has the form
(v1, . . . vn;w;u), where u is a normal form of w with respect to the simplifiers
v1, . . . vn. Contraction inferences that purely delete clauses are represented as
replacement by true, where true is a dummy clause such that true ≺ ϕ for all ϕ.
A special vertex T in the search graph is labelled by true. We refer to [21] for the
application of this representation to more inference rules and several examples of
inference steps.

4.2. Evolution of the search graph during a distributed derivation

The search graph G(S∗
I) = (V,E, l, h) represents the static structure of the

search space. The representation of the search process during a distributed deriva-
tion needs to cover: (1) the selections by the search plan, (2) the deletions by
contraction, (3) the subdivision of the search space, (4) the effect of commu-
nication. These four aspects are intertwined, because the search plan controls
contraction, subdivision and communication, and these in turn affect the succes-
sive choices of the search plan.

The dynamics of the search during a derivation is described by marking
functions for vertices and arcs. By using multiple marking functions we can
represent the effects of all the processes on the same search graph, yielding a
parallel marked search-graph:

Definition 4.2. A parallel marked search-graph (V,E, l, h, s̄, c̄) for processes
p0, . . . pn−1 is given by a search graph (V,E, l, h), and:

• An n-tuple s̄ of vertex-marking functions, where each component sk:V → Z
(from vertices to integers) is defined as follows:

sk(v) =







m if m variants (m > 0) of l(v) are present for pk,
−1 if pk deleted all variants of l(v) it generated or received,
0 otherwise.

168 Maria Paola Bonacina / A model and a first analysis of distributed-search

• An n-tuple c̄ of arc-marking functions, where ck:E → IN × Bool, and for
e = (v1, . . . vn;w;u), π1(c

k(e)) is the number of times pk executed arc e or
received a variant of l(u) generated by e, and π2(c

k(e)) = true/false, if pk is
allowed/forbidden to execute e.

If we want to concentrate on process pk we consider the marked search graph
(V,E, l, h, sk , ck). In addition to the generation of clauses, the vertex-marking
function captures the dynamic effects of contraction (if a clause is deleted, its
marking becomes negative) and communication (if a clause is received, its mark-
ing is incremented). The first component of the arc-marking will be used to keep
track of relevance of ancestors, as shown in Section 5.1. The second component
(permission marking) represents the subdivision of the space.

Let S be a theorem-proving problem, C = 〈I,M,Σ〉 a distributed strategy
with Σ = 〈ζ, ξ, α, ω〉, S = Sk

0 `C . . . S
k
i `C . . . for k ∈ [0, n − 1] the distributed

derivation generated by C from S, and G(S∗
I) = (V,E, l, h) the underlying search

graph. At each stage of a derivation a process can execute a hyperarc only if the
hyperarc is enabled, that is, its premises are present and it is allowed:

Definition 4.3. A hyperarc e = (v1, . . . vn;w;u) ∈ E is enabled for process pk

at stage i, if sk
i (vj) > 0 for 1 ≤ j ≤ n, sk

i (w) > 0 (sk
i (w) > 1 if w ∈ {v1, . . . vn},

e.g., for a variant subsumption arc (v, v,T)), and π2(c
k
i (e)) = true.

The following definitions show how to associate marking functions to the
stages of a derivation.

Definition 4.4. A distributed derivation induces n successions (one per process)
of vertex-marking functions {sk

i }i≥0 as follows. For all v ∈ V , sk
0(v) = 0, and

∀i ≥ 0:

• If at stage i pk executes an enabled hyperarc e = (v1, . . . vn;w;u):

sk
i+1(v) =



























sk
i (v) − 1 if v = w and sk

i (v) > 1,
−1 if v = w and sk

i (v) = 1,
sk
i (v) + 1 if v = u and sk

i (v) ≥ 0,
1 if v = u and sk

i (v) = −1,
sk
i (v) otherwise.

• If at stage i pk receives x̄ = (ϕ1, . . . ϕn), where ϕj = l(vj) for 1 ≤ j ≤ n:

sk
i+1(v) =











sk
i (v) + 1 if v ∈ {v1, . . . vn} and sk

i (v) ≥ 0,
1 if v ∈ {v1, . . . vn} and sk

i (v) = −1,
sk
i (v) otherwise.

• If at stage i pk sends x̄, sk
i+1(v) = sk

i (v) for all v ∈ V .

Maria Paola Bonacina / A model and a first analysis of distributed-search 169

Inference steps performed by pk affect only the marking sk, reflecting the
fact that the databases of the processes are separate. Note that sk

0(v) = 0 for all
vertices, including input clauses, because reading or receiving the input clauses
already modifies the search space, since the subdivision function applies also to
input clauses. Therefore, also the steps of reading or receiving the input clauses
need to be included in the derivation. (Read steps can be modelled as expansion
steps, so that input clauses are treated like generated clauses.)

Definition 4.5. A distributed derivation induces n successions (one per process)
of arc-marking functions {cki }i≥0 as follows. For all a ∈ E, π1(c

k
0(a)) = 0 and

π2(c
k
0(a)) = true, and ∀i ≥ 0:

π1(c
k
i+1(a)) =











π1(c
k
i (a)) + 1 if at stage i pk executes a,

π1(c
k
i (a)) + 1 if at stage i pk receives a clause generated by a,

π1(c
k
i (a)) otherwise;

π2(c
k
i+1(a)) =

{

α((Sk
0 , . . . S

k
i+1), n, k, f, x̄) if α((Sk

0 , . . . S
k
i+1), n, k, f, x̄) 6=⊥,

true otherwise,

where h(a) = f and x̄ is the tuple of premises of hyperarc a.

The condition π2(c
k
0(a)) = true means that all arcs are allowed initially. As the

derivation progresses, including the steps to read or receive the input clauses,
the strategy dynamically applies the subdivision function to exclude certain in-
ferences for each process. The permission marking inherits the properties of the
subdivision function: if α is total on generated clauses, the marking of an arc is
set to either true or false when its premises are generated, and if α is monotonic,
it does not change afterwards.

The active search space is the part of the graph determined by the vertices
with positive marking:

Definition 4.6. Given a parallel marked search-graph G = (V,E, l, h, s̄, c̄), the
active search space for process pk is Gk+ = (V k+, Ek+, l, h, sk, ck), where V k+ =
{v | v ∈ V, sk(v) > 0} and Ek+ is the restriction of E to V k+. The active search
space is G+ = (V +, E+, l, h, s̄, c̄), where V + = {v | v ∈ V, ∃k sk(v) > 0} and E+

is the restriction of E to V +.

The generated search space is represented by the portion of the search graph
with non-zero marking:

Definition 4.7. Given a parallel marked search-graph G = (V,E, l, h, s̄, c̄), the
search space generated by pk is Gk∗ = (V k∗, Ek∗, l, h, sk, ck), where V k∗ = {v | v ∈
V, sk(v) 6= 0} and Ek∗ is the restriction of E to V k∗. The generated search space

170 Maria Paola Bonacina / A model and a first analysis of distributed-search

is G∗ = (V ∗, E∗, l, h, s̄, c̄), where V ∗ = {v | v ∈ V, ∃k sk(v) 6= 0} and E∗ is the
restriction of E to V ∗.

In summary, if we fix k and let i vary we get the successions {sk
i }i≥0 and

{cki }i≥0 which characterize the derivation by pk. For each state Sk
i , the marked

search graph Gk
i = (V,E, l, h, sk

i , c
k
i) represents the state of the search space at

stage i at process pk, G
k+
i represents its active part, and Gk∗

i represents the
portion of the search space generated by pk up to stage i. If we fix i and let
k vary, we get the tuples of markings s̄i = (s0i , . . . s

n−1
i) and c̄i = (c0i , . . . c

n−1
i)

which characterize the distributed derivation. The parallel marked search graph
Gi = (V,E, l, h, s̄i, c̄i) represents the state of the search space after all processes
executed i steps, G+

i represents its active part, and G∗
i represents the search space

generated by all processes up to stage i.
Similar to contraction (e.g., see the discussion in [21]), subdivision and com-

munication could not have been represented by structural modifications of the
graph. When a process pi receives a clause ϕ, all the inferences between the
clauses already stored at pi and ϕ become available. Thus, it would seem that
this effect could be represented by adding the arcs for such inference steps. The
problem with such an approach is that the structure of the search space would
depend on the search plan, because communication steps are decided dynamically
by the search plan. In our approach, all inference steps with ϕ are in the static
structure of the search graph, and the effect of receiving ϕ is represented by in-
crementing its marking and enabling those steps. A positive consequence of this
representation is a sort of transparency: from the point of view of the possible
inferences it is irrelevant whether a clause is available at a process because it was
input, generated, or received.

Similarly, if forbidden arcs were eliminated from the graph, the structure
of the search space would depend on the search plan, because the subdivision is
decided dynamically by the search plan. Furthermore, we could not represent
the parallel searches on one graph, because what is forbidden for one process is
allowed for the other. In summary, our approach can represent dynamic search
spaces because it distinguishes what belongs to the structure of the space and
what belongs to the dynamics of the search.

5. Measures of search complexity

In this section we extend our approach to measure search complexity to
distributed search. We begin by introducing the notion of distance of a clause in
the search space.

Maria Paola Bonacina / A model and a first analysis of distributed-search 171

5.1. A notion of distance for search spaces

The distance of a clause is measured on an ancestor-graph, which represents
a generation path of the clause:

Definition 5.1. Let G = (V,E, l, h) be a search graph. For all v ∈ V :

• If v has no incoming hyperarcs, the ancestor-graph of v is the graph made of
v itself.

• If e = (v1, . . . vn; vn+1; v) is a hyperarc in E and t1, . . . tn, tn+1 are ancestor-
graphs of v1, . . . vn, vn+1, then the graph with root v connected by e to the
subgraphs t1, . . . tn, tn+1 is an ancestor-graph of v, and it is denoted by the
triple (v; e; (t1, . . . tn, tn+1)).

The set of the ancestor-graphs of v in G is denoted by atG(v) (or atG(ϕ)).

Consider a clause ϕ and one of its ancestor-graphs t. If an ancestor of ϕ
in t is deleted by contraction, it becomes impossible to reach ϕ by traversing t.
However, this is true only if the ancestor is relevant:

Definition 5.2. Let t = (v; e; (t1, . . . tn, tn+1)) be an ancestor-graph of v, where
l(v) = ϕ and e = (v1, . . . vn; vn+1; v). A vertex w ∈ t, w 6= v, is relevant to v in t
for pk at stage i if

• either w ∈ {v1, . . . vn, vn+1} and π1(c
k
i (e)) = 0,

• or ∃j, 1 ≤ j ≤ n+ 1, such that w is relevant to vj in tj for pk at stage i.

RevGk
i
(t) denotes the set of vertices relevant to v in t for pk at stage i.

The following examples show how Definition 5.2 and Definition 4.2 cooperate
to capture the relevance of ancestors. Numbers in boldface in the figures represent
the markings.

Example 5.1. Figure 1 shows the ancestor-graph t1 of R ∨D. Initially all an-

Q or R

P or R

R or D

0

0

0

0

- P or Q
1 1 1

- P or Q

Q or R

1

1

0

R or D0

P or R
1

- Q or D
1

- Q or D
1

Figure 1. Ancestor graph t1 before and after the generation of Q ∨ R.

172 Maria Paola Bonacina / A model and a first analysis of distributed-search

cestors are relevant. If the resolution arc that generates Q ∨ R is executed, the
marking changes as shown in the right picture. After the step, the ancestors
¬P ∨ Q and P ∨ R are no longer relevant: if they were deleted, their deletion
would not affect Q ∨ R and R ∨D, because Q ∨ R has been already generated.
If Q ∨ R had been received, rather than generated, the resulting marking is the
same, precisely to capture the fact that a subsequent deletion of ¬P ∨Q or P ∨R
would not affect Q ∨R and its descendants.

Example 5.2. Figure 2 illustrates the same concepts in the even more com-
pelling case where a clause is used to delete its parents. Assume that pk generates

P or Q -P or Q -Q or P

Q P

1 1 11

0 0 0

000

-Q or R

-P or R

and receive P
generate Q

-1 P or Q

1

1

Q -P or R1 P

1

-Q or P
-Q or R

1-P or Q
-1

0
0

-1

Figure 2. The evolution of the marking for Example 5.2.

Q by resolution from P ∨ Q and ¬P ∨ Q, and then uses it to subsume P ∨ Q
and ¬P ∨Q. Next, pk receives P and uses it to subsume ¬Q ∨ P . The marking
resulting after all these steps is shown in the picture on the right in Figure 2: as
desirable, P ∨Q and ¬P ∨Q are not relevant to Q, and ¬Q ∨ P and P ∨Q are
not relevant to P . On the other hand, ¬P ∨Q is relevant to ¬P ∨R.

Example 5.3. The left picture in Figure 3 contains two ancestor-graphs: t2 con-

n(n(x+y))+y = x+y n(n(x+y))+y = x+y

n(x+e) = n(x) n(n(x)) = x n(x+e) = n(x)

n(n(x))+e = x+e n(n(x))+e = x+e x+y+y = x+yx+y+y = x+y

n(n(x)) = x

0

1 1

0

1

0

0

-11

1

0

0

1

1

Figure 3. t2 and t3 before and after the simplification of n(n(x + y)) + y ' x+ y.

sists of a paramodulation step generating n(n(x))+ e ' x+ e by paramodulating
n(x+ e) ' n(x) into n(n(x+ y)) + y ' x+ y; and t3 consists of a simplification
step which reduces n(n(x+ y)) + y ' x+ y to x+ y+ y ' x+ y by applying the
simplifier n(n(x)) ' x. If the simplification step is executed (see the resulting
marking on the right), n(n(x + y)) + y ' x + y and n(n(x)) ' x are no longer
relevant to x + y + y ' x + y. Indeed, the deletion of n(n(x + y)) + y ' x + y
is not an obstacle to reach x+ y + y ' x+ y, rather, it has been part of a step

Maria Paola Bonacina / A model and a first analysis of distributed-search 173

that generates it. On the other hand, n(n(x + y)) + y ' x + y is still relevant
to n(n(x)) + e ' x + e, and its absence prevents the process from generating
n(n(x)) + e ' x+ e through t2.

Given a clause ϕ and one of its ancestor-graphs t, the p-distance, or past-
distance, measures the portion of t that pk has visited. The f-distance, or future-
distance, measures the portion of t that pk still needs to visit to reach ϕ by
traversing t. The g-distance, or global-distance, is their sum. If a relevant ancestor
of ϕ on t was deleted by pk, the distance of ϕ on t for pk is infinite:

Definition 5.3. For all ϕ, t ∈ atG(ϕ), pk and stages i:

• The p-distance of ϕ on t for pk at i is pdistGk
i
(t) = | {w | w ∈ t, sk

i (w) 6= 0} |.

• The f-distance of ϕ on t for pk at i is

fdistGk
i
(t) =











∞ if sk
i (ϕ) < 0

or ∃w ∈ RevGk
i
(t), sk

i (w) < 0,

| {w | w ∈ t, sk
i (w) = 0} | otherwise.

• The g-distance of ϕ on t for pk at i is gdistGk
i
(t) = pdistGk

i
(t) + fdistGk

i
(t).

The f-distance of ϕ in Gk
i is fdistGk

i
(ϕ) = min{fdistGk

i
(t) | t ∈ atG(ϕ)}. The

g-distance of ϕ in Gk
i is gdistGk

i
(ϕ) = min{gdistGk

i
(t) | t ∈ atG(ϕ)}.

If a vertex has non-zero marking it is counted in the p-distance regardless of
whether the clause was generated or received, because a process may advance
on a path not only by generating clauses but also by receiving them. Note that
it may happen that an ancestor-graph of ϕ has infinite distance and another
one has finite distance. Accordingly, it may also happen that ϕ is generated by
traversing an ancestor-graph, and therefore has positive marking, while another of
its ancestor-graphs has infinite distance. If all ancestor-graphs of ϕ have infinite
distance, the distance of ϕ in the graph is infinite, meaning that ϕ is unreachable.

Example 5.4. In the picture on the left in Figure 1, the p-distance of R ∨D is
3 and the f-distance is 2. After Q ∨ R is generated, the p-distance is 4 and the
f-distance is 1. If we consider Q∨R itself, its p-distance goes from 2 to 3, and its
f-distance goes from 1 to 0. In the picture on the right in Figure 2, Q and P and
their descendants have finite distance, whereas ¬P ∨R and its descendants have
infinite distance. In the picture on the right in Figure 3, x+y+y ' x+y and its
descendants have finite distance, whereas n(n(x))+e ' x+e and its descendants
have infinite distance.

We conclude with the correspondence between infinite distance and redun-
dancy. If a relevant ancestor ψ in an ancestor-graph t of ϕ is deleted by con-

174 Maria Paola Bonacina / A model and a first analysis of distributed-search

traction, it means that ψ and the arc of t that uses ψ are redundant. Thus, if
fdistGk(t) = ∞, t includes redundant inference(s). If fdistGk

i
(ϕ) = ∞, all paths

reaching ϕ are redundant, and ϕ itself is redundant.

5.2. Subdivision, communication and overlap

If the subdivision function forbids an arc e to process pk, pk cannot continue
the traversal of an ancestor-graph that contains e:

Definition 5.4. An ancestor-graph t is forbidden for process pk at stage i if there
exists an arc e in t such that π1(c

k
i (e)) = 0 and π2(c

k
i (e)) = false. It is allowed

otherwise.

The next example illustrates the effect of subdivision. In the examples, we
assume that if all the premises of an arc are absent, α is undefined and the arc is
allowed by default (see Definition 4.5). In the figures, T and F are abbreviations
for true and false.

Example 5.5. In Figure 4, let t be the ancestor-graph made of arcs e and a. In

Q

D

R1

P

T

0

1

0 C

e
0

a

0

T

allowed

generate or
receive P

1

e

P 1

a

R1Q1

0

D 0

forbidden

C 0

Q

T

P 0

allowed

1 R 1

C
0

D 0

receive P
generate or

T

P

Q 1 R 1

allowed

D 0

T

1 C 00

T

F

0

e

0
a

0

a

e
1T

Figure 4. The effect of subdivision.

the left part of Figure 4, t is initially allowed for pk, because e is allowed, and a
is allowed by default. If pk generates P by executing e, and α decides that a is
forbidden, t becomes forbidden, and a subdivision of the search space occurs. In
the right part of the figure, α decides that a is allowed, so that t remains allowed.
The behaviour is the same if pk receives P instead of generating it.

The next example shows that the given definitions distinguish properly
among different ancestor-graphs of a clause.

Example 5.6. In Figure 5, let t be the ancestor-graph made of arcs b and a,

Maria Paola Bonacina / A model and a first analysis of distributed-search 175

T

F

R 11 M

L

D

B 0

T

0

P1

Q1

0 L

e

R
M 1

P

Q1

1 b

T 1

a
T

0

D

execute b

1

0

F

B

b

a

0

0
0 01

0

e

Figure 5. Ancestor-graphs t (made of b and a) and t′ (made of e and a).

and t′ the ancestor-graph made of arcs e and a. In the left picture, t is allowed,
whereas t′ is forbidden, because π2(c

k(e)) = false and π1(c
k(e)) = 0. Assume

that pk executes b, generates L, and α decides that a remains allowed. The
status of the two ancestor-graphs is unchanged: t′ remains forbidden, because
the marking of e has not changed. This is appropriate, because L was generated
by executing b, not e, which means pk is traversing t, not t′.

Subdivision excludes ancestor-graphs from consideration by a process. How-
ever, communication may undo its effect, as shown in the following example:

Example 5.7. Figure 6 shows the same ancestor-graph t of Figure 4 with a
different permission marking. In the left part of Figure 6, t is initially forbidden

Q

F

D

R1

P

T

0

1

0 C

e
0

a

0

forbidden

0

receive P

forbidden

Q 1

F

P

e
1

R 1

C
0

1

a

0

D 0

F

Q

F

e
0

0

T

a

0

receive P

C 0

R 11

0

a

C 0

F 1

e

Q 1 R 1

P

D
0

forbidden

P 1

D 0

allowed

T

Figure 6. An effect of communication.

for process pk, because π1(c
k
i (e)) = 0 and π2(c

k
i (e)) = false. If pk receives

P , and α decides based on P that a is forbidden, t remains forbidden, because
π1(c

k
i+1(a)) = 0 and π2(c

k
i+1(a)) = false. If α decides that a is allowed (second

half of Figure 6), t becomes allowed, because π1(c
k
i+1(e)) = 1 and π2(c

k
i+1(a)) =

true, so that neither e nor a satisfy Definition 5.4. Note that the ancestor-graph
made of e only goes from forbidden to allowed regardless of the permission of a.

176 Maria Paola Bonacina / A model and a first analysis of distributed-search

By requiring π2(c
k
i (e)) = false and π1(c

k
i (e)) = 0, Definition 5.4 takes

communication into account. Note that π2(c
k
i (e)) = false and π1(c

k
i (e)) 6= 0

may happen only as a consequence of communication, because a forbidden step
cannot be executed. The idea is that a forbidden arc whose consequence has been
received becomes irrelevant, because it is no longer true that forbidding that arc
prevents the process from exploring that path.

In summary, our model captures here two aspects of distributed search. On
one hand, the subdivision excludes search paths, thereby reducing the search
effort of each process. On the other hand, the strategy employs communication
to make sure that fairness (hence completeness) is preserved in presence of a
subdivision. As a consequence, excluded search paths may be included again. For
fairness, it is sufficient that every non-redundant path is allowed to one process.
If more than one process is allowed, their searches may overlap:

Definition 5.5. Two processes pk and ph overlap on ancestor-graph t at stage
i, if t is allowed for both pk and ph at stage i.

Since an overlap represents a potential duplication of search effort, a goal of a
distributed-search plan is to preserve fairness while minimizing the overlap.

5.3. The bounded search spaces for local and distributed derivations

We have all the elements to define a measure of search complexity that
captures the effects of contraction, subdivision and communication on the search
space. The following definition of bounded search spaces combines the application
of the notion of distance to measure the effect of contraction, and the notion of
allowed ancestor-graph to measure the effects of subdivision and communication.
The bounded search space of bound j for pk is the space of clauses whose g-
distance for pk is smaller than or equal to j. It is written as a multiset, with the
multiplicity of a clause equal to the number of its allowed ancestor-graphs whose
g-distance is at most j:

Definition 5.6. For all j > 0, the bounded search space within distance j for pro-
cess pk at stage i is the multiset of clauses space(Gk

i , j) =
∑

v∈V,v 6=T
mulGk

i
(v, j) ·

l(v), where mulGk
i
(v, j) = |{t | t ∈ atG(v), t allowed for pk at stage i, 0 <

gdistGk
i
(t) ≤ j}|.

The bounded search spaces can be compared by using the multiset extension �mul

of the ordering � on clauses. The bounded search spaces for the sequential case,
denoted space(Gi, j), are defined in the same way, with multiplicity mulGi

(v, j) =
|{t | t ∈ atG(v), 0 < gdistGi

(t) ≤ j}|. The sequential definition is a special case
of Definition 5.6, because in the sequential case there is one process and all
ancestor-graphs are allowed.

Maria Paola Bonacina / A model and a first analysis of distributed-search 177

Definition 5.6 considers the bounded search spaces for the local derivation
of a process. In order to capture the behavior of the distributed derivation as
a whole, one needs to define a notion of parallel bounded search spaces. Assume
that at stage i ph and pk overlap on an ancestor-graph t. Then t is counted
in both mulGh

i
(v, j) and mulGk

i
(v, j). In order to reflect the overlap, one would

like that t is counted twice in a suitable notion of parallel multiplicity. Thus,
let gmulGi

(v, j) =
∑n−1

k=0
mulGk

i
(v, j). However, ph and pk are active in parallel.

Thus, let pmulGi
(v, j) = bgmulGi

(v, j)/nc. The following example shows how
these notions apply to a couple of concrete cases.

Example 5.8. Assume that there are two processes p1 and p2 and clause ϕ =
l(v) has four ancestor-graphs whose g-distance is smaller than a given j. If at
stage i two ancestor-graphs are allowed for p1 only and the other two are allowed
for p2 only, mulG1

i
(v, j) = mulG2

i
(v, j) = 2, gmulGi

(v, j) = 4 and pmulGi
(v, j) =

2. In this case, there is no overlap. If all ancestor-graphs are allowed for p1, and
two are allowed also for p2, mulG1

i
(v, j) = 4, mulG2

i
(v, j) = 2, gmulGi

(v, j) = 6,

pmulGi
(v, j) = 3, and there is overlap.

We can then define the parallel bounded search spaces as follows:

Definition 5.7. For all j > 0, the parallel bounded search space within distance
j at stage i is the multiset of clauses pspace(Gi, j) =

∑

v∈V,v 6=T
pmulGi

(v, j) · l(v),

where pmulGi
(v, j) = bgmulGi

(v, j)/nc and gmulGi
(v, j) =

∑n−1
k=0

mulGk
i
(v, j).

The sense of this definition is that in order to capture the behavior of
the distributed derivation, we build an ideal representative process. It is an
ideal process, because none of the pk’s has mulGk

i
(v, j) = pmulGi

(v, j) for all

v. It is a meaningful representative, because pmulGi
(v, j) is the average mul-

tiplicity of l(v) at stage i. Building a representative process based on aver-
age multiplicity seems more significant than building a representative process
which is the best on all clauses (i.e., the alternative definition pmulGi

(v, j) =
min0≤k≤n−1{mulGk

i
(v, j)}) or the worst on all clauses (i.e., the alternative defi-

nition pmulGi
(v, j) = max0≤k≤n−1{mulGk

i
(v, j)}).

A minimal requirement for a suitable definition of parallel bounded search
spaces is that if there are no subdivision and no communication, the parallel
bounded search spaces should be equal to the sequential bounded search spaces.
The following theorem shows that Definition 5.7 satisfies this requirement:

Theorem 5.1. If α is the constant function true, and no communication occurs,
then for all pk, i ≥ 0 and j > 0, space(Gk

i , j) = space(Gi, j), and pspace(Gi, j) =
space(Gi, j).

178 Maria Paola Bonacina / A model and a first analysis of distributed-search

Proof: each pk performs exactly the same steps as the sequential process (with-
out subdivision Σ′ is the same as Σ). In particular, the contraction steps are the
same, so that for all stages i of the derivation, vertex v of the search graph,
process pk and value j of the bound, mulGk

i
(v, j) = mulGi

(v, j). It follows

that space(Gk
i , j) = space(Gi, j). Also, gmulGi

(v, j) = n · mulGi
(v, j), and

pmulGi
(v, j) = mulGi

(v, j). It follows that pspace(Gi, j) = space(Gi, j).
�

The sequential and the distributed strategy have the same search complexity, so
that the n parallel processes are wasted (by analogy with time complexity we
could say that the speed-up is 1 and the efficiency is 1/n).

6. The analysis

This section applies the framework developed so far to analyze distributed-
search contraction-based strategies, and it is organized as follows: interaction of
contraction and communication, properties of the subdivision that minimize the
overlap, effect of each type of step on the bounded search spaces, and comparison
of the evolution of sequential and parallel bounded search spaces.

6.1. Contraction and communication in contraction-based strategies

The possibility of receiving clauses creates the conditions for combinations
of events that cannot occur in a sequential process. We begin by investigating
what happens if a process receives a clause that it had already found redundant.

In [21] it was shown that if a ϕ is deleted at stage i and is regenerated via
another ancestor-graph at some stage j > i, a contraction-based strategy will
delete it again, and will do so before using ϕ to generate other clauses. This
property is needed also in the distributed case, but it is not sufficient. First,
we need to consider not only the possibility that pk regenerates ϕ via another
ancestor-graph, but also the possibility that pk receives another variant of ϕ
from another process, which may not be aware that ϕ is redundant. Second, we
need to consider not only deleted clauses, but also clauses made unreachable by
deleting a relevant ancestor on every ancestor-graph. In a sequential derivation, if
fdistGi

(ϕ) = ∞ because a relevant ancestor has been deleted on every t ∈ atG(ϕ),
it is impossible for ϕ to appear at some j > i, because ϕ cannot be generated.
In a distributed derivation, ϕ may still be received from another process at some
j > i. Thus, we prove a more general result: if the distance of ϕ is infinite at
some stage (regardless of whether ϕ is deleted or made unreachable by deleting
a relevant ancestor on every ancestor-graph), and later ϕ appears (regardless of
whether ϕ is received or regenerated), ϕ will be deleted and its distance will be
infinite again.

Maria Paola Bonacina / A model and a first analysis of distributed-search 179

Lemma 6.1. In a derivation with local eager contraction, for all processes pk,
stages i, and clauses ϕ, if fdistGk

i
(ϕ) = ∞ and sk

j (ϕ) > 0 for some 0 < i < j,

there exists a q > j, such that sk
q(ϕ) < 0 (hence fdistGk

q
(ϕ) = ∞), and pk does

not use ϕ to generate other clauses at any stage l, j ≤ l < q.

Proof: if fdistGk
i
(ϕ) = ∞, either sk

i (ϕ) < 0 or ∀t ∈ atG(ϕ) there is an ancestor

ψ ∈ RevGk
i
(t) such that sk

i (ψ) < 0. In the first case, it may happen that sk
j (ϕ) > 0

for some j > i if ϕ is generated on another ancestor-graph or received. In the
second case, it may happen that sk

j (ϕ) > 0 only if ϕ is received. In the first case,
ϕ was deleted by contraction. In the second case, ϕ can be generated only from
redundant clauses. In both cases, ϕ ∈ R(Sk

i), and ϕ ∈ R(Sk
j) for all j > i. If

sk
j (ϕ) > 0 for some j > i, we have ϕ ∈ Sk

j ∩R(Sk
j −{ϕ}). By Definition 2.5, there

exist fm ∈ IR and x̄ ∈ (Sk
j)m, such that π1(f

m(x̄)) = ∅ and π2(f
m(x̄)) = {ϕ}.

Since Σ satisfies local eager contraction, there exists a q > j such that Sk
q−1 ` Sk

q

deletes ϕ, so that sk
q(ϕ) < 0, and pk does not select an expansion step using ϕ at

any stage l, j ≤ l < q. Furthermore, since Σ is fair, it applies forward contraction
before backward contraction, so that it will forward-contract ϕ before using it to
backward-contract other clauses5. Therefore, pk will not use ϕ to generate other
clauses by either expansion or backward contraction at any stage l, j ≤ l < q.

�

Based on this lemma, we can make the following approximation: if a distance
fdistGk

i
(ϕ) is infinite, then fdistGk

j
(ϕ) can be regarded as infinite for all j > i.

We consider next redundant inferences, rather than redundant clauses. This
means we consider ancestor-graphs such that fdistGk

i
(t) = ∞ rather than clauses

such that fdistGk
i
(ϕ) = ∞. A non-redundant clause has an ancestor-graph t

such that fdistGk
i
(t) = ∞, if t includes a redundant inference, i.e., a step using a

redundant ancestor. In a sequential derivation, the result of Lemma 6.1 that ϕ is
not used to generate other clauses at any stage l, j ≤ l < q, implies that when ϕ is
re-deleted at stage q, ϕ is still relevant on all ancestor-graphs where it was relevant
at stage i. Therefore, a stronger approximation is supported: if fdistGk

i
(t) is

infinite, fdistGk
j
(t) can be regarded as infinite for all j > i. In the distributed

case, we cannot make the stronger approximation because communication may
make deleted ancestors irrelevant. The following example shows how.

Example 6.1. Consider the leftmost picture in Figure 7, showing the marking at
process pk. Let t be the ancestor-graph made of e and b, and t′ the ancestor-graph
made of a and b. Since the relevant ancestor Q has been deleted, t has infinite
distance, while t′ has finite distance, so that P and R have finite distance. Note

5 It is very well-known that applying backward contraction, e.g., subsumption, before forward
contraction may violate fairness [36,16].

180 Maria Paola Bonacina / A model and a first analysis of distributed-search

Q

P

e a
0

0

0

-1

b

R

0

0

Q -1

e
0

R

b
0

0

P 1

1
a

Q -1

e 1

1P

0
a

R

b

0

0

Figure 7. Communication may make contraction irrelevant.

that Q and therefore e are redundant, but we assume that a and P are not. If
another process ph executes a, generates P , and sends it to pk, the marking at pk

evolves as in the picture in the middle: the distance on t is still infinite. Assume
instead that ph has not deleted Q, executes e, and sends to pk a P generated by
e. The resulting marking at pk is shown in the rightmost picture in Figure 7: the
distance of t is no longer infinite, because the arrival of P has made Q irrelevant
(π1(c

k(e) = 1). Thus, the approximation fdistGk
i
(t) = ∞ ⇒ ∀j > i fdistGk

j
(t) =

∞ may not hold for redundant ancestor-graphs of non-redundant clauses.

In this example there are two kinds of irrelevance of contraction. There is
irrelevance of contraction at ph, because the clause(s) that contract Q do not
arrive at ph fast enough to delete Q before it is used to generate P . When ph

finally deletes Q, this deletion is irrelevant to t, because ph has already executed
e: we call this phenomenon late contraction. There is irrelevance of contraction
at pk, because the arrival of P from ph makes the deletion of Q irrelevant: we
call this phenomenon contraction undone.

Remark There is a special situation where it is expected that communication
make a deleted ancestor irrelevant. Consider a distributed strategy which is
contraction-based by Theorem 3.4: in such a strategy a process may delete a
reducible clause ϕ without generating its reduced form, say ϕ′. Let e be the arc
reducing ϕ to ϕ′. Any ancestor-graph t including e has infinite distance. When
the ϕ′ generated by another process arrives, the marking of e is increased, and ϕ
becomes irrelevant to t (it is still relevant to all the ancestor-graphs not including
e). This is expected, because the strategy executes the contraction step in two
stages, delete ϕ and receive ϕ′.

Distributed global contraction does not prevent late contraction and con-
traction undone. Referring to Example 6.1, it only guarantees that Q will be
deleted at ph eventually, so that we may have sk

i (Q) = −1 and sh
j (Q) = −1 for

some j > i. It is sufficient that ph executes e and generates P at a stage l < j,

Maria Paola Bonacina / A model and a first analysis of distributed-search 181

and P arrives at pk at a stage r > i, for the situation of Example 6.1 to occur.
The following lemma shows that local eager contraction and immediate propa-
gation of clauses (hence global eager contraction) exclude late contraction and
contraction undone; late contraction is excluded by showing that a deletion rele-
vant for a process is relevant for all; contraction undone is excluded by showing
that a deletion relevant at a stage remains relevant at all subsequent stages:

Lemma 6.2. Assume that the derivation has local eager contraction and imme-
diate propagation of clauses up to redundancy. Consider t ∈ atG(ϕ) including an
arc e, which uses premise ψ and generates ψ ′ ∈ S∞ −R(S∞). If sk

i (ψ) = −1 and
ψ ∈ RevGk

i
(t) for some pk, then:

1. For all ph and j, sh
j (ψ) = −1 implies ψ ∈ RevGh

j
(t) (no late contraction).

2. For all j ≥ i, ψ ∈ RevGk
j
(t) (no contraction undone).

Proof:

1. The proof is by way of contradiction. Assume that for some ph, sh
j (ψ) = −1

but ψ 6∈ RevGh
j
(t), because ph executes e at some stage l before deleting ψ.

(Note that ψ ∈ RevGk
i
(t) implies that e is not the arc that deletes ψ.) We

distinguish two cases: l ≥ i and l < i.

(a) Assume l ≥ i (i.e., ph executes e after pk has deleted ψ). From sk
i (ψ) =

−1, it follows ψ ∈ R(Sk
i) and ψ ∈ R(

⋃n−1
h=0

Sh
i). Since ph executes e at

stage l, it is ψ ∈ Sh
l . Let g be the earliest stage such that ψ ∈ Sh

g and
let r = max(i, g). Since l ≥ i and l ≥ g, it is l ≥ r. Since r ≥ i,
ψ ∈ Sh

r ∩ R(
⋃n−1

h=0
Sh

r − {ψ}). By Definition 2.5, there exist fm ∈ IR
and x̄ ∈ (

⋃n−1
h=0

Sh
r)m, such that π2(f

m(x̄)) = {ψ}. By global eager
contraction (Lemma 3.3), ph deletes ψ at some stage q ≥ r without
executing e at any stage between r and q, contradicting the assumption
that ph executes e at stage l ≥ r.

(b) Assume l < i (i.e., ph executes e before pk deletes ψ). Since ψ′ ∈ Sh
l+1 and

ψ′ ∈ S∞−R(S∞), by immediate propagation of clauses up to redundancy,
ψ′ ∈ Sk

l+1. This together with l < i (hence l + 1 ≤ i) means that
ψ 6∈ RevGk

i
(t), contradicting the hypothesis.

2. By way of contradiction, assume that ψ 6∈ RevGk
j
(t) for some j ≥ i. The only

event which may have made ψ irrelevant is that pk has received from some
other process ph a variant of ψ′ generated through e, but the first part of the
proof showed that it is impossible that ph executes e before deleting ψ.

�

Under these hypotheses the approximation fdistGk
i
(t) = ∞ ⇒ ∀j >

i fdistGk
j
(t) = ∞ is justified:

182 Maria Paola Bonacina / A model and a first analysis of distributed-search

Theorem 6.1. In a derivation with local eager contraction and immediate prop-
agation of clauses up to redundancy, if fdistGk

i
(t) = ∞ and fdistGk

j
(t) 6= ∞ for

some 0 < i < j, there exists a q > j such that fdistGk
q
(t) = ∞.

Proof: let t ∈ atG(ϕ). There are three cases:

1. fdistGk
i
(t) = ∞ because sk

i (ϕ) = −1 and fdistGk
j
(t) 6= ∞ because sk

j (ϕ) > 0.

2. fdistGk
i
(t) = ∞ because sk

i (ψ) = −1 for ψ ∈ RevGk
i
(t) and

(a) fdistGk
j
(t) 6= ∞ because sk

j (ψ) > 0 while ψ ∈ RevGk
j
(t).

(b) fdistGk
j
(t) 6= ∞ because ψ 6∈ RevGk

j
(t).

In Cases 1 and 2a, Lemma 6.1 applies to ϕ and ψ, respectively, and there exists
a q > j, such that fdistGk

q
(t) = ∞. In Case 2b, let ψ′ be the child of ψ in t

and let e be the arc of t that generates ψ ′ from ψ. The only event which may
have made ψ irrelevant is that pk has received from some other process ph a
variant of ψ′ generated through e. If ψ′ ∈ S∞ − R(S∞), this is impossible by
Lemma 6.2. If ψ′ 6∈ S∞ − R(S∞), then ψ′ ∈ R(S∞). Let g be the earliest stage
such that ψ′ ∈ Sk

g ∩ R(
⋃n−1

h=0
Sh

g − {ψ′}). By Definition 2.5, there exist fm ∈ IR
and x̄ ∈ (

⋃n−1
h=0

Sh
g)m, such that π2(f

m(x̄)) = {ψ′}. By global eager contraction,

there exists a q > j such that sk
q(ψ

′) = −1 and fdistGk
q
(t) = ∞.

�

In summary, asynchronous communication may cause late contraction and
contraction undone, which means that ancestor-graphs that could be pruned
(infinite distance) are not pruned (finite distance). Since ancestor-graphs with
finite distance are counted in the bounded search spaces, the bounded search
spaces capture this cost of communication in terms of search space.

6.2. Minimization of the overlap

We analyze next the overlap. There are two kinds: first, there is the overlap
caused by the subdivision function itself when it assigns the same arc to more than
one process (e.g., π2(c

k(e)) = true and π2(c
h(e)) = true); second, there is the

overlap caused by communication (e.g., π2(c
k(e)) = true and π2(c

h(e)) = false
but π1(c

h(e)) 6= 0). In order to avoid the first type, the subdivision function
should assign each arc to at most one process:

Definition 6.1. A subdivision function α has no arc-duplication if for all
e = (v1, . . . vn; vn+1;u) such that u 6= T, h(e) = f and l(vj) = ϕj ,
1 ≤ j ≤ n + 1, for all i ≥ 0, there is at most one process pk such that
α((Sk

0 , . . . S
k
i), n, k, f, (ϕ1, . . . ϕn+1)) = true.

Maria Paola Bonacina / A model and a first analysis of distributed-search 183

Since α is monotonic, the allowed process pk is the same for all stages. The
following example discusses duplication of expansion arcs.

Example 6.2. In Clause-Diffusion [18,12] only the process that owns an equa-
tion is allowed to paramodulate into it (see also Example 3.1). This is not suf-
ficient to guarantee that there is no arc-duplication, because multiple variants
of an equation may be generated. For instance, assume that pk generates ϕ by
traversing the ancestor-graph t of v, where l(v) = ϕ, and ph generates a variant
ϕ′ of ϕ by traversing another ancestor-graph t′ of v. Assume that ϕ and ϕ′ are
not forward-contracted. If pk assigns ϕ to itself, and ph assigns ϕ′ to itself, the
paramodulation hyperarcs into v are allowed for both pk and ph. Whether both
processes will execute them depends on the continuation of the derivation: pk

broadcasts ϕ, ph broadcasts ϕ′, and each process compares them in the same
well-founded ordering for variant subsumption. Assume that ϕ is smaller than
ϕ′ in this ordering. All processes delete ϕ′ and keep ϕ, so that the paramodu-
lation hyperarcs into v are enabled for pk only. However, if ph paramodulates
into ϕ′ before receiving ϕ and using it to subsume ϕ′, and also pk paramodulates
into ϕ, a duplication of expansion inferences occurs. On the other hand, if the
allocation criterion (the criterion that assigns equations to processes) guarantees
that all variants of an equation are assigned to the same process, the property
of no arc-duplication follows. Process pk assigns ϕ to some pj (possibly j = k or
j = h) and also ph assigns ϕ′ to pj, so that the paramodulation hyperarcs into v
are allowed to pj only. For example, the “syntax” criterion [18] has this property,
because it assigns clauses based on their non-variable symbols.

For contraction arcs, the condition u 6= T in Definition 6.1 excludes contrac-
tion inferences that do not generate non-trivial clauses: for example, allowing
subsumption steps to all processes does not violate the definition. For contraction
inferences that generate non-trivial clauses, no arc-duplication and eager contrac-
tion may be conflicting requirements. Indeed, a strategy which is contraction-
based by Theorem 3.3 has arc-duplication, since Theorem 3.3 requires that all
contraction inferences are allowed to all processes. On the other hand, a strategy
which is contraction-based by Theorem 3.4 may have no arc-duplication.

Remark Duplication and redundancy are two different concepts. In a distributed
derivation a non-redundant clause may be duplicated, and such duplication is not
a redundancy (e.g., in Example 6.2, it is redundant for a process to keep both ϕ
and ϕ′, while it is not redundant that each process has a copy of ϕ). Similarly,
duplicated steps may not be redundant (e.g., consider two processes that do the
same contraction step to eliminate their copies of a redundant clause).

We consider next the overlap due to communication: no arc-duplication does
not avoid this kind of overlap, because it does not prevent different processes from
generating variants of the same clause, as shown in the following example.

184 Maria Paola Bonacina / A model and a first analysis of distributed-search

Example 6.3. Assume that ϕ can be generated by two arcs e and a, arc e is
allowed only to ph, and arc a is allowed only to pk, so that the requirement of no
arc-duplication is satisfied. Let t and t′ be the ancestor-graphs of ϕ including e
and a, respectively: t is forbidden for pk (π2(c

k(e)) = false and π1(c
k(e)) = 0)

and t′ is forbidden for ph (π2(c
h(a)) = false and π1(c

h(a)) = 0). Assume that ph

executes e, generates a variant ϕ1 of ϕ and sends it to pk, while pk executes a,
generates a variant ϕ2 of ϕ and sends it to ph. When ph receives ϕ2, t

′ becomes
allowed for ph, and when pk receives ϕ1, t becomes allowed for pk, so that both
ancestor-graphs are allowed for both processes.

In order to prevent different processes from generating variants of the same
clause we need to specify a stronger requirement:

Definition 6.2. A subdivision function α has no clause-duplication if for all
vertices u 6= T, for any two hyperarcs e1 = (v1, . . . vm; vm+1;u) and e2 =
(w1, . . . wq;wq+1;u), where h(e1) = f , l(vj) = ϕj , 1 ≤ j ≤ m + 1, h(e2) = g,
l(wj) = ψj , 1 ≤ j ≤ q + 1, for all i ≥ 0, if α((Sk

0 , . . . S
k
i), n, k, f, (ϕ1, . . . ϕm+1)) =

true and α((Sh
0 , . . . S

h
i), n, h, g, (ψ1, . . . ψq+1)) = true, then k = h.

No clause-duplication implies no arc-duplication (take e1 = e2 in the above defi-
nition). No clause-duplication is compatible with fairness, because fairness only
requires that at least one process is allowed to do the step. It is also compat-
ible with propagation of clauses up to redundancy, including the limit case of
immediate propagation, because of the distinction between allowed arc and al-
lowed ancestor-graph: assume that ph is the only process allowed to generate
ϕ; if ph generates a variant of ϕ, by executing arc e, and sends it to all other
processes, the effect at each receiver pk is that the ancestor-graph of ϕ including
e may become allowed (because π1(c

k(e)) 6= 0), but arc e itself remains forbidden
(π2(c

k(e)) = false).
The next lemma shows that no clause-duplication limits the overlap due

to communication to one ancestor-graph per clause: if ph is the only process
authorized to generate variants of ϕ, for all other processes communication may
allow at most one forbidden ancestor-graph of ϕ, so that the multiplicity of ϕ at
all processes other than ph is at most 1.

Lemma 6.3. In a derivation with local eager contraction and no clause-
duplication, for any clause ϕ, if ph is the only process allowed to generate ϕ,
there exists a stage r such that for all k 6= h, i ≥ r and j > 0, mulGk

i
(ϕ, j) ≤ 1.

Proof: let r be the earliest stage such that α((Sh
0 , . . . S

h
r), n, h, f, x̄) 6=⊥ for all f

and x̄ generating ϕ. In other words, r is the earliest stage when the subdivision of
the arcs generating ϕ is completed. For all arcs e generating ϕ, π2(c

h
r (e)) = true,

and π2(c
k
r (e)) = false, π1(c

k
r (e)) = 0 for all k 6= h. For all t ∈ atG(ϕ), t includes

Maria Paola Bonacina / A model and a first analysis of distributed-search 185

one of these arcs: it follows that all ancestor-graphs in atG(ϕ) are forbidden to
all processes other than ph at stage r. Thus, mulGk

r
(ϕ, j) = 0 for all k 6= h.

Assume that at some stage q ≥ r, ph executes one of the arcs generating ϕ,
say ê, generates ϕ and sends it to pk. It follows that π1(c

k
i (ê)) = 1 for some

i ≥ r, and the ancestor-graph including ê may be allowed. If it becomes allowed,
mulGk

i
(ϕ, j) = 1. If ph executes another of these arcs and generates a variant ϕ′

of ϕ, by local eager contraction ph uses ϕ to subsume ϕ′, so that ϕ′ is not sent.
It follows that for all k 6= h, i ≥ r, and j > 0, mulGk

i
(ϕ, j) ≤ 1.

�

It is legitimate to ask whether the subdivision properties studied in this sec-
tion may prevent late contraction and contraction undone. A simple reinspection
of Example 6.1 shows that this is not the case.

Example 6.4. Reconsider Example 6.1 and Figure 7. Under no clause-
duplication, both arcs e and a are allowed only to ph, and are forbidden for
pk. As in Example 6.1, if ph executes a there is no consequence. In fact, even
if ph executes a and then e there is no consequence, because local eager con-
traction is sufficient to ensure that the variant of P generated by a, say Pa,
forward-subsumes the variant of P generated by e, say Pe. On the other hand,
if ph executes e first and sends Pe to pk, there is late contraction (at ph) and
contraction undone (at pk) as in Example 6.1. Note that even if ph executes a
before sending Pe to pk, local eager contraction is not guaranteed to prevent the
contraction undone phenomenon, because it is not guaranteed that Pa subsumes
Pe. In fact, assuming a typical fair search plan where forward subsumption has
priority over backward subsumption it is Pe that subsumes Pa.

However, it is possible to show that with no arc-duplication, and, a fortiori,
with no clause-duplication, the effect of communication undoing subdivision and
the effect of communication undoing contraction collapse into one:

Lemma 6.4. In a derivation with local eager contraction and no arc-duplication,
if fdistGk

i
(t) = ∞ and fdistGk

j
(t) 6= ∞ for some j > i, then either there is a q > j,

such that fdistGk
q
(t) = ∞, or t is forbidden for pk at both stages i and j, or t is

forbidden for pk at stage i and allowed at stage j.

Proof: the classification of cases is the same as in the proof of Theorem 6.1,
assuming t ∈ atG(ϕ):

1. fdistGk
i
(t) = ∞ because sk

i (ϕ) = −1 and fdistGk
j
(t) 6= ∞ because sk

j (ϕ) > 0.

2. fdistGk
i
(t) = ∞ because sk

i (ψ) = −1 for ψ ∈ RevGk
i
(t) and

(a) fdistGk
j
(t) 6= ∞ because sk

j (ψ) > 0 while ψ ∈ RevGk
j
(t).

186 Maria Paola Bonacina / A model and a first analysis of distributed-search

(b) fdistGk
j
(t) 6= ∞ because ψ 6∈ RevGk

j
(t).

In Cases 1 and 2a, Lemma 6.1 applies to ϕ and ψ, respectively, and there exists
a q > j, such that fdistGk

q
(t) = ∞. In Case 2b, let ψ′ be the child of ψ in t and

let e be the arc of t that generates ψ′ from ψ. The only event which may have
made ψ irrelevant is that pk has received from some other process ph a variant of
ψ′ generated through e. If ph has executed e, then e is allowed for ph. Since the
strategy has no arc-duplication, e is forbidden for pk, so that π2(c

k
i (e)) = false.

Since ψ ∈ RevGk
i
(t), it is π1(c

k
i (e)) = 0. It follows that at stage i, t not only had

infinite distance, it was also forbidden. If there is another arc a ∈ t such that
π1(c

k
j (a)) = 0 and π2(c

k
j (a)) = false, t is still forbidden at stage j. (For instance,

a could be the arc below ψ′ in t, whose status has been decided upon receiving
ψ′.) Otherwise, t is allowed at stage j.

�

In other words, either the ancestor-graph which is not pruned is forbidden, so
that it is excluded anyway, or it was forbidden and it becomes allowed as an effect
of the communication step, so that the effects of allowing the ancestor-graph and
making its distance finite again coincide.

6.3. Effects of derivation steps on the complexity measures

This section integrates all our observations on subdivision, contraction
and communication by showing how the different kinds of steps affect the lo-
cal bounded search spaces during a derivation Sk

0 `C S
k
1 `C . . . S

k
i `C . . . by a

distributed-search contraction-based strategy C =< I,M,Σ >, with I = IE ∪ IR,
Σ = 〈ζ, ξ, α, ω〉, and � the well-founded ordering on clauses underlying IR.

In a sequential derivation expansion steps do not change the bounded search
spaces [21]. This would be sufficient for a distributed derivation as well, if we
were considering only the inference itself, but we need to consider the effect of the
subdivision. When ψ is generated, the subdivision function αmay become defined
on a tuple of premises x̄ including ψ. If α decides that an arc e with premises x̄
is forbidden, ancestor-graphs including e become forbidden (e.g., Example 5.5).
Since we do not model the decisions by α as separate steps in the derivation, this
phenomenon is captured as a possible effect of generating a clause:

Theorem 6.2. If Sk
i ` Sk

i+1 generates ψ, ∀j > 0 space(Gk
i+1, j)�mul space(G

k
i , j).

Proof: if sk
i (ψ) > 0, pk generates a variant of a clause that was already present,

and no permission marking is affected. If sk
i (ψ) = 0, sk

i+1(ψ) = 1. If there are a

tuple of premises x̄ and an inference rule f , such that α((Sk
0 . . . S

k
i), n, k, f, x̄) =⊥,

and α((Sk
0 , . . . S

k
i+1), n, k, f, x̄) 6=⊥, because of the generation of ψ, then let e be

the arc of G with premises x̄ and h(e) = f . By Definition 4.5, π2(c
k
i (e)) = true.

If α((Sk
0 . . . S

k
i+1), n, k, f, x̄) = true, π2(c

k
i+1(e)) = true and nothing changes. If

α((Sk
0 . . . S

k
i+1), n, k, f, x̄) = false, π2(c

k
i+1(e)) = false. If π1(c

k
i (e)) 6= 0 (e.g., pk

Maria Paola Bonacina / A model and a first analysis of distributed-search 187

had already received the consequence of e), nothing changes. If π1(c
k
i (e)) = 0, all

ancestor-graphs including e that are allowed for pk in Gi become forbidden. Let T
denote the set of ancestor-graphs allowed for pk in Gi and forbidden in Gi+1. For
all ϕ, if atG(ϕ)∩T = ∅, mulGk

i+1
(ϕ, j) = mulGk

i
(ϕ, j) for all j > 0. If atG(ϕ)∩T 6=

∅, let p(ϕ) = min{gdistGk
i+1

(t)|t ∈ atG(ϕ)∩T}. That is, p(ϕ) is the smallest value

of the bound that is deep enough to include an ancestor-graph of ϕ whose status
has changed. It follows that mulGk

i+1
(ϕ, j) = mulGk

i
(ϕ, j) for all j < p(ϕ) and

mulGk
i+1

(ϕ, j) < mulGk
i
(ϕ, j) for all j ≥ p(ϕ). Since for all clauses the multiplicity

either diminishes or remains the same, we have space(Gk
i+1, j)�mul space(G

k
i , j)

for all j > 0.
�

For a sequential derivation we proved that contraction reduces the bounded
search spaces [21]. In addition, the proof of Theorem 6.2 applies also to a con-
traction inference that generates a clause other than the dummy clause true. A
contraction step replacing ψ by ψ′ prunes those ancestor-graphs whose distance
becomes infinite because of the deletion of ψ, and those ancestor-graphs which
become forbidden as a consequence of the generation of ψ ′. The following the-
orem covers both phenomena. For the proof, we refer to [21] for the effect of
contraction itself, and to the proof of Theorem 6.2 for the effect of subdivision.

Theorem 6.3. If Sk
i ` Sk

i+1 replaces ψ by ψ′, ∀j > 0 space(Gk
i+1, j)�mul spa-

ce(Gk
i , j). If sk

i (ψ) = 1 and there are clauses that have ψ as relevant ancestor at
pk at stage i+ 1, then ∃l > 0, ∀j ≥ l, space(Gk

i+1, j)≺mul space(G
k
i , j).

A typical sequence of events is to generate a clause by either expansion or
backward-contraction, forward-contract it, and then apply α to decide whether
the steps involving this clause are allowed. If the clause is generated by expansion
and forward-contraction does not apply, the subdivision decision is taken after
the expansion step and Theorem 6.2 applies. Otherwise, the subdivision decision
is taken after a contraction step and Theorem 6.3 applies.

We conclude with communication. When pk sends a clause, there are no
consequences on the bounded search spaces for pk. When pk receives a clause ψ,
there may be three kinds of consequences. First, allowed ancestor-graphs may
become forbidden (subdivision, e.g., Example 5.5), just like for the generation
of a clause. Second, forbidden ancestor-graphs may become allowed (subdivision
undone, e.g., Example 5.7). Third, relevant deleted ancestors may become irrele-
vant (contraction undone, e.g., Example 6.1). It follows that while in a sequential
derivation the bounded search spaces may either remain the same (expansion) or
decrease (contraction), in a distributed derivation the bounded search spaces of
a process may oscillate non-monotonically because of communication. However,
communication cannot expand the bounded search spaces, but only undo a pre-
vious reduction by subdivision or contraction. Therefore, the resulting bounded

188 Maria Paola Bonacina / A model and a first analysis of distributed-search

search spaces are limited by the bounded search spaces at some previous stage:

Theorem 6.4. If Sk
i ` Sk

i+1 sends ψ, ∀j > 0, space(Gk
i+1, j) = space(Gk

i , j). If

Sk
i ` Sk

i+1 receives ψ, ∀j > 0, ∃ l ≤ i, space(Gk
i+1, j)�mul space(G

k
l , j).

Proof: only the thesis about the receive step needs to be proved. We consider
first the effect on the permission marking. If sk

i (ψ) > 0, pk receives a variant
of a clause it already has, and no permission marking is affected. If sk

i (ψ) = 0,
sk
i+1(ψ) = 1. If there is a tuple of premises x̄ and an inference rule f such that

α((Sk
0 , . . . S

k
i), n, k, f, x̄) =⊥, and α((Sk

0 , . . . S
k
i+1), n, k, f, x̄) 6=⊥, because of the

arrival of ψ, let a be the arc of G with premises x̄ and h(a) = f . By Definition 4.5,
π2(c

k
i (a)) = true. Let e be the arc that generated the received ψ.

1. If α((Sk
0 , . . . S

k
i+1), n, k, f, x̄) = false, π2(c

k
i+1(a)) = false. If π1(c

k
i (a)) = 0,

π1(c
k
i+1(a)) is still 0, and all ancestor-graphs including a that are allowed for

pk in Gi become forbidden in Gi+1 (subdivision). Let T− denote the set of
these ancestor-graphs.

2. If α((Sk
0 , . . . S

k
i+1), n, k, f, x̄) = true, π2(c

k
i+1(a)) = true. If π1(c

k
i (e)) = 0 and

π2(c
k
i (e)) = false, we have now π1(c

k
i+1(e)) = 1 and π2(c

k
i+1(e)) = false, and

all ancestor-graphs that e makes forbidden for pk in Gi become allowed in
Gi+1 (subdivision undone). Let T+

1 denote the set of these ancestor-graphs.

T− ∩ T+
1 = ∅ because an ancestor-graph cannot be allowed and forbidden at the

same time. Next, we consider contraction undone. If π1(c
k
i (e)) = 0 and sk

i (ψ
′) =

−1 for a premise ψ′ of e, we have π1(c
k
i+1(e)) = 1 as a consequence of receiving

ψ. It follows that for all ancestor-graphs t such that fdistGk
i
(t) = ∞ because

of ψ′, it is fdistGk
i+1

(t) 6= ∞. Let T+
2 = {t | fdistGk

i
(t) = ∞, fdistGk

i+1
(t) 6=

∞, t allowed for pk at i + 1} and T+ = T+
1 ∪ T+

2 . If the strategy has global
eager contraction, T+

2 = ∅ and T+ = T+
1 by Theorem 6.1; if the strategy has no

arc-duplication, T+
2 ⊆ T+

1 and T+ = T+
1 by Lemma 6.4; if the strategy has no

clause-duplication, T+
2 ⊆ T+

1 , T+ = T+
1 and |T+| = 1 by Lemma 6.3. For all

clauses ϕ:

• If atG(ϕ)∩T+ = ∅ and atG(ϕ)∩T− = ∅, ∀j > 0, mulGk
i+1

(ϕ, j) = mulGk
i
(ϕ, j).

• If atG(ϕ) ∩ T− 6= ∅ and atG(ϕ) ∩ T+ = ∅, let p(ϕ) = min{gdistGk
i+1

(t)|t ∈

atG(ϕ) ∩ T−}. It follows that mulGk
i+1

(ϕ, j) = mulGk
i
(ϕ, j) for all j < p(ϕ)

and mulGk
i+1

(ϕ, j) < mulGk
i
(ϕ, j) for all j ≥ p(ϕ).

• If atG(ϕ) ∩ T+ 6= ∅ and atG(ϕ) ∩ T− = ∅, let q(ϕ) = min{gdistGk
i+1

(t)|t ∈

atG(ϕ) ∩ T+}. It follows that mulGk
i+1

(ϕ, j) = mulGk
i
(ϕ, j) for all j < q(ϕ)

and mulGk
i+1

(ϕ, j) > mulGk
i
(ϕ, j) for all j ≥ q(ϕ).

Maria Paola Bonacina / A model and a first analysis of distributed-search 189

• If atG(ϕ) ∩ T+ 6= ∅ and atG(ϕ) ∩ T− 6= ∅, let p(ϕ) and q(ϕ) be defined as
above, and U(ϕ, j) = {t| t ∈ atG(ϕ), gdistGk

i+1
(t) ≤ j}. If p(ϕ) < q(ϕ),

mulGk
i+1

(ϕ, j) = mulGk
i
(ϕ, j) for all j < p(ϕ), mulGk

i+1
(ϕ, j) < mulGk

i
(ϕ, j) for

all p(ϕ) ≤ j < q(ϕ), whereas for all j ≥ q(ϕ), mulGk
i+1

(ϕ, j)
≥
< mulGk

i
(ϕ, j)

depending on whether |U(ϕ, j) ∩ T+|
≥
< |U(ϕ, j) ∩ T−|. If p(ϕ) ≥ q(ϕ),

mulGk
i+1

(ϕ, j) = mulGk
i
(ϕ, j) for all j < q(ϕ), mulGk

i+1
(ϕ, j) > mulGk

i
(ϕ, j)

for all q(ϕ) ≤ j < p(ϕ), whereas for all j ≥ p(ϕ), mulGk
i+1

(ϕ, j)
≥
< mulGk

i
(ϕ, j)

depending on whether |U(ϕ, j) ∩ T+|
≥
< |U(ϕ, j) ∩ T−|.

For all j, for all ϕ such that mulGk
i+1

(ϕ, j) > mulGk
i
(ϕ, j), let l(ϕ) be the highest

index such that l(ϕ) ≤ i and mulGk
i+1

(ϕ, j) ≤ mulGk
l(ϕ)

(ϕ, j). Such a stage l(ϕ) is

guaranteed to exist, because receiving ϕ may only restore ancestor-graphs that
are forbidden or unreachable at stage i but were allowed and reachable at some
earlier stage. Note that for all those ϕ whose multiplicities remain the same or
decrease, it is sufficient to take l(ϕ) = i. Let l = min{l(ϕ) | ϕ ∈ space(Gk

0 , j)}.
It follows that space(Gk

i+1, j)�mul space(G
k
l , j).

�

6.4. A limit theorem for distributed-search contraction-based strategies

In this section we lift the analysis from considering the parallel processes
in isolation to comparing the distributed derivation as a whole with a sequential
derivation. Let C = 〈I,Σ〉 be a contraction-based strategy, with inference system
I = IE∪IR, such that for all input sets S, S∗

I = S∗
IE

, and search plan Σ = 〈ζ, ξ, ω〉
uniformly fair with respect to IE and R (see Section 3.3). Let C ′ = 〈I,M,Σ′〉
with Σ′ = 〈ζ ′, ξ′, α, ω′〉 be a parallelization by subdivision of C such that α is
total on generated clauses and monotonic; Σ′ is uniformly fair (in the sense of
Definition 3.5) with respect to IE and R, and has propagation of clauses up
to redundancy; C ′ satisfies the hypotheses of Theorem 3.3 or Theorem 3.4 and
therefore is contraction-based (i.e., it has local eager contraction and distributed
global contraction). We consider the derivation by C, S = S0 `C . . . Si `C . . ., and
the distributed derivation by C ′, S = Sk

0 `C′ . . . Sk
i `C′ . . ., generated by processes

p0, . . . pn−1. Since C and C ′ have the same inference system, the initial search
space is the same, i.e., Gk

0 = G0 and space(Gk
0 , j) = space(G0, j) for all k and j.

We begin by showing that a clause redundant for C is redundant also for C ′.
The first lemma follows from uniform fairness of C ′:

Lemma 6.5. If ϕ ∈ Si for some i ≥ 0, then there exist pk and j ≥ 0 such that
either ϕ ∈ Sk

j or ϕ ∈ R(Sk
j).

Proof: if ϕ is generated by C, then, since S∗
I = S∗

IE
, it can be generated by

expansion by C ′. Let S∞ be the set of persistent clauses in the derivation by

190 Maria Paola Bonacina / A model and a first analysis of distributed-search

C′, i.e., S∞ =
⋃n−1

k=0
Sk
∞. If ϕ ∈ IE(S∞ − R(S∞)), by uniform fairness of Σ′

and Theorem 3.1, there is a pk that generates ϕ: ϕ ∈ Sk
j for some j. If ϕ 6∈

IE(S∞ − R(S∞)), it means that ϕ can be generated only by using clauses that
are redundant or non-persistent, hence redundant, in the derivation by C ′. Thus,
ϕ itself is redundant: ϕ ∈ R(Sk

j) for some pk and stage j.
�

Lemma 3.1 (propagation of clauses up to redundancy implies propagation
of redundancy) and Lemma 6.5 yield the following:

Lemma 6.6. If ϕ ∈ R(Si) for some i ≥ 0, then for all pk there exists a j ≥ 0
such that ϕ ∈ R(Sk

j).

Proof: let {ψ1, . . . ψm} ⊆ Si be the smallest subset of clauses such that ϕ ∈
R({ψ1, . . . ψm}). By Lemma 6.5, for all r, 1 ≤ r ≤ m, there exist a pk and a jr
such that ψr ∈ Sk

jr
∪R(Sk

jr
). Because all clauses deleted by C ′ are redundant with

respect to R, and R is monotonic, it follows that for all l ≥ jr, ψr ∈ Sk
l ∪R(Sk

l).
Thus, if we take l = max{jr | 1 ≤ r ≤ m}, we have ψr ∈

⋃n−1
k=0

(Sk
l ∪ R(Sk

l)) for

all r, 1 ≤ r ≤ m. The hypothesis ϕ ∈ R({ψ1, . . . ψm}) implies ϕ ∈ R(
⋃n−1

k=0
(Sk

l ∪
R(Sk

l))). Since redundant clauses are irrelevant to establish other redundancies,
it follows that ϕ ∈ R(

⋃n−1
k=0

Sk
l). By propagation of redundancy, it follows that

for all pk there exists a j such that ϕ ∈ R(Sk
j).

�

A clause found redundant in the sequential derivation is either contracted
(si(ϕ) = −1) or unreachable (si(ϕ) = 0 and fdistGi

(ϕ) = ∞). In either case,
fdistGi

(ϕ) = ∞, and, by the approximation supported by the sequential version
of Lemma 6.1, we may assume fdistGj

(ϕ) = ∞ for all j ≥ i. In the distributed

derivation there is a third possibility: either ϕ is contracted by pk (sk
i (ϕ) = −1),

or ϕ is unreachable for pk (sk
i (ϕ) = 0 and fdistGk

i
(ϕ) = ∞), or all its ancestor-

graphs are forbidden for pk. In the first two cases, fdistGk
i
(ϕ) = ∞ and, by the

approximation supported by Lemma 6.1, we may assume fdistGk
j
(ϕ) = ∞ for

all j ≥ i. In the third case, it is not possible to prove that all ancestor-graphs
are permanently forbidden for pk, because communication may undo subdivision.
However, the key point is that this is not necessary for redundant clauses. If ϕ
is redundant, it is possible to prove that for every process, for some stage j,
for all l ≥ j, either ϕ is deleted, or it is unreachable, or all its ancestor-graphs
are forbidden. This condition is satisfied by a process where ϕ is permanently
forbidden, but it is also satisfied by a process where a forbidden ancestor-graph
of ϕ becomes allowed, ϕ is generated, and then deleted by contraction.

Lemma 6.7. If fdistGi
(ϕ) = ∞ for some i ≥ 0, then for all pk there exists a

j ≥ 0 such that for all l ≥ j, either fdistGk
l
(ϕ) = ∞, or all t ∈ atG(ϕ) are

forbidden for pk at stage l.

Maria Paola Bonacina / A model and a first analysis of distributed-search 191

Proof: if fdistGi
(ϕ) = ∞, it means either si(ϕ) = −1 (ϕ deleted) or for all

t ∈ atG(ϕ) there is a ψ ∈ RevGi
(t) such that si(ψ) = −1 (ϕ unreachable).

Since deleted clauses are redundant, and clauses that can be generated only by
redundant clauses are redundant, ϕ ∈ R(Si). By Lemma 6.6, for all pk, there
exists a g ≥ 0 such that ϕ ∈ R(Sk

g). Let gk be the smallest such index for pk:

ϕ ∈ R(Sk
r) for all r ≥ gk. We distinguish two cases.

• Some process in the distributed derivation generates ϕ. If pk generates or
receives ϕ at some stage (smaller or greater than gk is irrelevant), there exists
a q ≥ gk such that ϕ ∈ Sk

q ∩R(Sk
q −{ϕ}). By Definition 2.5, there exist fm ∈ IR

and x̄ ∈ (Sk
q)m, such that π2(f

m(x̄)) = {ϕ}. By local eager-contraction of Σ′,

there exists a j ≥ q such that sk
j (ϕ) = −1. Hence fdistGk

j
(ϕ) = ∞ and

fdistGk
l
(ϕ) = ∞ for all l ≥ j by the approximation supported by Lemma 6.1.

If pk neither generates nor receives ϕ, there exists a j ≥ 0 such that for all
l ≥ j, sk

l (ϕ) = 0 and either fdistGk
l
(ϕ) = ∞ or all t ∈ atG(ϕ) are forbidden

for pk at stage l.

• No process generates ϕ. Since Σ′ is uniformly fair, this means that for all
processes allowed to generate ϕ, ϕ is made unreachable by deleting relevant
ancestors on all its ancestor-graphs. In other words, ϕ is either unreachable
or forbidden everywhere, and the thesis holds.

�

Thus, all redundant clauses eliminated by C will be excluded by C ′ as well:

Theorem 6.5. If fdistGi
(ϕ) = ∞ for some i ≥ 0, then there exists an r ≥ 0

such that for all i ≥ r and j > 0, pmulGi
(ϕ, j) = 0.

Proof: by Lemma 6.7 for all pk there is a stage lk such that for all i ≥ lk and
j > 0, mulGk

i
(ϕ, j) = 0. Let r = max{lk |0 ≤ k ≤ n − 1}. It follows that

pmulGi
(ϕ, j) = 0 for all i ≥ r and j > 0.

�

The next lemma moves the analysis from redundant clauses to ancestor-
graphs including redundant inferences.

Lemma 6.8. Assume C ′ has immediate propagation of clauses up to redundancy.
If fdistGi

(t) = ∞ for some i ≥ 0, then for all pk there exists a j ≥ 0 such that
for all l ≥ j, either fdistGk

l
(t) = ∞, or t is forbidden for pk at stage l.

Proof: let t ∈ atG(ϕ). If fdistGi
(t) = ∞, either si(ϕ) = −1 or si(ψ) = −1 for

some ψ ∈ RevGi
(t).

• If si(ϕ) = −1, fdistGi
(ϕ) = ∞ and Lemma 6.7 applies to ϕ: for all pk

there exists a j ≥ 0 such that for all l ≥ j, either fdistGk
l
(ϕ) = ∞ (hence

fdistGk
l
(t) = ∞), or all t′ ∈ atG(ϕ) are forbidden for pk at stage l (hence t is

forbidden).

192 Maria Paola Bonacina / A model and a first analysis of distributed-search

• If si(ψ) = −1, fdistGi
(ψ) = ∞ and Lemma 6.7 applies to ψ: for all pk there

exists a j ≥ 0 such that for all l ≥ j, either fdistGk
l
(ψ) = ∞, or all t′ ∈ atG(ψ)

are forbidden for pk at stage l.

∗ If all t′ ∈ atG(ψ) are forbidden for pk at stage l, let t̂ be the ancestor-graph
of ψ which is a subgraph of t: since t̂ is forbidden, t is also forbidden.

∗ If fdistGk
l
(ψ) = ∞, either sk

l (ψ) = −1, or for all t′ ∈ atG(ψ) there is an

ancestor ψ′ of ψ such that sk
l (ψ

′) = −1 and ψ′ ∈ RevGk
l
(t′).

∗ Assume sk
l (ψ) = −1. Since ψ ∈ RevGi

(t), the sequential process deletes
ψ when it is relevant to t. Σ′ is the same as Σ except for the subdivision,
but the subdivision does not affect deletions according to Theorem 3.3
or Theorem 3.4. Thus, ψ is deleted when it is relevant to t also in the
distributed derivation. Let ph and g be a first process and earliest stage
such that sh

g(ψ) = −1 and ψ ∈ RevGh
g
(t). By Lemma 6.2, for all k 6= h,

sk
l (ψ) = −1 implies ψ ∈ RevGk

l
(t) (no late contraction), and for ph itself

ψ ∈ RevGh
q
(t) for all q ≥ g (no contraction undone). Thus, for all pk and

for all l ≥ j, ψ ∈ RevGk
l
(t) and fdistGk

l
(t) = ∞.

∗ Otherwise, let t̂ be the ancestor-graph of ψ which is a subgraph of t:
we have sk

l (ψ
′) = −1 and ψ′ ∈ RevGk

l
(t̂). Thus, ψ′ ∈ RevGk

l
(t) and

fdistGk
l
(t) = ∞.

�

Therefore, all ancestor-graphs pruned by C will be pruned by C ′ as well. This
lemma does not hold without the hypothesis of immediate propagation of clauses:
using the notation in the proof, we could have fdistGi

(t) = ∞, and fdistGh
g
(t) =

∞, but fdistGk
l
(t) 6= ∞, because a contraction relevant at ph is not relevant at

pk (late contraction), or fdistGh
l
(t) 6= ∞ for some l > g, because ψ becomes

irrelevant at ph at a later stage (contraction undone).
The final lemma covers ancestor-graphs that are not pruned. Thus, we need

to make a hypothesis on the subdivision, and we assume that C ′ has no clause-
duplication:

Lemma 6.9. Assume C ′ has immediate propagation of clauses up to redundancy
and no clause-duplication. If fdistGi

(ϕ) 6= ∞ for all i ≥ 0, there exists a stage r
such that for all i ≥ r and j > 0, pmulGi

(ϕ, j) ≤ mulGi
(ϕ, j).

Proof: let |atG(ϕ)| = m, and q be the number of ancestor-graphs of ϕ pruned
by contraction in the sequential derivation. Since fdistGi

(ϕ) 6= ∞ for all i ≥ 0,
it is 0 ≤ q < m. Let l be the stage when such contraction is completed: for all
i ≥ l and j > 0, it is 0 ≤ mulGi

(ϕ, j) ≤ m− q. In the derivation by C ′, since the
strategy has no clause-duplication, all arcs generating ϕ are allowed to only one
process, say ph. Let r1 be the stage when the subdivision of the ancestor-graphs of

Maria Paola Bonacina / A model and a first analysis of distributed-search 193

ϕ is completed: by Lemma 6.3, for all k 6= h, i ≥ r1, and j > 0, mulGk
i
(ϕ, j) ≤ 1.

By Lemma 6.8, each of the q ancestor-graphs of ϕ pruned by contraction in the
sequential derivation is eliminated also by ph after a certain stage. Let r2 be
the earliest stage when all q ancestor-graphs are excluded by ph: for all i ≥ r2
and j > 0 it is 0 ≤ mulGh

i
(ϕ, j) ≤ m − q. It follows that there exists a stage

r = max(r1, r2) such that for all i ≥ r and j > 0, gmulGi
(ϕ, j) ≤ m− q + n− 1,

recalling that gmulGi
(ϕ, j) =

∑n−1
k=0

mulGk
i
(ϕ, j), and counting m−q as the upper

bound for the multiplicity at ph and 1 as the upper bound for the multiplicity at
the remaining n− 1 processes. From pmulGi

(ϕ, j) = bgmulGi
(ϕ, j)/nc, we have

pmulGi
(ϕ, j) ≤ b(m− q+n− 1)/nc for all j > 0 and i ≥ r. Since m− q ≥ 1 (not

all ancestor-graphs of ϕ are pruned), and n ≥ 2 (there are at least two parallel
processes), (m− q + n− 1)/n < m− q + 1, hence b(m− q + n− 1)/nc ≤ m− q.
It follows that pmulGi

(ϕ, j) ≤ mulGi
(ϕ, j) for all j > 0 and i ≥ r.

�

The strict disequality pmulGi
(ϕ, j) < mulGi

(ϕ, j) does not hold in general: if
m−q = 1 (all but one ancestor-graph are pruned by contraction), pmulGi

(ϕ, j) =
mulGi

(ϕ, j) = 1. On the other hand, if m−q > 1, it is (m−q+n−1)/n < m−q,
hence b(m − q + n− 1)/nc < m− q, and pmulGi

(ϕ, j) < mulGi
(ϕ, j). Since the

number of ancestor-graphs grows exponentially, m� n for most clauses. Unless
contraction prunes almost all ancestor-graphs of ϕ, m− q is the dominating term
in m − q + n − 1, and the parallel multiplicity is approximately the sequential
multiplicity divided by the number of processes.

The main theorem then follows:

Theorem 6.6. If C ′ has immediate propagation of clauses up to redundancy
and no clause-duplication, then ∀j > 0, ∃m ≥ 0 such that ∀i ≥ m
pspace(Gi, j)�mul space(Gi, j).

Proof: consider all the clauses (finitely many) in space(G0, j) for any given j.
For all clauses ϕ such that fdistGi

(ϕ) = ∞ for some i ≥ 0, apply Theorem 6.5
to find a stage rϕ such that for all i ≥ rϕ, pmulGi

(ϕ, j) = 0. For all clauses
ϕ such that fdistGi

(ϕ) 6= ∞ for all i ≥ 0, apply Lemma 6.9 to find a stage rϕ

such that pmulGi
(ϕ, j) ≤ mulGi

(ϕ, j) for all i ≥ rϕ. Let m = max{rϕ |ϕ ∈
space(G0, j)}. For all ϕ, pmulGi

(ϕ, j) ≤ mulGi
(ϕ, j) for all i ≥ m. It follows

that pspace(Gi, j)�mul space(Gi, j) for all i ≥ m.
�

We conclude with a counterexample showing that immediate propagation
of clauses is necessary to get Lemma 6.9, hence Theorem 6.6, because no clause-
duplication alone does not prevent late contraction.

Example 6.5. A non-redundant clause P has three ancestor-graphs, t1, t2 and
t3. The sequential process prunes t1 and t2 by deleting relevant ancestors Q1

and Q2 respectively, so that the sequential multiplicity of P reduces from 3 to 1.
There are two parallel processes p1 and p2, where only p1 is allowed to generate P .

194 Maria Paola Bonacina / A model and a first analysis of distributed-search

Assume that p2 deletes Q1 and Q2 when they are relevant, while p1 deletes them
only after having used them, so that they are no longer relevant (late contraction,
as in Example 6.1). By no clause-duplication, the multiplicity of P at p2 is at
most 1, but the multiplicity at p1 remains 3, so that the parallel multiplicity is
at most (3 + 1)/2 = 2.

On the other hand, note that immediate propagation of clauses without a
sufficiently strong hypothesis on the subdivision is not sufficient either, because
communication causes overlap.

Intuitively, in Theorem 6.6, a value j of the bound may represent the search
depth that includes a proof. If the problem is hard enough that the sequential
strategy does not succeed before stage m, the distributed strategy may face a
smaller bounded search space beyond m, and therefore succeed sooner.

7. Discussion

We have applied the bounded-search-spaces approach to analyze distributed-
search contraction-based strategies. This work is part of a larger effort towards a
theory of strategy analysis. Such a theory would provide us with an understand-
ing of what is complexity in theorem proving, and with mathematical tools to
evaluate strategies independent of implementation.

Complexity in theorem proving is related neither to the length of the input
(e.g., a shorter input set may require a longer search) nor to the length of the
output (e.g., a shorter proof may require a longer search). Therefore, one needs
to study the search process itself. Since first-order theorem proving is only semi-
decidable, the search process is potentially infinite. Thus, the tools of classical
complexity theory and algorithm analysis, which are concerned with decidable
problems, are not applicable.

Studying the search process means studying a possibly non-terminating pro-
cess that visits, and also modifies, an infinite search space of formulae and infer-
ences. This problem has two facets: modelling and measuring. Our methodology
employs the marked search graph for the first, and the bounded search spaces
for the second one. In order to analyze distributed search we have enriched them
with subdivision and communication.

For subdivision, we have used at all levels the idea of distinguishing between
allowed and forbidden inferences: a distributed-search plan features a subdivision
function to decide dynamically the status of the inferences, a process’ derivation
only includes allowed steps, the parallel marked search graph is augmented with
the permission marking, and the bounded search spaces of a process only include
allowed ancestor-graphs.

For communication, we have equipped a distributed strategy with communi-
cation operators, and extended the marking of the marked search graph to reflect
communication steps. This aspect is more delicate than it may seem: defining

Maria Paola Bonacina / A model and a first analysis of distributed-search 195

properly how receiving a clause modifies the marked search graph is critical to
make the bounded search spaces sensitive to communication.

The objective of this analysis has been distributed search for contraction-
based clausal strategies. The eager contraction property of these strategies is a
problem for parallelization. A first issue is the compatibility of eager contrac-
tion and subdivision, since the subdivision may forbid contraction inferences. A
suitable compromise is to subdivide generations by contraction while leaving dele-
tions unrestricted (Theorems 3.3 and 3.4). A second issue is the relation of asyn-
chronous communication and eager contraction. We have formalized the problem
in terms of properties of the derivation, distinguishing between the local property
(local eager contraction) and the global properties: distributed global contraction,
supported by propagation of clauses up to redundancy, and global eager contrac-
tion, supported by immediate propagation of clauses up to redundancy. Since the
latter is a limit property, a distributed contraction-based strategy is required to
have local eager contraction and distributed global contraction.

We have analyzed first the evolution of the bounded search spaces of a par-
allel process. In a sequential derivation, expansion inferences do not modify the
bounded search spaces (the strategy visits the search space without changing it),
while contraction inferences reduce them (the strategy prunes the search space).
For a sequential contraction-based strategy, the reductions of the bounded search
spaces by contraction are permanent because contraction is monotonic (whatever
was contracted can be contracted again) and eager (whatever was contracted
is contracted again before being used for expansion, so that deleting it is still
relevant to prune ancestor-graphs). For a distributed-search contraction-based
strategy, it is still true that whatever was contracted can be contracted again,
and eagerly relative to local data (Lemma 6.1), but it is not guaranteed to be
eager relative to global data (late contraction), so that the pruning of redundant
ancestor-graphs of non-redundant clauses may be undone (contraction undone).

Our measure may seem too sensitive here: if a clause is not redundant, why
bother about whether its redundant ancestor-graphs are pruned? In order to
appreciate this aspect, consider a strategy that visits all the ancestor-graphs of a
non-redundant clause, generate m variants of it, and delete all but one variant by
subsumption. Compare with a strategy which prunes half of the ancestor-graphs
early on, without visiting them, generates m/2 variants, and deletes all but one
of them by subsumption. The final result is the same: one variant of a non-
redundant clause. However, the first strategy has done more work, hence should
have higher search complexity. Our measure captures this difference, because the
bounded search spaces for the first strategy will include all m ancestor-graphs,
whereas those for the second strategy will include m/2 ancestor-graphs.

Therefore, the bounded search spaces oscillate non-monotonically in a distri-
buted derivation, because they reflect on one hand the advantage of subdivision
and contraction, and on the other hand the cost of communication. The lat-
ter emerges in two ways: undoing some of the subdivision, which is the cost of

196 Maria Paola Bonacina / A model and a first analysis of distributed-search

preserving completeness in a distributed setting, and causing failures of eager con-
traction. Note that since it is not known how to define “time” for theorem-proving
strategies, it is very important to be able to capture the cost of communication
in the bounded search spaces, which are essentially a measure of space.

The next level of the analysis has been to consider all the parallel pro-
cesses together. For this purpose, we have defined a notion of overlap of par-
allel searches, introduced the parallel bounded search spaces, and shown that
no clause-duplication and local eager contraction minimize the overlap. Then we
have compared the parallel bounded search spaces of a distributed-search contrac-
tion-based strategy with the bounded search spaces of its sequential counterpart.
We have proved that distributed search preserves contraction (Theorem 6.5), but
would preserve eager contraction only if propagation of clauses up to redundancy
were immediate (Lemma 6.9). Under this hypothesis, and no clause-duplication,
the parallel bounded search spaces are bounded by those of the sequential strat-
egy (Theorem 6.6).

More precisely, for any depth of the search space there is a number of steps
m after which the parallel bounded search space of that depth is guaranteed to
be smaller than or equal to the sequential bounded search space of same depth,
and will remain such for the rest of the derivation. Therefore, the distributed
strategy may succeed sooner. On the other hand, if the sequential strategy solves
the problem in less than m steps, it may mean that the problem is too easy
for the parallelization to pay off. Similar to algorithms, also for strategies a
parallel strategy or a more sophisticated strategy may not be rewarded if the
input problem is too easy. In algorithm analysis, problems that are too easy
are excluded from consideration because the analysis is asymptotic, that is, it
captures the complexity of the algorithm as the input problem becomes harder
(e.g., longer). This is not possible in this form in theorem proving, because we do
not have a measure of the input instance that expresses its difficulty. Therefore,
it is important to have a formulation of the theorem that may exclude instances
that are too easy.

We feel that the results of our analysis are significant in a few ways:

1. Theorem 6.6 may be interpreted as a limit theorem, in a sense similar to
other theoretical results obtained under an ideal assumption. It explains the
nature of the problem, by indicating in the overlap and the communication-
contraction node its essential aspects, and it represents a limit that strategies
may approximate by improving overlap reduction and communication.

2. Since we have shown that immediate propagation is necessary to guarantee
eager contraction, Theorem 6.6 may be interpreted also as a negative result
on the parallelizability of contraction-based strategies. If it had been possible
to prove that a contraction-based parallelization has smaller bounded search
spaces without assuming immediate propagation, there would have been a
ground to expect a generalized success of distributed search, at least to the

Maria Paola Bonacina / A model and a first analysis of distributed-search 197

extent to which smaller bounded search search spaces mean shorter search.
Since this type of result does not hold, it means that a distributed-search
contraction-based strategy may do better than its sequential counterpart,
but it is not guaranteed to.

3. When adopting distributed search, one expects that contraction may be de-
layed. The trade-off is to accept this disadvantage in order to avoid synchro-
nization (a method where parallel processes have to synchronize on every
inference in order to enforce global eager contraction would be hopeless).
Also, one may conjecture that the advantage of subdivision will offset the
disadvantage of delayed contraction. Our analysis has shown that this con-
jecture does not hold (at least with the bounded search spaces as a measure),
because even if the subdivision minimizes the overlap, there is a worst-case
scenario where eager contraction fails (Examples 6.1 and 6.4).

In practice, this analysis is relevant to those theorem-proving problems
where eager contraction is key to find a proof. While this class has never been
characterized formally, the experimental record with forward-reasoning provers
indicates that it is certainly not small. All contemporary forward-reasoning
provers employ contraction, and while on one hand their search plans usually only
approximate eager contraction as defined in Definition 3.7, on the other hand they
succeed by using far more contraction than allowed by the theoretical definitions
of complete inference systems. For instance, the popular theorem prover Otter
[37] only approximates eager contraction, because it does backward-contraction
only after all expansion children of a given clause have been generated, but it uses
systematically deletion by weight6, which is obviously not complete. The more
recent Argonne prover EQP [38], which solved the Robbins conjecture [39], has
more eager contraction than Otter, because it does backward-contraction after
every generation of a clause. Because the negative result in our analysis is based
on a worst-case scenario, it is not in contradiction with the fact that distributed
provers implementing distributed-search contraction-based strategies may behave
well, and even show super-linear speed-up, on some problems (e.g., [13,14]).

So little is known about complexity in theorem proving, and how to analyze
strategies, that these findings should be regarded as a beginning, not a conclusion.
In this paper we have tried essentially to determine whether distributed search
may make the search space smaller by doing at least as much contraction as the
sequential process and adding the effect of the subdivision. Accordingly, we have
compared bounded search spaces by comparing the multiplicities of each clause.
Several other issues remain to be addressed.

First, distributed search may take advantage of performing steps in different
order, especially contraction steps, hence producing different search spaces and
different proofs. For example, because of the subdivision, a process may generate

6 Deletion by weight means deleting all clauses whose size is above a given threshold.

198 Maria Paola Bonacina / A model and a first analysis of distributed-search

an important clause (e.g., a very useful simplifier) earlier than in the sequential
derivation, and the early presence of this clause may change the search consider-
ably. Thus, a direction for further research is to find other ways to compare the
bounded search spaces, in order to capture this reordering of search.

Second, because we have chosen to analyze eager contraction, the cost of
communication has been in the forefront. However, communication delays may
also be beneficial, by letting a process ignoring certain clauses longer (e.g., see
the considerations on the experiments in [13]). This is another direction to inte-
grate this analysis, perhaps by using the active search space as a complementary
measure.

Third, in this paper we have pursued the approach of defining parallel
bounded search spaces as representatives of the distributed derivation, and com-
pare them with the sequential ones. However, for the distributed derivation to
succeed, it is sufficient that one of the parallel processes succeeds. Therefore, an-
other direction of investigation is to study conditions such that at least one of the
parallel processes does better than the sequential one. This may also lead to ex-
plore alternative definitions of parallel bounded search spaces (see the discussion
in Section 5.3).

Successful applications of theorem provers, whether sequential or parallel,
usually stem from multiple features, such as eager contraction, reasoning modulo
a theory, restrictions of expansion, and indexing mechanisms (e.g., [39]). All
such features and their interactions represent as many directions of future work
in strategy analysis, including analysis of restrictions of expansion inferences,
analysis of reasoning modulo a theory, analytical comparison of search plans
(assuming the same inference system), and analysis of parallel approaches with
multi-search.

For the latter, our parallel marked search graph is sufficiently general to
cover multi-search as well, since it is sufficient to drop the permission marking
and assign the processes different search plans to obtain a model of multi-search.
The analysis of multi-search will require studying a reordering of search, similar
to the one mentioned above for distributed search: for example, if Σ1 generates
ϕ1 early on and ϕ2 much later, and Σ2 generates ϕ2 early on and ϕ1 much later,
a multi-plan including both Σ1 and Σ2 may take advantage of generating both
clauses early. On the other hand, the multi-plan may fail to reorder the search,
generating one very similar to what either sequential Σ1 or sequential Σ2 would
produce, but with the additional overhead of parallelism (e.g., communication
and duplication). The extension of our framework of definitions to encompass
both distributed search and multi-search has begun in [15].

Another line of research is the analysis of subgoal-reduction strategies, such
as those based on model elimination, which requires to model searches with back-
tracking. Some of these directions may require to consider data more general than
clauses (e.g., constrained clauses or other formulae), and larger inference steps
(our treatment already allows to consider normalization as a single step). In this

Maria Paola Bonacina / A model and a first analysis of distributed-search 199

paper we have assumed clauses, because they are common in fully-automated
theorem provers, but the analysis does not depend on the clausal form, so that
it can be generalized to more general formulae.

Acknowledgements

I would like to thank Claude Kirchner for inviting me to present an early
version of this paper at INRIA-Lorraine and for the fruitful conversation that
followed.

References

[1] S. Anantharaman and M. P. Bonacina. An application of automated equational reasoning
to many-valued logic. In M. Okada and S. Kaplan, editors, Proc. of CTRS-90, volume 516
of LNCS, pages 156–161. Springer-Verlag, 1991.

[2] S. Anantharaman and J. Hsiang. Automated proofs of the Moufang identities in alternative
rings. J. of Automated Reasoning, 6(1):76–109, 1990.

[3] M. J. Atallah, F. Dehne, R. Miller, A. Rau-Chaplin, and J. J. Tsay. Multisearch techniques:
parallel data structures on a mesh-connected computer. J. of Parallel and Distributed
Computing, 20(1):1–13, 1994.

[4] M. J. Atallah and A. Fabri. On the multisearch problem for hypercubes. Computational
Geometry: Theory and Applications, 5, 1996.

[5] J. Avenhaus, J. Denzinger, and M. Fuchs. DISCOUNT: a system for distributed equational
deduction. In J. Hsiang, editor, Proc. of RTA-95, volume 914 of LNCS. Springer, 1995.

[6] L. Bachmair and N. Dershowitz. Critical pair criteria for completion. J. of Symbolic
Computation, 6(1):1–18, 1988.

[7] L. Bachmair and H. Ganzinger. Non-clausal resolution and superposition with selection
and redundancy criteria. In A. Voronkov, editor, Proc. of LPAR-92, volume 624 of LNAI,
pages 273–284. Springer-Verlag, 1992.

[8] L. Bachmair and H. Ganzinger. A theory of resolution. Technical Report MPI-I-97-2-005,
Max Planck Institut für Informatik, 1997. To appear in J. A. Robinson and A. Voronkov,
eds., Handbook of Automated Reasoning, Elsevier Science.

[9] L. Bachmair, H. Ganzinger, C. Lynch, and W. Snyder. Basic paramodulation. Information
and Computation, 121(2):172–192, 1995.

[10] A. Bäumker, W. Dittrich, and F. Meyer auf der Heide. Truly efficient parallel algorithms:
1-optimal multisearch for and extension of the BSP model. Technical Report tr-rsfb-96-
008, Dept. of Math. and Comp. Sci., Univ. of Paderborn, 1996. See also Proc. of the 3rd
European Symp. on Algorithms, LNCS 979, pages 17–30, 1995.

[11] A. Bäumker, W. Dittrich, and A. Pietracaprina. The complexity of parallel multisearch
on coarse grained machines. Algoritmica, 1998. Special Issue on Coarse Grained Parallel
Algorithms.

[12] M. P. Bonacina. On the reconstruction of proofs in distributed theorem proving: a modified
Clause-Diffusion method. J. of Symbolic Computation, 21:507–522, 1996.

[13] M. P. Bonacina. Experiments with subdivision of search in distributed theorem proving.
In M. Hitz and E. Kaltofen, editors, Proc. of PASCO-97, pages 88–100. ACM Press, 1997.

[14] M. P. Bonacina. Mechanical proofs of the Levi commutator problem. In P. Baumgartner
et al., editor, Notes of the CADE-15 Workshop on Problem Solving Methodologies with
Automated Deduction, pages 1–10, 1998.

200 Maria Paola Bonacina / A model and a first analysis of distributed-search

[15] M. P. Bonacina. Ten years of parallel theorem proving: a perspective. In B. Gramlich,
H. Kirchner, and F. Pfenning, editors, Notes of the FLoC-99 Workshop on Strategies in
Automated Deduction, pages 3–15, 1999. Full version: A taxonomy of parallel strategies
for deduction, Tech. Rep. 99-07, Dept. of Comp. Sci., Univ. of Iowa, May 1999.

[16] M. P. Bonacina and J. Hsiang. On subsumption in distributed derivations. J. of Automated
Reasoning, 12:225–240, 1994.

[17] M. P. Bonacina and J. Hsiang. Parallelization of deduction strategies: an analytical study.
J. of Automated Reasoning, 13:1–33, 1994.

[18] M. P. Bonacina and J. Hsiang. The Clause-Diffusion methodology for distributed deduction.
Fundamenta Informaticae, 24:177–207, 1995.

[19] M. P. Bonacina and J. Hsiang. Distributed deduction by Clause-Diffusion: distributed
contraction and the Aquarius prover. J. of Symbolic Computation, 19:245–267, 1995.

[20] M. P. Bonacina and J. Hsiang. Towards a foundation of completion procedures as semide-
cision procedures. Theoretical Computer Science, 146:199–242, 1995.

[21] M. P. Bonacina and J. Hsiang. On the modelling of search in theorem proving – towards
a theory of strategy analysis. Information and Computation, 147:171–208, 1998.

[22] R. Bündgen, M. Göbel, and W. Küchlin. A master-slave approach to parallel term-rewriting
on a hierarchical multiprocessor. In J. Calmet and C. Limongelli, editors, Proc. of the 4th
DISCO, volume 1128 of LNCS, pages 184–194. Springer, 1996.

[23] R. Bündgen, M. Göbel, and W. Küchlin. Strategy-compliant multi-threaded term comple-
tion. J. of Symbolic Computation, 21:475–506, 1996.

[24] J. Denzinger and S. Schulz. Recording and analyzing knowledge-based distributed deduc-
tion processes. J. of Symbolic Computation, 21:523–541, 1996.

[25] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume B, pages 243–320. Elsevier, 1990.

[26] B. Fronhöfer and G. Wrightson, Eds. Parallelization in Inference Systems. Number 590 in
LNAI. Springer-Verlag, 1990.

[27] D. Fuchs. Requirement-based cooperative theorem proving. In J. Dix, L. Fariñas del
Cerro, and U. Furbach, editors, Proc. of JELIA-98, volume 1489 of LNAI, pages 139–153.
Springer, 1998.

[28] M. Fuchs and A. Wolf. Cooperation in model elimination: CPTHEO. In C. Kirchner
and H. Kirchner, editors, Proc. of CADE-15, volume 1421 of LNAI, pages 42–46. Springer,
1998.

[29] W. Gropp and E. Lusk. User’s guide for mpich, a portable implementation of MPI. Tech-
nical Report 96/6, MCS Div., Argonne Nat. Lab., 1996.

[30] J. Hsiang and M. Rusinowitch. On word problems in equational theories. In Th. Ottman,
editor, Proc. of the 14th ICALP, volume 267 of LNCS, pages 54–71. Springer-Verlag, 1987.

[31] J. Hsiang and M. Rusinowitch. Proving refutational completeness of theorem proving
strategies: the transfinite semantic tree method. J. ACM, 38(3):559–587, 1991.

[32] D. Kapur and H. Zhang. A case study of the completion procedure: proving ring com-
mutativity problems. In J.-L. Lassez and G. Plotkin, Eds., editors, Computational Logic –
Essays in Honor of Alan Robinson, pages 360–394. The MIT Press, 1991.

[33] C. Kirchner, C. Lynch, and C. Scharff. Fine-grained concurrent completion. In
H. Ganzinger, editor, Proc. of RTA-96, volume 1103 of LNCS, pages 3–17. Springer, 1996.

[34] R. Kowalski. Search strategies for theorem proving. In B. Meltzer and D. Michie, editors,
Machine Intelligence, volume 5, pages 181–201. Edinburgh University Press, 1969.

[35] A. Leitsch. The Resolution Calculus. Springer, 1997.
[36] D. W. Loveland. Automated Theorem Proving: A Logical Basis. North-Holland, 1978.
[37] W. W. McCune. Otter 3.0 reference manual and guide. Technical Report 94/6, MCS Div.,

Argonne Nat. Lab., 1994.

Maria Paola Bonacina / A model and a first analysis of distributed-search 201

[38] W. W. McCune. 33 Basic test problems: a practical evaluation of some paramodulation
strategies. In R. Veroff, editor, Automated Reasoning and its Applications: Essays in Honor
of Larry Wos, pages 71–114. MIT Press, 1997.

[39] W. W. McCune. Solution of the Robbins problem. J. of Automated Reasoning, 19(3):263–
276, 1997.

[40] R. Niewenhuis, Rivero J. M., and M. A. Vallejo. The Barcelona prover. J. of Automated
Reasoning, 18(2), 1997.

[41] D. A. Plaisted. Mechanical theorem proving. In R. B. Banerji, editor, Formal Techniques
in Artificial Intelligence. Elsevier, 1990.

[42] D. A. Plaisted. Equational reasoning and term rewriting systems. In D. Gabbay et al.,
editor, Handbook of Logic in Artificial Intelligence and Logic Programming, volume 1, pages
274–367. Oxford University Press, 1993.

[43] D. A. Plaisted and Y. Zhu. The Efficiency of Theorem Proving Strategies. Friedr. Vieweg
& Sohns, 1997.

[44] C. B. Suttner and J. Schumann. Parallel automated theorem proving. In L. Kanal et al.,
editor, Parallel Processing for Artificial Intelligence. Elsevier, 1994.

[45] T. Tammet. Gandalf. J. of Automated Reasoning, 18(2):199–204, 1997.
[46] A. Urquhart. The complexity of propositional proofs. Bull. of Symbolic Logic, 1:425–467,

1995.
[47] C. Weidenbach, B. Gaede, and G. Rock. SPASS & FLOTTER. In M. McRobbie and

J. Slaney, editors, Proc. of CADE-13, volume 1104 of LNAI, pages 141–145. Springer,
1996.

[48] A. Wolf and R. Letz. Strategy parallelism in automated theorem proving. In Proc. of
FLAIRS-98, 1998.

[49] H. Zhang. Herky: high performance rewriting in RRL. In D. Kapur, editor, Proc. of
CADE-11, volume 607 of LNAI, pages 696–700. Springer-Verlag, 1992.

