The VLDB Journal
https://doi.org/10.1007/500778-024-00836-1

SPECIAL ISSUE PAPER l‘)

Check for
updates

A learning-based framework for spatial join processing: estimation,
optimization and tuning

Tin Vu'® - Alberto Belussi2(® - Sara Migliorini?>® - Ahmed Eldawy?

Received: 8 February 2023 / Revised: 26 December 2023 / Accepted: 2 January 2024
© The Author(s) 2024

Abstract

The importance and complexity of spatial join operation resulted in the availability of many join algorithms, some of which are
tailored for big-data platforms like Hadoop and Spark. The choice among them is not trivial and depends on different factors.
This paper proposes the first machine-learning-based framework for spatial join query optimization which can accommodate
both the characteristics of spatial datasets and the complexity of the different algorithms. The main challenge is how to
develop portable cost models that once trained can be applied to any pair of input datasets, because they are able to extract the
important input characteristics, such as data distribution and spatial partitioning, the logic of spatial join algorithms, and the
relationship between the two input datasets. The proposed system defines a set of features that can be computed efficiently
for the data to catch the intricate aspects of spatial join. Then, it uses these features to train five machine learning models that
are used to identify the best spatial join algorithm. The first two are regression models that estimate two important measures
of the spatial join performance and they act as the cost model. The third model chooses the best partitioning strategy to use
with spatial join. The fourth and fifth models further tune two important parameters, number of partitions and plane-sweep
direction, to get the best performance. Experiments on large-scale synthetic and real data show the efficiency of the proposed
models over baseline methods.

Keywords Spatial join - Cost model - Cardinality estimation - Machine learning - Query optimization

1 Introduction

In recent years, there has been a substantial surge in the
accumulation of extensive spatial data from diverse sources,
including satellite imagery [24], social networks [41], smart-

This work is supported in part by the National Science Foundation
(NSF) under Grants IIS-1954644, 11S-1838222 and CNS-1924694 and
by “Progetto di Eccellenza” of the Computer Science Department,
University of Verona, Italy.

B Tin Vu
khactinvu@microsoft.com

Alberto Belussi
alberto.belussi @univr.it

Sara Migliorini
sara.migliorini @univr.it

Ahmed Eldawy

eldawy @ucr.edu

Microsoft Corporation, Redmond, USA
University of Verona, Verona, Italy

University of California, Riverside, USA

Published online: 13 February 2024

phones [33], and VGI [31]. To illustrate, users generate an
average of 500 million daily tweets [57], reflecting various
spatial origins. Additionally, NASA EOSDIS consistently
integrates 6.4 TB of data into its repositories daily [55].
The traditional Spatial DBMS technology struggled to handle
these petabytes of data, prompting the emergence of numer-
ous significant spatial data management systems, such as
SpatialHadoop [17], Hadoop-GIS [2], SparkGIS [6], Beast
[16], Apache Sedona (formerly known as GeoSpark) [69],
Simba [66], and many others [19]. One of the most important
and challenging operations in all these systems is spatial join.
Apache Spark is widely popular in data analytics due to its
efficient processing of large-scale datasets, in-memory com-
puting engine, and extensive libraries for machine learning
and graph processing. Spatial join is an integral component
of analytical queries on Apache Spark, enabling the com-
bination of datasets based on their spatial relationships. By
linking elements from different datasets based on their spa-
tial proximity or containment, spatial join plays a vital role
in various applications, such as geographical analysis, urban
planning, and location-based services. However, due to the

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-024-00836-1&domain=pdf
http://orcid.org/0000-0003-4088-7091
http://orcid.org/0000-0003-3023-8020
http://orcid.org/0000-0003-3675-7243
http://orcid.org/0000-0002-6584-1455

T.Vuetal.

BNLJ
PBSM

REPJ

DJ

Fig. 1 Distribution of best join algorithm in terms of running time

inherent complexity of spatial data processing, optimizing
spatial join operations becomes crucial to ensure efficient
query execution and minimize computational overhead. As
the volume and complexity of spatial data continue to grow,
effective optimization techniques are essential to harness the
full potential of spatial join and enhance the overall per-
formance of analytical workflows on Apache Spark. The
complexity of the spatial join and the modern big-data sys-
tems make these problems extremely difficult. For example,
Fig. 1 shows the distribution of the best out of four join algo-
rithms (will be discussed in Sect. 2) in running time when we
execute them on a good amount of different datasets [59].
This distribution indicates that it is challenging to choose an
appropriate algorithm for a random join input. Our exper-
iment showed that sometimes choosing inappropriate join
algorithm could make the join time 5 times slower when
compared to the fastest one. For example, given a same join
inputs of 128 MB and 2048 MB datasets, the running time of
DJ, PBSM, RepJ, BNLJ are 243, 49, 91, 223 s, respectively.
This motivated our research to investigate the insights of dis-
tributed spatial join algorithms. The experimental results and
datasets are publicly available in our Github repository [59].
User can either download the datasets directly or reproduce
them using our spatial data generator [35, 65].

Spatial join is one of the most resource demanding
operations in spatial databases and it becomes even more
challenging with big data [9, 21, 53]. Spatial join is com-
monly processed using the filter and refinement approach.
The filter step only considers the minimum bounding rectan-
gle (MBR) of geometries while the refinement step considers
the actual geometry definition. The filter step is the one
that involves partitioning and parallelization and this work
focuses on that step. In some cases when the complexity of
geometries is very high, the refinement step dominates the
processing time [29] and needs further attention but this is
outside the scope of this paper. Efficient distributed spatial

@ Springer

join algorithms work on two main phases, partition and join.
The partition step splits the data into smaller parts that can
be processed independently. The join step processes each of
these partitions individually to produce the final answer.

Due to the complexity of the process, the best algorithm
has to balance the computation across machines, reduce disk
access from the distributed file system, and minimize network
overhead. At the same time, the skewed distribution of the
inputs and the hardware specification of the machines have to
be taken into account. The complexity of the problem encour-
aged researchers to develop many spatial join algorithms for
big data [18, 34, 68]. Moreover, each algorithm might need
to specify some configuration parameters according to the
characteristics of the input datasets. These parameters can
have a significant impact on the performance of such algo-
rithms. This situation creates a complex query optimization
problem to choose the best spatial join algorithm and to tune
the configuration parameters for individual algorithms given
the input datasets and hardware resources.

Traditionally, this query optimization problem has been
addressed using theoretical cost models [3, 7, 27, 28]. With
the rise of big-data, some of these cost models have been
ported to MapReduce and similar systems [4, 52]. Unfor-
tunately, these theoretical models are limited due to some
strong assumptions such as the uniformity of the input
datasets or about the query processing engine, e.g., Hadoop
MapReduce, which limit their use in practice.

The advancement of machine learning resulted in a new
generation of query optimizers that rely on data-driven mod-
els for database operations including join [37, 38, 43, 44, 67].
However, these models are limited to equi-join and cannot
catch the complex logic of spatial join. Further, most of this
work assumes that the same collection of datasets are used
for training and testing which limit the applicability of the
produced models.

This paper proposes the first learning-based framework
for distributed processing of spatial join on big data. This
cost model can be abstracted as a set of complex functions
that estimate specific values, e.g., a configuration parameter,
selectivity, or best algorithm, based on some descriptors for
the input. The main challenge with this approach is to build
a model that balances generality and practicality. On one
side, the model should be general so that it can be ported to
different datasets, spatial join algorithms, and systems. On
the other side, it needs to be practical by providing a simple
output that can be directly used by the query optimizer such
as the estimated result size or the best algorithm to run.

To address the challenges above, we propose a machine
learning-based framework, called Spatial Join Machine
Learning (SJML), that consists of five levels addressing var-
ious aspects of query optimization. The first level builds a
cardinality estimation model that learns the result size inde-
pendently of the algorithm. The input features used in this

A learning-based framework for spatial...

level cover individual dataset attributes, e.g., size and some
skewness measures, and other features based on the convo-
luted histogram, which catch the joint distribution of the two
datasets that is important for spatial join. The second level
builds a separate model for each spatial join algorithm that
predicts the number of geometric comparison operations,
which is an algorithm-specific but hardware-independent
feature. These first two levels provide quick estimation of
result size and computation cost that are helpful for perfor-
mance evaluation. Then, the third level builds a classification
model, which s able to predict the best partitioning algorithm
that determines if and how each of the input datasets will be
partitioned. After that, the fourth level defines a model that
estimates the number of partitions for the partitioning step in
case both inputs will be repartitioned in the PBSM algorithm
[47]. Finally, the fifth level defines a model that chooses how
the plane-sweep join algorithm will run in each partition,
i.e., along the x- or y-axis.

In Sect.7, we validated that the proposed framework can
work with spatial datasets in different scales, where the
geometry types are point or rectangle. The spatial join predi-
cate used in the paper is intersection join. However, this does
not limit the framework to apply to other geometry types
or join predicates. For example, any geometry types could
be represented by a minimum bounding rectangle (MBR),
which can filter the potential join pairs. In addition, other
predicates, for example distance join, could be translated
into an intersection join. In particular, if we want to find
all geometry pairs (g1, g2) where the distance is less than d,
we can expand g1 and g2 by d/2 and verify whether the two
expanded geometries G and G, are intersecting.

This proposed architecture gives system designers the
flexibility of choosing the level that matches their applica-
tion needs from the most general (levels 1 & 2) to the most
specific ones (level 3-5). Moreover, it allows us to train some
of these models once and share them. For example, the car-
dinality estimation model in level 1 can be used regardless of
the algorithm. Similarly, the models in level 2 are hardware-
independent so they can be ported to any hardware. All the
proposed models in this paper are independent and could be
used either separately or together, depending on the require-
ments of the considered problem. In addition, the proposed
framework could be extended to new spatial join algorithms
other than four algorithms we are studying in this paper.

The proposed framework is open source.! In particular,
we implement the proposed models using scikit-learn [49]
and train/test them on different datasets. To train the model,
we use an open-source spatial data generator [65] to gen-
erate hundreds of datasets by varying the data distribution
and size. In addition, we train on subsets of publicly avail-
able real data from UCR-Star [30]. Together, the synthetic

! https://github.com/tinvukhac/learned- spatial-join.

and real data generate a rich training set with thousands of
training points. The results show that the proposed model
can estimate the cardinality of the spatial join with an error
of as low as 8% when compared to the ground truth. It can
also predict the number of MBR tests for different algorithms
with a reasonable error. Moreover, we tested the end-to-end
framework in predicting the best algorithm in terms of run-
ning time. Finally, additional tests have been performed to
evaluate the accuracy of the prediction for the configuration
parameters, which always showed a considerable improve-
ment with respect to the baseline methods.
In summary, we make the following contributions:

1. We design and implement the first machine learning-
based model to predict the best algorithm for spatial join
in terms of their running times.

2. Wedescribe an end-to-end process for generating datasets,
extracting features, training models, and evaluating them
for query optimization on spatial join.

3. We break down the algorithm selection model into sepa-
rate models that predict join selectivity, number of MBR
tests, and fastest algorithm.

4. We carry extensive experiments to validate the advan-
tages of the proposed models over the existing solutions.

Notice that, with respect to our previous work [61], this
journal paper presents the following additional contributions:

1. We add two new models to the proposed framework. The
first one tunes the number of partitions for the PBSM
algorithm and the second optimizes the plane-sweep join
algorithm that runs locally on each partition. The changes
are made at Sect. 6.4 and Sect. 6.5.

2. We introduce new dataset features that help in capturing
additional dataset characteristics to help with training the
new models. The changes are made at Sect.5.

This paper aims to address the optimization of the spa-
tial join operation within distributed processing frameworks,
specifically focusing on Apache Spark. While other opti-
mization challenges, such as spatial partitioning, have been
explored in our previously published works [60, 63, 64], this
research centers on enhancing the efficiency and performance
of spatial joins.

The rest of this paper is organized as follows. Section 2
illustrates issues and solutions for the execution of spatial
join in presence of big input datasets. Section3 discusses
the related work. Section4 describes the process of our pro-
posed framework for cost model estimation. Section 5 details
the training and test process including data generation and
preparation. Section 6 describes the five proposed models.
Section 7 gives the results of our experiments. Finally, Sect. 8
concludes the papers and discusses future works.

@ Springer

https://github.com/tinvukhac/learned-spatial-join

T.Vuetal.

2 Background

Spatial join is one of the most important operations in geo-
spatial applications, since it is frequently used for performing
data analysis involving geographical information from mul-
tiple datasets. With the advent of big data era, the size of the
datasets to be joined is considerably increased. This made the
spatial join operation one of the most time-consuming oper-
ation to be performed, leading to the definition of several
different algorithms in order to optimize its execution.

From one side, these techniques try to capture and exploit
the characteristics of the two datasets at hand in order to iden-
tify the best way to join them. Such characteristics includes
both the peculiar features of each dataset alone (e.g., num-
ber and size of geometries, their spatial distribution, and so
on), and the combined features of the two datasets together
(e.g., their overlapping and relative displacement). From the
other side, when the join operation is performed in a MapRe-
duce environment, it induces additional complexity since it
requires to consider two datasets simultaneously, while sys-
tems like Hadoop and Spark have been tailored for processing
only one argument at time.

At a high-level, big-data spatial join algorithms run in
two phases, partitioning and join. In the partitioning phase,
the two inputs are partitioned into small partitions that can be
processed independently. The join phase processes these par-
titions in parallel to produce the final results as a set of record
pairs. The various spatial join algorithms differ in how they
partition the input and join each partition. Some algorithms
can only work if one or both inputs are already partitioned,
i.e., indexed. Figure2 summarizes the join strategy of four
different join algorithms that will be considered in this paper.
Advantages and disadvantages of the analyzed algorithms are
listed in Table 1.

The simplest spatial join algorithm is represented by the
Block Nested Loop Join (BNLJ)[9]. It is a map-only job,
i.e., has no reducers, and clearly it is classified as a map-
side join. It works on non-indexed data and the input for the
mappers is prepared by a reader, which generates a “com-
bined split” for each possible pair of input splits coming
from the two datasets. In other words, given two input files
F; and F;, acombined split is produced for each pair of splits
belonging to the cross product F; x F;. Inside the BNLJ,
each mapper loads the content of its combined split into two
lists, then it applies the plane sweep algorithm for checking
the intersection between the geometries in the two lists. Our
previous work [9] provides a comprehensive cost model for
distributed spatial join algorithms. It showed the cases where
BNLJ outperformed other spatial join algorithms. One case
where BNLJ is superior is when one dataset is small, e.g.,
one or a few HDFS blocks. In this case, BNLJ behaves like a
broadcast join which broadcasts the small dataset and parti-
tions the big dataset. Other algorithms will behave similarly

@ Springer

split;

split;
e

BNLJ] D

4 [[
I m

split,,
D split;

o B
kl

[=/
I e gl T

Rep) 1x4
PBSM ‘ N\ ks :J

]
IxJ

kq
™ :'__l C3 ks C3
oy m s

ks

=

[

1x1

Fig.2 The join strategy of different join algorithms

but they will pay the overhead of spatial partitioning which
is not very effective in this case. In general, BNLIJ is superior
when the overhead of partitioning over weights its benefits.

The main limitation of BNLJ is that it does not consider
the spatial characteristics of datasets at hand, in particular
each split could contain data residing in very different loca-
tions, increasing the number of comparisons to be performed
and the number of mappers to be instantiated. For this rea-
son a first enhancement of this algorithm is represented by
the Distributed Join with Index (DJ) [18, 68], a MapReduce
adaptation of the Grid File Spatial Join algorithm [36]. This
variant is very similar to BNLJ and it is again a map only job
(and consequently a map-side join). However, in this case
the reader works on indexed data, namely each input dataset
has been preliminary partitioned into splits containing only
nearby objects. In this way the reader is able to produce a
limited number of combined splits w.r.t. the cross product,
namely it will produce only the pair of cells (splits) with
non-empty spatial overlap. Clearly this solution reduces the
number of instantiated mappers, but at the same time each of
them has potentially more work to do w.r.t. the ones instan-
tiated by BNLJ (i.e., mappers would potentially produce in
average a greater number of result geometries). Moreover, the
preliminary indexing or partitioning activity comes with its
own cost and in some cases it is justified only if such index
can be re-used for other operations or analysis. Therefore,
the final choice between the two algorithms greatly depends
on the single and combined characteristics of the two input
datasets.

A learning-based framework for spatial...

A problem of the DJ algorithm could be that the two input
datasets are typically partitioned by using the best individual
index, but they can be very different in terms of grid (i.e.,
number of cells and shapes of regions covered by each cell),
leading to cases in which the benefits induced by the use of
such partitions are lost. Therefore, a variant of DJ is rep-
resented by the Repartition Join algorithm (REPJ) [18, 68]
which is a MapReduce adaptation of the Bulk-Index Join
[14]. In this case, instead of using two completely differ-
ent partitioning grids, one of the two datasets (typically the
smaller one) is partitioned w.r.t. the index of the other one.
In this way the number of generated combined splits, and
consequently the number of mappers, is further reduced and
it is a subset of the number of index cells. Also in this case
the trade-offs of a preliminary repartition have to be carefully
evaluated in each case.

An example of reduce-side spatial join is represented by
the Spatial Join Map Reduce (SJMR) [70] which is a MapRe-
duce implementation of the Partition Based Spatial Merge
Join (PBSM) [48]. This algorithm has been designed to effi-
ciently perform a spatial join on non-indexed datasets. During
the map phase the datasets are partitioned w.r.t. a common
grid computed on the basis of the joint characteristics of the
two datasets, while multiple parallel reducers are responsible
for computing the spatial join inside each produced cell.

An important factor to be considered when the spatial join
is implemented in a MapReduce environment is the balanc-
ing of the work performed by the mappers (or reducers) for
testing the join condition. Indeed, it is crucial that there is
no worker doing the majority of the work, while others have
nothing to do, since in this case the benefits of a parallel exe-
cution are completely lost. As regards to the above algorithms
while SJMR and REPJ work well when the two datasets are
uniformly distributed or share a very similar distribution, the
only one that tries to deal with skewness aspect is DJ, since
each dataset is partitioned with the best possible technique
producing balanced splits. Anyway, even if these splits are
individually balanced, they would produce very unbalanced
situations when they are combined together.

In this paper, we build our models based on the data
collected from four fundamental spatial join algorithms men-
tioned above: block nested-loop join (BNLJ), partition based
spatial merge join (PBSM)), distributed index-based join (DJ),
and repartition join (REPJ). However, it should be trivial to
extend these models with other spatial join algorithms. This
is similar to adding a new class to a classification model.

The balancing criteria is usually based on the evaluation
of the number of objects contained in each split. However,
this can be a simplistic criteria, in particular when we con-
sider the work to be done for actually evaluating a spatial
predicate between large or complex geometries (instead of
only on their MBRs). Moreover, when large geometries are
partitioned, they are typically replicated in any overlapping

split, dramatically increasing the amount of work to be done
especially when they are not only large, but also described
by a great number of points. In order to overcome this situa-
tion in [51] the authors proposed a parallel in-memory spatial
join, called SPINOJA, which is based on an innovative par-
titioning technique. This technique is called MOD-Quadtree
(metric-based object decomposition quadtree) and is a region
quadtree variant that recursively decomposes a split into four
equal-sized splits by using a criteria which is not based on
the number of objects, but rather on the amount of com-
putation estimated by suitable work metrics. Such metrics
include for instance the size of the objects and their com-
plexity (i.e., number of vertices). Moreover, any time a cell
decomposition is done, any object that overlaps a newly cre-
ated (smaller) cell is also decomposed along its boundaries,
avoiding expensive replications.

An extension of the traditional spatial join operation is
represented by the multi-way spatial join, namely a spatial
join where the involved datasets can originate from more than
two sources. An example of multi-way spatial join is repre-
sented by the query “finding all the forests crossed by a river
in each state” which requires to join three different datasets:
forests, rivers and states. A straightforward way to generalize
a spatial join into a multi-way spatial join is to transform the
latter into a set of cascaded pairwise joins. In this case, each
pair of datasets could be joined by using one of the above
algorithms and then the partial results could be transferred
and used as input for the following join operation. However,
this solution can lead to a very large amount of communica-
tion among cluster nodes. Some optimization are possible
for solving this problem, for instance if the implementa-
tion is performed in Spark, the intermediate results could be
cached in memory [15]. In general, sophisticated techniques
could also be defined and studied, as the one in [32], which
try to minimize the communication by exploiting the spatial
locations of the geometries in the intermediate results. For
instance, the intersection between the cell produced by the
join and the cells in the next dataset to be joined.

3 Related work

Non-spatial join optimization Due to its popularity and
importance, there has been a large body of work for optimiz-
ing non-spatial equi-join. There are mainly three problems
related to query optimization, selectivity estimation, join cost
estimation, and join ordering. Traditionally, theoretical mod-
els were proposed to solve these three problems [25, 26,
39, 40, 45, 58]. One of the key challenges is the correlation
between join attributes. With the rise of machine learning,
it was utilized to build sophisticated data-driven models for
selectivity estimation [37, 67], join cost estimation [38, 42,
44, 46], and join order enumeration [43]. These ML-based

@ Springer

T.Vuetal.

Table 1 The advantages and disadvantages of different join algorithms

Join algorithm Advantages

Disadvantages

BNLJ Simple; works on non-indexed data
DJ Spatial-awareness; less # of mappers
RepJ Less # of mappers

PBSM Works on non-indexed data

Is not spatial-awareness
Both inputs must be indexed; potentially more works for each join pair
One input must be indexed

The partitioning process is costly

methods suffer from two limitations. First, they only work
with equi-joins and do not support the complex logic of
spatial join. Second, existing models are trained on a small
number of tables and can only work with these tables. For
example, existing techniques model the input table using a
one-hot vector that defines which table to work with.

Spatial join optimization Given the high cost of spatial
join, its optimization also was rigorously studied through the
two problems of selectivity estimation and join cost estima-
tion. Effective formulas have been proposed for uniformly
distributed datasets in [4], but their extension to skewed dis-
tributions were not straightforward. For accurate selectivity
estimation, a method was proposed that computes the cor-
relation fractal dimension of the considered spatial datasets
and applying a power law for self-join [7] and binary join
[27]. However, these methods were limited to point datasets
with distance join predicate.

To optimize distributed spatial join queries, a cost-based
and rule-based query optimizer was proposed for MapRe-
duce [52]. It breaks down the spatial join into two phases,
partition and join, and decides which technique to use in each
phase. This work has two limitations. First, the cost-based
model requires the measurement of eight parameters to catch
the characteristics of the hardware, algorithms, and data. Sec-
ond, it did not consider all join algorithms, e.g., block nested
loop join. A more detailed model was proposed in [9] which
breaks down the cost into CPU, local and network I/0 com-
ponents. It overcomes the limitations of the earlier work as it
uses only simple data statistics and supports more algorithms
but it is limited to uniformly distributed data.

Dataset’s histogram has proved its popularity in database
systems for the selectivity estimation problem due to its effi-
ciency in both computation cost and required storage space
[1, 54]. In order to give the machine learning model a global
and local picture of how two join input datasets overlap with

Table 2 Related work in join optimization

each other, the convoluted histogram of two datasets should
be provided. The paper [1] proposes the min-skew algorithm
to compute the histogram of a single dataset, which can be
used to combine two datasets histogram if they are aligned
to each other. The recent work [53] proposed an efficient
method to merge two non-aligned histograms, which is more
flexible for a wider range of spatial datasets.

This paper proposes the first ML-based model for dis-
tributed spatial join for cost estimation and selectivity esti-
mation in both partitioning phase and join phase. It differs
from existing ML-based query optimizers as it supports spa-
tial join and can apply to any input data that was not part
of the training process. It also overcomes the limitations of
existing theoretical spatial join models as it supports skewed
data including real datasets and it works on well-defined data
statistics that can be computed with a simple data scan. Papers
related to this work are summarized in Table 2.

4 Overview of SJML

This section gives an overview of the proposed Spatial Join
Machine Learning (SJML) framework illustrated in Fig. 3.
SIML contains five machine learning models (M1-M5) that
assist in all stages of running a spatial join query. Initially,
before starting the actual join operation, SIML provides
some estimated statistics on the performance of the query.
More specifically, M1 estimates the result size which is an
algorithm-independent metric and can be used for cardinality
estimation of complex queries. M2 estimates the computa-
tion cost of each algorithm in terms of number of rectangle
overlap tests, a hardware-independent metric, which can be
very useful for cost estimation. Since these estimates are pro-
vided before spatial join starts, they do not act on the actual
data, but only on some statistics extracted from the data.

Join type Non-spatial Spatial

Problems Selectivity estimation, join cost, and join ordering Selectivity estimation and join cost estimation
Theoretical [25, 26, 39, 40, 45, 58] [3,4,7,27,28,52]

ML [37, 38, 4244, 46, 67] This work

@ Springer

A learning-based framework for spatial...

Performance stats

=>1 Result size (M1)

é-r Computation cost (M2)

1

| Paia
'"plmi Partition | Eﬁ]
:l 1
Input2 T T \ @

Partition Number of

Strategy (M3) partitions (M4)

Fig.3 Overview of SJML

Model Training

Feature Extraction —s

%{ + m BNLJ b

ST#R pBSM _, | Target Algorithm
Synthetic Real REPJ system
.. DJ !
Training Data !
Spatial Join Inference '
y .
Spatial
Feature . Join Target
Tnputs Extraction s _>A1gorithm system
& params

Fig.4 Training and Inference Process in SJML

The spatial join process itself starts by partitioning the
data into smaller partitions that can be processed in parallel.
SIML provides M3 that chooses the most efficient partition
strategy for the given input. For some partition strategies, e.g.,
uniform grid partitioning used in PBSM [47], the number of
partitions also needs to be tuned, hence, we propose M4 to
tune this parameter. Finally, when it comes to the join phase
where partitions are processed in parallel, SIML provide M5
that determines the most efficient order of processing each
individual partition. In this paper, we use the planesweep join
algorithm and MS5 decides whether to scan the geometries
along the x-axis or y-axis.

SIML is a supervised model that requires a training phase.
Most existing ML-based query optimization models can only
be applied to the same data distributions it was trained on.
However, SJML breaks from this restriction as it builds a
dataset-independent model that can be applied to any dataset.
In order to obtain this generality, in the training phase, we
use Spider [65], a standard spatial data generator, to gener-
ate various datasets with diverse characteristics. We further
enrich the training set with real data extracted from UCR-

Star. The training and inference process is illustrated in Fig. 4.
For each pair of datasets, we extract a set of features that
the machine-learning models can train on. We also run all
available algorithms on each pair of datasets to measure
their behavior with such pair of datasets. Each combination
results in a training point that can be fed to the proposed ML
algorithm to learn how the existing algorithms behave for a
specific pair of input datasets. A similar training is done for
learning the effect of number of partitions (M4) and process-
ing order (M5). In particular, for M4 we run the spatial join
by varying the number of partitions, while for M5 we pro-
cess each partition along both the x and y axes to learn their
effect on performance. Also in this case the training is done
by first extracting the same set of features we used before, or
by adding some new ones very similar to them.

This generic model can be easily extended to more spatial
join algorithms or data processing systems. In this paper, we
focus on four fundamental spatial join algorithms, namely,
block nested-loop join (BNLJ), partition based spatial merge
join (PBSM), distributed index-based join (DJ), and repar-
tition join (REPJ). All these algorithms are implemented in
both Hadoop and Spark.

After the models have been built and trained, we can use
M1 and M2, if needed, to estimate the result size and pro-
cessing cost. Then, we use M3 to decide the best partition
strategy. If the partition strategy requires the number of parti-
tions to be set, then we use M4 to tune this parameter. Finally,
after the data is partitioned, each machine runs M5 indepen-
dently on each partition to decide how to process it locally.
In other words, each partition will have its own decision for
processing.

Data Generation To obtain a portable model, we need to
make sure that we generate diverse and representative data.
We generate data using five different distributions and vary
the data distribution parameters such as skewness and geom-
etry size. We also create compound dataset that combine two
or more simple datasets.

Feature Extraction The most challenging step in the pro-
posed model is the feature extraction step. We need to extract
a set of features that are relatively easy to compute and are
useful for the spatial join problem. We extract three sets
of features. First, we collect statistical-based features such
as the cardinality of the input and average geometry area.
Second, we collect histogram-based features that represent
data distribution and skewness such as box counting. We
also introduce a convoluted histogram that combines the two
datasets together to represent the relationship between them.
Finally, we compute partitioning-based features that repre-
sent how the data is partitioned and indexed.

@ Springer

T.Vuetal.

5 Model training and testing

The training process runs a supervised training phase to build
an ensemble of models able to estimate various cost com-
ponents of spatial join. First, during this phase a feature
extraction step is performed that, given two generic spatial
datasets, converts them into a fixed-size feature vector and
computes a set of performance metrics. Each model learns a
function that maps a subset of the feature vector to one of the
performance metrics. Second, to train a generic and represen-
tative model, we use Spider [65] to generate diverse synthetic
datasets, and UCR-Star [30] to extract real datasets. Finally,
we prepare the master datasets that we use for training and
testing each of the models that we propose in the paper. The
details of these steps are described below.

5.1 Feature extraction

The spatial datasets processed by a spatial join operation
are not directly usable by the machine learning models that
we propose, since these models typically expect a fixed-size
feature vector not a variable size dataset. Therefore, a pre-
liminary step is required that extracts a fixed set of standard
features for each pair of datasets D; and D; to prepare the
data points for model training. All the features that we pro-
pose to use can be extracted in a single parallel scan over the
data.

Table 3 summarizes all features we use in this paper while
the details of their computation are given in the following
sections. More specifically, we divide the set of features into
two groups, single and combined dataset statistics. Single
dataset statistics are features that are extracted once for each
individual dataset separately. Combined statistics represent
features that are computed for each specific pair of datasets
together. Finally, we collect a set of metrics from the execu-
tion of each spatial join algorithm that represent the cost of
this operation.

5.1.1 Single dataset statistics

The following statistics can be computed individually for
each dataset D, and they do not depend on the join query,
since they describe the dataset itself. We divide them into four
groups. The first two groups, denoted as Ps;;, and Pj,ps, con-
tain a set of associative and commutative functions that can
be computed efficiently in one parallel scan. The third group,
denoted as Pyjs:, is computed starting from a histogram over
the data which can be built in an exact way by using an addi-
tional scan, or in an approximated way during the same scan
used for the first two groups [53]. The fourth group, denoted
as Ppqr, is computed from the partitioning information and
does not require to scan the actual records. Further details
are provided in the following four definitions.

@ Springer

Definition 1 (Data size statistics— Ps;) Given a dataset Dy,
we define:

e #geo(D,): number of geometries (records) in Dy, it cor-
responds to | Dy|.

e size(D,): size of the dataset in bytes. It is computed as
size(Dy) = ZreD* size(r), where size(r) is the size of
arecord in bytes. This is the size of the entire geometry,
not the size of its MBR.

This group of statistics characterize the dimension of the
dataset from both a more traditional point of view (i.e., the
size in bytes) and a spatial point of view (i.e., number of
geometries or number of points).

Definition 2 (Data density statistics— Py) Given a dataset
D,., we define:

e MBR(D,): Minimum Bounding Rectangle of D,. It is
defined as MBR(D,) = (min x, min y, max x, max y).

o mbrArea®8(D,): given the MBR of all geometries r
in D, (mbr(r)), it represents the average area of such

MBRs: > (MER(Y)
D rep, area r
mbrArea®$(D,) = =< Do

o leny®(Dy) and leny® (Dy): given the MBR of all geome-
tries in a dataset, they represent the average length

on the x- and y-axis of such MBRs. leny *(Dy) =
D rep, lenx MBR(r))

Do , while len§"*(D,) is calculated simi-

larly.

This group of statistics characterize the extension and the
shape of the geometries contained in the dataset from both
an absolute and relative point of view.

After the above statistics have been calculated, the his-
togram of each input dataset is computed. We always create
a high-resolution histogram of size 8192 x 8192. The useful-
ness of this histogram is twofold: first of all, we use it to apply
the box-counting technique and compute two parameters,
called E¢ and E3, which synthetically describe the distribu-
tion of the input dataset [10]. Second, itis used to calculate the
lower-resolution histograms H (D) that will be used for the
computation of the convoluted histogram described shortly.

Definition 3 (Histogram-based statistics—P4;s;) Given a
dataset D, its high-resolution histogram # is generated and
some metrics describing the distribution of the geometries in
the reference space of D,, are computed as proposed in [8,
10, 60]. In particular, two numeric values, called E¢ and E»,
derived from the box-counting (BC %* (r)) technique [7] are
considered. The following formula shows how to compute
the function BC on the histogram & with scale r. Eg and
E» are the slope of the plot of BC%* (r) and BCIZ)* (r) in log

A learning-based framework for spatial...

Table 3 Summary of features

Group Feature Description
Single Psize #geo Number of geometries
size Total input size
Pens MBR Minimum bounding rectangle
mbrArea®’® Average record area
len$’® Average record width
len;’,Vg Average record height
Pyist Ey, E> Box counting with base 0 and 2
Ppart #cells Number of cells (partitions)
#splits Number of splits (blocks)
TTurea Sum of partition areas
T Tnargin Sum of partition semi-perimeters
T Tovertap Sum of overlap areas between pairs of partitions
LB Load balancing: Standard deviation of sizes
BU Block utilization: Percentage of block usage
Combined Pubr Area;, Area; Percentage of overlap area occupied by dataset i or j
Area;y Dataset i overlap percentage on x-axis
Areajy Dataset j overlap percentage on x-axis
Areajy Dataset i overlap percentage on y-axis
Areajy Dataset j overlap percentage on y-axis
JSi Jaccard similarity between the two MBRs
JSi jx Jaccard similarity between the two MBRs on x-axis
JSijy Jaccard similarity between the two MBRs on y-axis
Py ep, €2 Box counting for the convoluted histogram with base 0 and 2

scale, respectively.

BCY (r) =Y hi(Ds.r)!

where h;(Dy, r) = count(geometries of D, intersecting the
i cell of h with scale r).

Since every dataset has to be partitioned when used in
Hadoop and Spark, we devise a fourth set of features that
represent the spatial characteristics of this partitioning. Spa-
tial partitioning is characterized by the MBR, the number of
geometries, and the total size of each partition. If the data is
not spatially partitioned, we assume that the MBR of all par-
titions is the same as the dataset MBR and that the number
of geometries and size is equally split among partitions.

Definition 4 (Partition statistics— P qr) Given a dataset D,
that has been partitioned with some technique, we identify
the following parameters:

e #cells(D,): number of cells in which the dataset D, has
been partitioned.

e #splits(D,): number of physical blocks containing records
of D,.Incase of auniform distributed dataset, #splits(D,)

typically coincide with #cells(D,.). Conversely, in pres-
ence of a skewed dataset, there can be empty cells, namely
cells corresponding to zero blocks, or overloaded cells,
namely cells whose content is further subdivided into
many physical blocks.

Total area of D,: sum of the area of all partitions.

TTarea(Dy) = Z area(c;) X ci.blocks
c;€L(Dy)

where Z(D,) is the set of cells used for partitioning the
reference space of D, and c;.blocks is the number of
blocks stored in cell ¢;.

Total margin of D,: sum of the length of the semiperime-
ter of all partitions.

T Tnargin(Dy) = Z sp(ci) x ci.blocks
ci€L(Dy)

where sp(c;) is the semiperimenter of the cell ¢;, i.e., the
sum of its width and height.

Total overlapping of D,: sum of the area of the overlap-
ping regions produced by intersecting each cell ¢; with

@ Springer

T.Vuetal.

all other cells.

T Toverlap (Dy)

P>

ci,c;€L(Dy),i#]

area(c; Ncj) X B(ci, cj)

+ Z area(c,-)ci'bZOCks x (cj.blocks — 1)

2
c;€L(Dy)

where B(c;, cj) = c¢;.blocks x cj.blocks
e Load balancing: standard deviation of index cells cardi-
nality

.. C-.Card —av Card 2
LB(D,) = \/Zc;eI(D*)(f 2)
|Z(D.)|

where avgCard is the average cardinality of the cells
belonging to the index Z(D).
e Block utilization: average percentage of block usage:

> bieZ(Dy) blocks (bi-size/blockSize)

BU(D,) =
(D) |Z(D.).blocks|

These metrics can be easily calculated from the set of
metadata describing the partitioning. This set is typically very
small and can be processed by a single machine. For example,
for disk-based partitioned data, this information is stored in
a single master file [4].

5.1.2 Combined statistics

Since spatial join is a binary operation that takes two input
datasets, we include additional combined statistics that cap-
ture the relationship between the two inputs. Therefore, they
need to be computed for each pair of datasets that are input of
ajoin query. We further subdivided them into two groups: the
first one, denoted as Py, describes the degree and kind of
overlap between the two input datasets, while the second one,
called P, represents the local properties of such intersection
in terms of overlapping geometries.

The first group is described below and it does not require
an additional scan over the data, since it can be derived from
the summaries previously computed for each dataset individ-
ually.

Definition 5 (MBR overlapping statistics—Py,) Given a
pair of datasets (D;, Dj), the following statistics describ-
ing their overlapping are computed. The area, x, y functions
return area, width and height of the geometry, respectively.

@ Springer

e Percentage of the area of D; occupied by the area of the
datasets intersection:

area(MBR(D;) NMBR(D;))

A ;=
redi area(MBR(D;))

e Percentage of the area of D; occupied by the area of the
datasets intersection:
area(MBR(D;) NMBR(D;))
area(MBR(D;))

Areaj =

e Percentage of the width of D; occupied by the width of
the datasets intersection:
x(MBR(D;) NMBR(D)))
Areajy =
x(MBR(D;))

e Percentage of the width of D; occupied by the width of
the datasets intersection:
x(MBR(D;) NMBR(D)))
Areaj, =
x(MBR(D;))

e Percentage of the height of D; occupied by the height of
the datasets intersection:
y(MBR(D;) NMBR(D;))
y(MBR(D;))

Areajy =
e Percentage of the height of D; occupied by the height of
the datasets intersection:

tron.. — YMBR(D) NMER(D)))
ey = T MBR(D))

e Jaccard similarity:

area(MBR(D;) NMBR(D)))
area(MBR(D;) UMBR(D)))

JSl',j =

e Jaccard similarity on x-axis:

x(MBR(D;) NMBR(D))
x(MBR(D;) UMBR(D)))

JSijx=

e Jaccard similarity on y-axis:

y(MBR(D;) N MBR(D,))
y(MBR(D;) UMBR(D),))

JSijy=

In order to combine the information stored in each high-
resolution histogram previously computed separately on the
datasets D; and D;, we introduce the concept of convoluted
histogram. A convoluted histogram is simply the overlay of
the individual histograms from the two datasets, one on top of
the other. The goal of this histogram is to give to the machine

A learning-based framework for spatial...

learning model a local picture of how the two datasets overlap
with each other, which is extremely important for estimating
the cost of the spatial join query.

The computation of a convoluted histogram would require
an additional scan over the two datasets together. Indeed, to
compute a simple histogram for one dataset, we overlay a
uniform grid and count the number of records in each grid
cell. If a record overlaps multiple cells, we count it only in
the grid cell that contains its centroid to avoid overcounting.
Finally, we normalize the histogram by dividing all counts
by the largest number to prepare it for machine learning pro-
cessing. Clearly, given two generic datasets D; and D, even
if the grids used for computing their simple histograms is the
same in terms of number of cells, they can differ in terms of
placement and cell dimension. However, to compute a convo-
luted histogram for two datasets, we need to apply the same
grid for both of them, whose dimension covers the space
occupied by the two inputs together. This ensures that their
relative positions in space is taken into account in the convo-
luted histogram. To do that, we define the grid based on the
minimum bounding rectangle (MBR) of the union of the two
datasets, i.e., the enlarged MBR that covers both datasets.
Since the convoluted histogram requires knowledge of the
two datasets before it is computed, it is not possible to pre-
compute before the join query runs, e.g., as a part of data
preprocessing and indexing. On the other hand, computing
it on the fly when the join query comes would further delay
the query and would defy the whole purpose of the spatial
join query optimization problem.

To efficiently compute the convoluted histogram, we do it
in two steps. The first step, which can be done offline, com-
putes a simple histogram for each datasets based on its own
MBR. Then, when the join query comes, we define the grid
of the convoluted histogram based on the union MBR of the
two datasets. After that, we transform the two simple his-
tograms to the new grid to define the convoluted histogram
as explained in [53]. The key idea of this transformation is
to run a sort-merge-like algorithm that maps each bin in one
of the two histograms to the corresponding bin in the con-
voluted histogram. In addition, it defines a multiplier ratio
that is computed based on the amount of spatial overlap
between the source and target bins in the two histograms.
Note that this transformation is approximate and assumes
that the data in each bin is uniformly distributed but it is suf-
ficient for our purpose. Further details about this operation
is explained in [53]. The paper [53] also reported its perfor-
mance in computing the histogram for datasets in different
scales. In particular, it takes a few seconds to compute the
histogram of a dataset with size of few hundreds megabytes.
Meanwhile, the total join time for two datasets with size of
few hundreds megabytes could be 300s as shown in Fig. 6.
In a larger scale, it could take up to 100s to compute the
histogram of datasets with size from 5.5 GB to 168 GB. But

the joining time for these datasets could be several hours.
Therefore, the computation cost of the convoluted histogram
is relatively small when compared to the total running time
of the join operation. This allows us to extract the dataset
insights with a reasonable overhead.

Definition 6 (Convoluted histogram-based statistics— P,p,)
Given a pair of datasets (D;, D;), some metrics describ-
ing their mutual distribution and based on the box-counting
technique are computed. In particular, Ey and E; are calcu-
lated starting from the convoluted histogram of D; and D;
as shown in Def. 3. They are able to describe the distribution
and density of the overlapping areas between D; and D ;. For
sake of clarity we call them e(and e3, leaving Eq and E; for
single histograms.

This collection of parameters will be used for setting the
machine learning model and, in particular, they will be used
for generating the input vector of the model.

5.1.3 Performance metrics

The following metrics are collected from the result of spatial
join execution on each pair of datasets. The proposed models
are trained on these collected metrics and try to estimate them
during the inference step, as further detailed in Sect. 4.

e Join selectivity the first performance metric is the join
selectivity (o), namely the cardinality of the spatial
join divided by the cardinality of the cross product of the
two datasets. It is computed as:

ojn(Di, Dj) = 1D > D)

s - T~ I~

7Dl - Dy

e MBR test selectivity the second performance metric is the
MBR test selectivity (o)1), computed as:

orir (D Do Ar) = MC(D;,Dj, A))
M |Dil - 1D;]
i.e., the number of MBR tests (or MBR count M C) that
each specific join algorithm A; requires divided by the
cardinality of the cross product of the two datasets. This is
an important machine-independent metric that is strongly
correlated with the running time.

e Join running time the third metric is the running time of
a join algorithm on a specific hardware, e.g., a cluster of
machines.

e Best join algorithm the fourth performance metric deter-
mines the best algorithm in terms of running time, i.e.,
one of the four labels: BNLJ, PBSM, DJ, and REPJ.

@ Springer

T.Vuetal.

5.2 Training data generation

In this step, we produce the training data that will be used
to build the SIML model. Our goal is to produce a universal
model that can work with any pair of input datasets, so it
is vital that the training data is diverse and representative of
a large swath of distributions. At the same time, since the
data generation process includes the effective execution of
the spatial join on the selected pairs of datasets, we need
to ensure that this process will not take too long. We can
summarize the goals of this steps as follows:

1. Generate representative data that can train an accurate
and universal model.

2. Reduce the overhead of generating the data points, in
particular the spatial join execution.

3. Produce data with the ability to train all the proposed
models, i.e., join selectivity, MBR test selectivity, and
best algorithm.

To generate representative data, we combine synthetic
data from the Spider [35, 65] data generator, and publicly
available real data from UCR-Star [30]. For synthetic data,
we generate datasets of five different distributions provided
by Spider, namely, uniform, parcel, bit, Gaussian, and diag-
onal. Additionally, we apply various transformations to the
generated datasets such as translation, scaling, and rotation
to ensure the coverage as much cases as possible, such as the
ones in which the input datasets are not perfectly aligned.
All transformations are represented using a single affine
transformation matrix, which allows us to control all these
transformations and ensure we have diverse distributions.
Moreover, we combine some of these generated datasets
to produce complex distributions, e.g., diagonal and Gaus-
sian together. In total, we obtain 318 synthetic datasets. This
allows us to produce more than 10,000 data points after run-
ning the join operation on these datasets.

In addition to synthetic data, we also use real datasets from
the public repository, UCR-Star. Since the number of real
datasets is relatively limited and they are harder to retrieve
and process, we generate arbitrarily many real datasets by
extracting subsets of the real data with random search win-
dows. This ensures that the distributions of the real data are
diverse and representative of many real situations. We chose
the OSM buildings, lakes, and roads datasets, and US Cen-
sus linearwater, edges, and faces datasets. In total, we have
94 real datasets that range from 134 MB (few HDFS blocks)
to 7 GB (many HDFS blocks). This variation of number of
blocks will result in the high variation of choice of the best
join algorithm.

To reduce the overhead of generating the data points, we
generate input datasets at three scales: small, medium, and
large. These are at the order of 1-2 MB, 10-20 MB, and 1-2

@ Springer

GB, respectively. The key idea is that smaller datasets are
easier to generate and process which allow us to generate
thousands of training points in a very short time. However,
small datasets might not hold a good representation of perfor-
mance characteristics, which can only be tested with larger
data. Thus, we generate the medium and larger datasets which
can better catch performance behavior of spatial join algo-
rithms as described shortly. Table 4 summarizes the datasets
being used in our experiments.

To be able to train all models, we divide the training data
among the three models as follows. First, all the datasets are
used to train the model estimating the join selectivity, since
this metric is not affected by the data size, but only by the rela-
tion between the datasets. In other words, if the dataset gets
bigger but all data characteristics remain the same, the selec-
tivity will not change. To further clarify that to the reader,
we use Spider to generate four groups of datasets. For each
group, we fix the dataset characteristics and increase the data
size from 1 MB to 50 MB. For each dataset size, we run
spatial join and measure the join selectivity as the result car-
dinality divided by the product of the two input cardinalities.
As shown in Fig. 5a, the selectivity of spatial join is almost
a constant which confirms this point. At the same time, as
Fig. 5b shows, joining the 1 MB dataset (Small scale dataset
in the figure) is about 10 times faster than joining the 50 MB
datasets (Large scale dataset in the figure). Hence, we can
use this method to generate thousands of training points in a
reasonable time without sacrificing the quality of the model.

Second, to train the model for estimating the MBR test
selectivity, we use only medium and large datasets. While
MBR selectivity might not be affected by cardinality, the way
we partition the data is. Therefore, when using the medium
dataset (scale of 10-20 MB), we adjust the partition size to
be 128 KB. This results in a partitioning that has similar char-
acteristics to partitioning 10-20 GB dataset with a partition
size of 128 MB.

Third, to train the model for fastest algorithm detection,
we use the large datasets which show the actual performance
of the machines on big data. We use datasets that are big
enough to utilize all executor nodes in the cluster. The goal
is to avoid the case where only a few executor nodes are
working, since they do not represent the real performance of
the cluster. This is similar to focusing on asymptotic behav-
ior of algorithms when running on large enough input data.
Overall, our proposed framework focus on HDFS-based data
systems (Hadoop, Spark) and give more priority for problems
on large datasets.

5.3 Training set preparation
In our system, we organize the training data in a tabular form.

Each row of the training data includes a list of features and
the output metric. The metric could be the join selectivity, the

A learning-based framework for spatial...

Table 4 The datasets to train and test the proposed models

Datasets Scale Distribution # of geometries Size # of datasets # join pairs

D1 Small Uni, Dia, Gaus, Par, Bit 10,000-20,000 1-2 MB 160 7,140 (D1 = D1)

D2 Medium Uni, Dia, Gaus, Par, Bit 100,000-200,000 10-20 MB 50 5,340 (D2 = D3)

D3 Large Uni, Dia, Gaus, Par, Bit 10,000,000-20,000,000 1-2GB 108 5,340 (D2 = D3)

D4 Large Uniform 10,000,000-20,000,000 1-2GB 600 300 (D4 > D4)

D5 Large Real 1,000,000-50,000,000 100 MB - 7 GB 94 431 (D5 > D5)
6 Models

—— Small Scale dataset
-8 Large Scale datasets

o

o—

—— DialxDia3 -8-Dia2xGausl
-o- GauslxGaus2 —4— DialxUni3

Join selectivity
IS

v

[
0
i}
i}
i}
a
Total executi

=

0 10 20 30 40 50 100 200 300 400
Cardinality scale Number of join queries

(a) (b)

Fig.5 Join selectivity and execution time in different cardinality scales

Table 5 Different possibilities of feature sets

Name Features of D, Feat./metrics of (D;, D)
Psize Pens Pparf Paist Pmbr Pen O0JN oMT

FSy v v

F Sy, v v

v v
FSnp v v v v v v
FSai v

MBR test selectivity, the best algorithm, or the total running
time. In order to highlight the impact of the different features
we define four possible training sets as shown in Table 5:

1. FS;: the feature set that includes statistical-based fea-
tures;

2. FSgp: the feature set that includes F'Sy and histogram-
based features;

3. FSspp: the feature set that includes FSs, FSg, and
partitioning-based features;

4. F Sy the feature set that include F Sy, join cardinality,
and number of MBR tests of all join algorithms.

The tabular data would be fed into an efficient regres-
sion or classification models, which will be discussed in
Sect. 4.

We propose a set of models for evaluating the metrics
introduced in Sect.5.1.3. Some of them are based on the-
oretical estimation formulas, others are the result of a
training process. In each subsection we consider both pre-
vious approaches proposed in literature, used as baselines in
experiments, and the models we propose in this paper. As
highlighted in Fig.3, M1 and M2 are used whenever users
need to estimate the cost of computing the join in terms of
result size (M 1) and number of rectangle overlap tests (M2);
this can be useful for generating an optimal query plan when
the join is one of the operation to perform in a complex
expression, for example, an analytical query. On the other
hand, M3, M4 and M5 are used when users want to execute
the join need to choose the partition strategy (M3), generat-
ing the set of join tasks to be executed on the cluster, and in
which order each task has to process the set of geometries
assigned to it (M5). M4 is used only for PBSM. In particular,
M4 estimates the best number of partitions for PBSM algo-
rithm, thus it already assumes that M3 chose PBSM as the
best join strategy. In addition, M5 suggests the plane-sweep
join strategy, regardless which algorithm was chosen previ-
ously by M3. Regarding the fact that we have tested M3 and
M35 separately, we can observe that the improvement that M5
can produce in the join execution is orthogonal with respect
to the alternative partition strategies, i.e. each strategy can
be improved in the same way by M5 without changing the
ranking generated by M3.

6.1 Join selectivity estimation models

Join selectivity (oyy) is defined as the ratio between the
actual number of pairs produced by the join operation and the
total number of pairs produced by the cross product. When
join selectivity is estimated, the corresponding join cardinal-
ity can be obtained by multiplying for the size of the cross
product.

Theoretical formula for o;y: as proposed in [4] and [9],
given two datasets D; and D ; with the corresponding features
of group Density and Overlapping, the following estimates
can be applied:

@ Springer

T.Vuetal.

1
oyn(Dji, Dj) ~ —— (mbrArea® (i) Area;
arean

+ mbrArea®? (j) Area;
+ (leny "8 (i)len3" (j)
+ len™® (j)len;vg (1)) Area;Area;)

where arean is the overlap area. In the provided source code,
both the code and the results of its application to the chosen
collection of datasets are available.

Along with the theoretical formula, we introduce machine
learning based models to estimate the join selectivity model.
In particular, we build arandom forest regression model (M 1)
that takes the extracted features as the input and predict the
join selectivity of a query. Our model can achieve up to 4.49%
of the mean absolute percentage error (MAPE), which is
pretty good when compared to the 35% error of the theoretical
formula.

6.2 MBR tests selectivity models

Also for the MBR tests selectivity (ops7), which is the ratio
between the actual number of MBR tests performed by the
join operation and the cardinality of the cross product, we
propose a theoretical baseline and a machine learning model.

Theoretical formula for o),7: as proposed in [9, 34],
given two datasets D; and D; with the corresponding fea-
tures of group Size, Density, Partitioning & indexing and
Overlapping, the following estimate of M C (i.e. MBR tests
count) for each algorithm A; can be applied:

MC(D;, Dj, A;) = (nilog(n; +n;) +njlog(n; +nj))

X #combSplit 4,
where n, = #if;;;‘* and #combSplit 5, is an estimate of the
number of combined splits generated by algorithm A;. For
the algorithms that build a common grid, the value #comb-
Split 4, is substituted by the number of non-empty cells of the
common grid and n, by the average number of geometries in
the cells of the common grid. An estimate of o7 is derived
by dividing the value of M C by the cardinality of the cross
product.

Similar to the join selectivity estimation models, we pro-
posed machine learning based models to estimate the MBR
tests selectivity for distributed spatial join query. Since each
join algorithm has a specific strategy, thus the number of
MBR tests is an algorithm-dependent metric. Based on this
fact, we build four separate models to predict the MBR tests
selectivity for four spatial join algorithms (BNLJ, PBSM, DJ,
REPJ). Each model is a random forest regressor that takes the
extracted features as the input, then predicts the MBR tests
selectivity. Our experiments show that the proposed models
can achieve up to 1.77%, 1.25%, 4.5%, 3.3% MAPE value

@ Springer

for BNLJ, PBSM, DJ, and REP]J, respectively. These per-
formance is much better when compared to the theoretical
formula above.

6.3 Algorithm selection models

We use three models that predict the best partitioning algo-
rithm in terms of running time. The first model is the
rule-based query optimizer for spatial join proposed in paper
[52]. In short, the rule-based algorithm selects the most suit-
able partitioning algorithm based on heuristics and several
rules. We implement this baseline algorithm as a Python func-
tion and share this function in our Github repository [59].

The function above works with an assumption that the
two input datasets were spatially partitioned. The drawback
of this baseline algorithm is that it is not very accurate and it
never considers BNLJ as a potential join algorithm to execute.

The second model is given by the theoretical cost model
proposed in [9]. Regarding this approach we can provide
only some precalculated predictions regarding the chosen
collection of synthetic and real datasets (see the Github repos-
itory [59]). Notice that, this model requires some additional
features regarding the cluster used for the join algorithm exe-
cutions, such as the number of nodes, the maximum number
of mappers and reducers that can be instantiated and the rela-
tive measure of the cost of a CPU comparison operations w.r.t.
the cost for local and network read/write operations. Thus, a
direct comparison of this model, using other datasets, with
our proposed solution is not possible.

The third model, that we propose in this paper, is arandom
forest classification model that takes the extracted features as
the input, then predicts the best spatial join algorithm in terms
of running time. We train and test the algorithm selection
models using the dataset described in Sect.5.2. The exper-
iments section shows that the proposed machine learning
model outperform other rule-based and theoretical models
in the partitioning algorithm selection problem.

6.4 Tuning model: PBSM multiplier

The split factor for PBSM join algorithm defines the dimen-
sion of the grid that is used to partition the union of both
input datasets. A baseline estimation approach can be based
on the size of the two datasets size(D;) and size(D;) and
the split size B:

) "\/size(Dl) + size(Dz)—‘
dim, =

B

In this case the suggested grid for partitioning the union of
the input datasets will be of dimension: dim, x dim,. This
solution is only effective in the case that the considered input
datasets are uniformly distributed. If they are skewed, this

A learning-based framework for spatial...

-10°
T T T

—— Query time 6

3004~

—@— Number of MBR tests

200

100

Total join time (seconds)
Number of MBR tests

! !
1 50 2000

PBSM Multiplier

!
40000

Fig. 6 Correlation between PBSM multiplier, total running time and
number of MBR tests

splitting scheme produces unbalanced units of work. In order
to produce a more balanced workload for distributed nodes,
we increase the number of grid cells (and therefore of units
of work or tasks) by introducing a new parameter, namely
PBSM Multiplier o, which is an integer number. Introducing
« the split factor will be computed as follows:

_ { \/size(Dl)—i-size(Dz)—‘
dim=| « B

Figure 6 shows the total running time and number of MBR
tests for spatial join queries in skewed datasets, with differ-
ent values of PBSM Multiplier. We can observe two extreme
cases of how to choose the PBSM Multiplier. If « = 1, the
number of tasks is the minimum number that guarantees each
task will process an amount of B data size. Intuitively, this
would not be the good strategy when data is skewed, then
the advantages of distributed processing is not utilized. In
the other place, if « is very large, i.e. 100, 000, the number
of tasks is huge, which also creates the overhead of network
communication and aggregation. In summary, we should not
choose a very small or very large value for the PBSM Mul-
tiplier parameter.

Figure 6 also shows that there is a possibility to find the
best PBSM Multiplier value for a join operation. In particular,
there always exists a value of PBSM Multiplier so that the
query running time or number of MBR tests is minimum.
The main challenge here is this optimal value is different for
each specific join inputs. In other words, the optimal PBSM
Multiplier value depends on join input datasets. Motivated by
this observation, we aim to build a machine learning model
that is able to predict the PBSM Multiplier ¢ according to
the characteristics of the input datasets. In particular, we built
a regression model My that takes the features in Table 5 as
the input, then predicts the best value of PBSM Multiplier

Table 6 Running time of spatial join when the plane-sweep algorithm
sort by x-axis and y-axis

PlaneSweep x-axis PlaneSweep y-axis

Case 1 23.840000 31.550000
Case 2 29.376537 79.117921
Case 3 82.018803 27.477922
Case 4 80.052921 20.988435

a as the output. The detailed experimental results will be
discussed in Sect.7.6.1.

6.5 Tuning model: plane sweep axis in local join
operations

In general, most of distributed spatial join algorithms work
in two main phases. Phase 1 can be called global join, that
produces a list of pairs of partitions which are overlapping
and potentially contain join results. Phase 2 can be called
local join, which runs on each pair of overlapping partitions
to produce a list of pairs of objects that satisfy the join predi-
cate, commonly intersecting objects. The local join algorithm
is mostly implemented with the same technique regardless
of what the spatial join algorithm is, PBSM, BNLJ, RepJ
or DJ. One common local join algorithm is plane-sweeping
algorithm, which s first introduced at [50]. In brief, the plane-
sweeping algorithm works in a sort-merge mechanism. First,
it sorts the spatial objects of two input partitions based on one
axis x or y. Second, it scans over two sorted list of objects to
produce overlapping pairs with the merge-sort like scanning
process. At the end of the process, we would get a list of inter-
secting objects with the average running time O (n log(n)),
with n representing the total number of object of two input
partitions.

As plane-sweeping algorithm is the basic operation of
many distributed spatial join algorithms, it would be very
beneficial if we can improve its performance. As we men-
tioned, there are two way to sort objects in plane-sweeping
algorithms: sort by x-axis or sort by y-axis. In practice, peo-
ple choose default axis without the awareness of how the
input datasets look like. In fact, the sorting criteria plays
an important role in plane-sweeping algorithm performance.
Table 6 shows the running time of spatial join when we sort
the objects by x-axis and y-axis in four different synthetic
pairs of join inputs. We can observe that the choice of sort
by x-axis or y-axis can make the running time up-to three
times faster than the other way. Motivated by this observa-
tion, we aim to build a prediction model Ms, which takes the
features from the input partitions, then suggests the sorting
criterion that promises the better local join running time. In
other words, Ms will suggest the best axis for each pair of
partitions to join. As each local join operation is optimized,

@ Springer

T.Vuetal.

we expect that the final running time of the spatial join oper-
ation would be minimized as well. The detailed experimental
results will be discussed in Sect.7.6.2.

7 Experiments

This section provides an experimental evaluation to measure
the feasibility and accuracy of the proposed models. The
experiments are designed to answer the following research
questions:

1. Can machine learning models outperform hand-crafted
theoretical models?

2. Do the proposed features catch all aspects of spatial join?

3. Is the proposed model generic enough to be applied on a
dataset that was not in the training set?

4. How accurate is the model in choosing a spatial join algo-
rithm to run?

7.1 Experimental setup

We implement four spatial join algorithms with their original
design on Beast [16] - a Spark based system for big spatial
data management. Beast is deployed on a Spark 3.0 cluster of
one master node with 128GB RAM and 2 x 8-core Intel Xeon
CPU E5-2609 v4 @1.7GHz, and 12 executor nodes each with
2x6-core Intel Xeon E5-2603 @1.7GHz and 10TB HDD.

The synthetic data is generated using the open-source Spi-
der generator [35, 65]. The real data is downloaded from
UCR-Star [30]. We chose the OSM buildings [22], lakes
[21], and roads [23] datasets, and US Census linearwater
[12], edges [11], and faces [13] datasets. Unless otherwise
mentioned, models are trained only on synthetic data while
the test data contains a mix of synthetic and real data. The
detailed information of experimental datasets are described
in our technical report [62].

As a baseline, we use the theoretical models proposed
in [9, 34, 52]. To measure the accuracy of join selectivity
model M1 and MBR test selectivity model M2, we use mean
absolute error (MAE) and mean absolute percentage error
(MAPE) which are calculated as following.

1 n
MAE =~ |y = xi

i=1

L lyi = xil
MAPE = ; "
where y; is the estimated value and x; the true value.
For the algorithm selection model, we use the accuracy
metric to evaluate how good the classifier can choose the
best algorithm. To account for the cases where multiple

@ Springer

algorithms provide almost the same running time, we also
measure the MAPE between the running time of the selected
algorithm and the best algorithm. A lower value of MAPE
indicates a better selection model. Notice that we test each
model separately since they address different problems, e.g.,
join selectivity and selection of partition algorithm, so an
end-to-end comparison is not suitable.

The implementation of both the baselines and proposed
models are publicly available at our Github repository [59]. In
particular, we provide the options to use either Decision Tree
or Random Forest algorithms to train the proposed classifica-
tion and regression models. We use these classical algorithms
because they are proven to be more appropriate with tabular
data than deep learning based models. The maximum number
of features is 26 as described in Table 3. The maximum tree
depth is 8 in the current implementation [59]. The maximum
number of training data points for proposed models is 1024.
As the results, the training time is relatively small, mostly
10205, and is an one time cost. Hence, we decided to not
report the training time of proposed model in this paper so
that we can focus on other important metrics.

7.2 Baseline methods

In order to compare the accuracy of the proposed model with
previous work and show the improvements of the proposed
approach, we define the following baseline methods.

e Baseline Bl for the join selectivity model M1: we con-
sider the well-known spatial join selectivity estimation
formula first proposed in [4] and also adopted in the
theoretical model for spatial join algorithm ranking pro-
posed in [9, 52]. This formula is defined for uniformly
distributed datasets. To verify the accuracy of B1 for uni-
formly distributed data, we tested it on various datasets
as reported in Table 7. As shown in the table, B1 provides
good accuracy when applied on uniformly distributed
dataset (column M AP Ejg), but the performance dete-
riorates when applied on skewed and non-completely
overlapping datasets.

e Baseline B2 for the MBR test selectivity model M2: we
consider the estimation of the theoretical model for rank-
ing spatial join algorithms proposed in [9]. Notice that
the theoretical model has a different goal, i.e. to predict
the ranking of the spatial algorithms and not the number
of MBR tests performed by them. The number of MBR
test was used in [9] as an intermediate estimate to evalu-
ate the relative position of the algorithms in the ranking,
thus it is very imprecise when compared to the real val-
ues computed in the experiments. However, to the best
of our knowledge there is no other approach in literature
that try to estimate this parameter.

A learning-based framework for spatial...

Table 7 Accuracy of the theoretical models (B1, B3;) for join selec-
tivity and the best two algorithms in ranking

Distribution MBR overlap MAPE,;s(B1) Acc(B3))
Uniform > 90 1.7% 72%
Skewed > 90% 25% 64%
Skewed < 90% > 200% 57%

Table 8 Effect of feature selection to join selectivity estimation models

Feature Set Model MAPE (%) MAE

% F S Bl 35 2.87x1073
FS, M1 23 1.06x1073
F S, Ml 4.49 2.36x107°

e Baseline for algorithm selection model M3: we compare
our work with the rule-based model proposed in [52]
(called B3;) and the cost-based model proposed in [9]
(called B3;). The theoretical models were designed for
uniformly distributed datasets, thus, as shown in Table 7
(column Acc(B3;), the accuracy of B3 in predicting
at the best or the second best join algorithm decreases
quickly considering non uniform datasets.

7.3 Feature selection

This experiment shows how the proposed feature selection
affects the accuracy of the proposed models. In general, we
expect that the more complex and intricate features will pro-
duce more accurate models. In each experiment, we compare
three variations of proposed models M1, M2 and M3 with
the three feature sets F'Sy, F' Sy, and F Sy The tabular data
is collected from 7140 join queries on synthetic datasets with
different data distributions.

Table 8 shows the evaluation of join selectivity model
(M1) and the baseline (B1) when using features sets F'S; and
F S, We donotuse F Sy, since the partitioning information
is not relevant to the join selectivity. First, we evaluate the
performance of baseline method B1 from a previous work
[4] on the feature set F'Ss. Since B1 is designed to work
with the join of uniform dataset, its MAPE value is pretty
high. In addition, the equations of B1 use only the features
available in the feature set F'S;. Given the same feature set
F S, a random forest regression model M1 is significantly
better than the baseline B1 gaining 12% in terms of MAPE.
Finally, if we feed F'Sy;, to M1, the MAPE value (4.49%) is
significantly reduced when compared to other models. This
low MAPE value indicates that a regression random forest
model with informative features can efficiently predict the

join selectivity of a join query and outperform hand-crafted
models.

Table 9 shows the efficiency of MBR selectivity (M2)
and the baseline (B2) when using features sets F' S, FSsh,
and FSspp. Since we have a separate model for each of
the four algorithms, we measure the performance of each
of them separately. Overall, the baseline model B2 cannot
work well with this problem, and its MAPE and MAE val-
ues are almost unacceptable. Keep in mind that B2 was not
designed to accurately measure the MBR selectivity but it is
roughly calculated at an intermediate step. In contrast, the
proposed random forest regression model M2 can achieve
very good values in terms of both MAPE and MAE values.
We can also observe the downtrend of these metrics when
there are more meaningful features fed into the model. We
do not see much improvement for the models of BNLJ and
PBSM, but noticeable improvement for the models of DJ
and REPJ, which use the partitioning information in their
join strategies. This observation further confirms our conjec-
ture that machine learning models can outperform theoretical
models when given enough features that describe the input
datasets.

Table 10 shows the accuracy of algorithm selection (M3)
and the baselines (B3; and B3,) when using different fea-
tures sets. We use two metrics to evaluate the efficiency of
these algorithm selection models. The accuracy measures the
percentage at which the model correctly estimates the best
algorithm. The MAPE value measures the percentage of the
difference between the running time of predicted algorithm
and the actual best algorithm. The results show that B3 and
B3, are not able to predict the best algorithm well, when
their accuracy is too low, and the MAPE value is unreason-
able. They are slightly better than a complete random choice
which would yield 25% accuracy. The reason for this poor
performance is that these models were mainly designed for
uniformly distributed data and do not account for the com-
plex spatial distributions. On the other hand, the proposed
random forest classifier M3 can provide up to 82% accuracy
and 7.4% MAPE value. The highest accuracy is produced
with the model that uses all the proposed features. In addi-
tion, Fig. 7 show the confusion matrices of the baseline B3,
and the proposed M3, respectively. This figure shows that the
baseline get a decent accuracy (around 60%) for the PBSM
and REPJ algorithms but get really confused about the other
two algorithms, BNLJ and DJ.

In order to demonstrate the capability of our proposed
framework on large real-world datasets, we carry out an
additional experiment as follows. We wanted to answer the
question “find all the intersecting roads in the world”. We
can run a self-join operation on OpenStreetMap’s roads
dataset, namely OSM2015/roads [23] to answer this ques-
tion. OSM2015/roads contains 72 millions records with size
24.3 GB. First, we collect the dataset’s features and feed them

@ Springer

T.Vuetal.

Table 9 Effect of feature selection on MBR selectivity estimation models B2 and M2

BNLJ PBSM DJ REPJ
Feature Set Model ~MAPE (%) MAE MAPE (%) MAE MAPE (%) MAE MAPE (%) MAE
FSs B2 518 1.13x1072 1332 7.18x107% 386 436x10~* 183 7.82x10~*
FS; M2 15 6.64x10~* 1.25 399x107° 6.8 11.09x107° 7.5 8.53x1073
FSsp M2 1.8 613x10~5 1.42 448x107° 54 8.25x1073 3.9 4.17x1073
FSsnp M2 1.77 6.22x1075 1.39 4381070 4.5 695x10~° 3.3 345x1073

The best results are in bold

Table 10 Effect of feature sets on algorithm selection models

Feature Set Model Accuracy (%) MAPE (%)
FSsnp B3, [52] 33.7 122.8
FS B3, [9] 322 80.5
FS M3 71 13.9
F S, M3 79 7.9
FSsnp M3 81 7.5
FSan M3 82 7.4
B3: M3
1.0
£ BN 0.119 0.068 0.441 0.373 0.036 0.036 0.000
£ 0.8
% PBSM A (1)alaks] 0.177 0.048| {0.095 0.175 0.016 0.6
E D) 0.000 [ek:{el=} 0.118 0.074| {0.000 0.087 0.000 0.4
©
=
£ Rep) 0.062 0.125 0.188 0.389 0.222 0.000 0.389 0.2
0.0

BNL] PBSM D] Rep
Predicted algorithm

BNL] PBSM D] Rep)
Predicted algorithm

Fig.7 The confusion matrix of the algorithm selection model

Table 11 Self-join running time (in seconds) of different spatial join
algorithms on OSM2015/roads dataset

PBSM DJ Repl BNLJ

1258.63 745.31 717.51 740.95

The best results are in bold

to the Algorithm Selection Model (described in Sect. 6.3).
The model suggests that ReplJ is the best join algorithm in
terms of running time. After that, we ran all spatial join
algorithms with the given input. The running time for each
algorithm are shown in Table 11. This result verified that RepJ
is actually the fastest join algorithm. This experiment showed
that Algorithm Selection Model is able to suggest database
engine to choose the optimized join algorithm based on given
inputs.

On the contrary, the proposed model is generally accurate,
especially for BNLJ, PBSM, and DJ, but performs less accu-
rately for the REPJ. We plan to address this issue in the future

@ Springer

T T
82 [M3 on FSa, 8
N —3- M3 on FSy;
= 80 8
Q
©
Z T8} :
[\
<
76 :
|

| | |
0.4 0.6 0.8 1
Sample fraction of training data points

Fig. 8 Performance of M3 for the F S, and F S, feature sets as the
training set size increases

but the results are very encouraging to include the proposed
optimizer into existing spatial database systems.

Finally, we wanted to take a closer look into the difference
between the feature set F'Sgp, and F'Sy;. In this experiment,
we fix the test set and gradually increase the training set from
40% to 100% of all the available training data. Figure 8 shows
that the model performs generally better with the feature set
FS,11 even when the training set is small. This indicates that
the join selectivity and MBR selectivity, which are added in
F Sa11, help in improving the model performance.

7.4 Training set generation

This experiment shows the effect of the training set on the
accuracy of the models. Because it is not practical to construct
training datasets that cover all of distributions, we have been
trying to build a training set which can reflect the real-world
datasets as much as possible. Our goal is to show that the more
distributions we have in the training set, the more accurate
the model becomes for a dataset with any distribution. To
verify that, we gradually increase the number of synthetic
distributions in the training set, from 1 to 5, and measure
MAE of join selectivity model M1 and MBR tests selectivity
model M2. For fairness, when we limit the number of dis-
tributions, we try all combinations and take the average. For
example, for two distributions, we try (g) = 10 combinations
and report their average. Finally, we add the data with real
distribution and consider the total number of distributions
being six. These six distributions well represent most avail-
able spatial datasets as shown in [35, 65]. Notice that this is

A learning-based framework for spatial...

Table 12 Regression score of the linear model between join result,
number of MBR tests and join execution time

—— Bl on FS,
—-8-M1 on FSy,

Mean absolute error
Mean absolute error

1 2 3 4 5 6 1 2 3 4 5 6
Number of distributions

(a) (b)

Fig.9 Effect of training distributions in M1 and M2 model

the only experiment that uses real data for model training to
test how far it can enrich the model. Figure 9 shows the effi-
ciency of the baseline models B1 and B2 and the proposed
models M1 and M2 when the number of distributions varies,
while the test dataset is fixed. Since there is no training pro-
cess for B1 and B2, their MAE values are fixed. In contrast,
the MAE values for M1 and M2 improves as the number of
distributions increases. This behavior indicates that adding
more distribution to the training data helps in improving the
model’s performance. Moreover, there is a slight difference
of MAE value between the training data with all five distri-
butions and the training data with real dataset’s join results.
This small gap verifies that the proposed model can gener-
alize to datasets with distributions that were not included in
the training set. In other words, the proposed model can pro-
vide some level of out-of-distribution generalization for real
datasets whose distributions are not exactly those provided
by synthetic datasets. Furthermore, users can still add more
datasets with diversified distributions to enrich the model’s
training data for their own models.

7.5 Spatial join cost estimation model

This experiment measures the performance of the proposed
linear regression model M4 which estimates the algorithm
running time. Input features are only the result size and
number of MBR tests, obtained by multiplying o;y and
oyt (estimated by M1 and M2) by the cardinality of the
cross product. Our goal is to show that these two features
accurately estimates the overall running time. Additionally,
since this is a linear model, it can be trained on a very small
dataset. This allows system designers to use pre-trained M1
and M2 models together with a very small training set on
their hardware to measure the spatial join query performance.
Table 12 shows that the regression score of these models is
very good for the four algorithms. In addition, we plot the
estimated running time with predicted running time for the
different linear regression models in Fig. 10. In this figure, we
show the models with highest score (BNLJ) and lowest score
(PBSM).

Algorithm Regression Score
BNLJ 0.86

2 i o

-=-M2 on F'S,
DJ 0.82
REPJ 0.80
Number of distributions
Actual running time(s) * 2,000

600
1,500

400
1,000

200 500 P ¥ %

Estimated running time(s) Estimated running time(s)

100 200 300 400 500 600 500 1,000 1,500 2,000
(a) (b)

Fig. 10 Spatial join running time estimation with M4

7.6 Tuning models

In this section we evaluate the capability to further improve
the performances of the spatial join by tuning two parame-
ters: the PBSM multiplier and the choice between sorting of
geometries on the x or y axes during the execution of the
plane sweep algorithm. The following two subsections illus-
trate the results obtained by training two models for tuning
them.

7.6.1 PBSM multiplier

Training data generation. In Sect. 5.2, we validated that the
running time of a join operation is highly correlated with the
number of MBR tests for that operation. In addition, the join
operation between large datasets is very expensive. There-
fore, we decided to generate the training data using medium
scale datasets. In particular, we join the datasets with size
from 10 MB to 30 MB, and use the number of MBR tests as
a proxy to the running time. The join operation with mini-
mum number of MBR tests will likely be the join with least
running time.

Given a pair of datasets, we use a simple binary-search-
like algorithm to find the optimal PBSM multiplier. The
algorithm works as follows:

1. Start with PBSM Multiplier with value 1. Execute the
join and record the number of MBR tests.

2. Increase PBSM Multiplier by 10 times. Execute the join
and record the number of MBR tests. Repeat this step
and stop when the number of MBR tests start increasing.

@ Springer

T.Vuetal.

300 |- M B

200 |- N

100 - o

ol =.__=.=.:.:.DDDH JOEd_ |

T T T T
1 8 44 100

Fig. 11 Frequency of the best PBSM Multiplier value

Table 13 PBSM-Multiplier model comparison

MAE MAPE MSE
Baseline 23.88 1.43 1054.56
Random Forest 10.03 0.35 202.25

3. Choose the PBSM Multiplier which is the middle of the
last two value. Execute the join and record the number of
MBR tests.

4. Stop the process after 3 loops. Record the PBSM Multi-
plier that give the minimum number of MBR tests.

Model training and testing. The PBSM multiplier pre-
diction is a regression problem. In which we use the features
in Sect. 5.2 as the model features, and the integer number of
PBSM multiplier as the label. We simply use a random forest
model to train the PBSM multiplier prediction model. The
baseline value is chosen equal to 100 as this is the most com-
mon best value of PBSM Multiplier as shown in Fig. 11. The
test results is shown in Table 13. The experimental results
show that the learning-based model provides a significant
better estimation for the best PBSM Multiplier value, which
promises a shorter running time for spatial join operations.

7.6.2 Plane sweep axis in local join operations

Training data generation. In this experiment, we are going
to run a spatial join operation on OSM Roads and TIGER
Linear Water datasets. First, we utilize the PBSM spatial
join algorithm to split the join inputs into partitions, then we
produce the list of overlapping partitions, which potentially
contain the join results. After that, we run both plane-
sweeping algorithms that sort the objects by x-axis and y-axis
in all the overlapping pair. We record the running time of each
operation to evaluate whether the sorted by x-axis or y-axis

@ Springer

Table 14 PBSM-Multiplier

model comparison Accuracy
Baseline 0.5
Random Forest 1 0.7297
Random Forest2 0.7972

is faster. At the end of this process, we collect the label of
training data points, which can be either x-axis is better or
y-axis is better. To build the features for each data point, we
reused the listed feature F' Sgj in Table 5. In addition, we also
collect other features of two input partitions such as intersec-
tion percentage and Jaccard similarity of two partitions by
x-axis or y-axis. Note that we do not reuse the feature val-
ues calculated for the entire dataset but we recalculate them
for the data within the current partition since each partition
could possibly make a different decision about sorting by x
or y. This requires a single scan over the data in this partition
which is a negligible cost as compared to sorting.

Model training and testing. The plane-sweep axis selec-
tion problem is a classification problem. We decide to build
two Random Forest classification models based on the gen-
erated training data. The first model is built based on F Sy
features in Table 5. The second model is built with F'S,;, fea-
tures and the features of intersection percentage and Jaccard
similarity of two partitions by x-axis or y-axis. We choose
the baseline as a random choice that chooses either x-axis
or y-axis as sorting criteria. Obviously, the accuracy of the
baseline is 0.5. The experimental results in Table 14 shows
that the second Random Forest model built with additional
features gives us the best accuracy. This is expected since the
relationship by x-axis and y-axis is significantly important
for the performance of local join operation.

8 Conclusion

This paper presented a framework for supporting spatial join
processing by providing different models based on machine
learning for cost estimation. It is able to choose the best
distributed spatial join algorithm given two input datasets. It
breaks down the cost estimation into several modules.

The first module estimates the cardinality of the spatial
join result which is an algorithm independent metric. Sec-
ond, it estimates the number of MBR tests done by each
algorithm which is a machine-independent but algorithm-
specific metric of performance. The third module estimates
the best algorithm. Then, the fourth model estimates the num-
ber of partitions, if needed. The final model chooses the best
sorting direction for the plane-sweep local join algorithm.

To train these models, we used a synthetic data generator
that produces thousands of datasets with various distributions

A learning-based framework for spatial...

to train the model on the different aspects of spatial data.
We further enrich the training data by some real datasets to
improve the diversity. We showed that training on synthetic
and small/medium size datasets can speed up the model set-
ting and still produce accurate results, also when the test is
performed on large datasets.

Our experimental evaluation shows the effectiveness of
the proposed method in estimating: (i) the join cardinality,
which is an algorithm- and machine-independent metrics for
measuring the cost of spatial join operation; (ii) the number
of MBR tests performed by the join operation, which is a
machine-independent metrics; (iii) the best algorithm to be
applied for executing the join in a distributed environment;
(iv) some tuning parameters that allows to obtain be best
running time in the join execution both at global level (parti-
tioning) and local level (plane-sweep algorithm application
at each node of the cluster).

In the future, we plan to further extend this model by tak-
ing into account the hardware specification to estimate a more
accurate result. We also want to reconsider the feature extrac-
tion phase in order to improve the accuracy of the models.
In addition, refinement phase optimization could be a good
opportunity to improve join performance in case of datasets
with complex geometries. Another interesting work to con-
sider for the future is to train correlated models together to
capture their intertwined relationship or spatial join with 1D
partitioning [5, 56].

Author Contributions All authors contributed to the study conception
and design. Material preparation, data collection and analysis were per-
formed by all authors. The first draft of the manuscript was written by
all authors and we commented on previous versions of the manuscript.
All authors read and approved the final manuscript.

Funding This work is supported in part by the National Science Founda-
tion (NSF) under Grants IIS-1954644, 11S-1838222 and CNS-1924694
and by “Progetto di Eccellenza” of the Computer Science Dept., Univ.
of Verona, Italy. Tin Vu performed this work while at UC Riverside.

Declarations

Conflict of interest Editor-in-chief or editorial board member of the
VLDB Journal with whom they have a conflict-of-interest along with
the nature of the conflict: Yuanyuan Tian Microsoft Gray Systems
Lab, USA. All authors certify that they have no affiliations with or
involvement in any organization or entity with any financial interest or
non-financial interest in the subject matter or materials discussed in this
manuscript.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your

intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Acharya, S., Poosala, V., Ramaswamy, S.: Selectivity estimation
in spatial databases. In: Proceedings of the 1999 ACM SIG-
MOD International Conference on Management of Data, pp. 13-24
(1999)

2. Aji, A., Wang, F,, Vo, H,, Lee, R., Liu, Q., Zhang, X., Saltz, J.:
Hadoop-gis: A high performance spatial data warehousing system
over mapreduce. In: Proceedings of the VLDB Endowment Inter-
national Conference on Very Large Data Bases, vol. 6. NIH Public
Access (2013)

3. An, N, Yang, Z., Sivasubramaniam, A.: Selectivity estimation for
spatial joins. In: ICDE, pp. 368-375 (2001)

4. Aref, W.,, Samet, H.: A cost model for query optimization using
R-Trees. In: GIS, pp. 60-67 (1994)

5. Arge, L., Procopiuc, O., Ramaswamy, S., Suel, T., Vitter, J.S.: Scal-
able sweeping-based spatial join. In: VLDB, vol. 98, pp. 570-581.
Citeseer (1998)

6. Baig, F., Vo, H., Kurc, T., Saltz, J., Wang, F.: Sparkgis: Resource
aware efficient in-memory spatial query processing. In: Proceed-
ings of the 25th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, pp. 1-10 (2017)

7. Belussi, A., Faloutsos, C.: Self-spacial join selectivity estimation
using fractal concepts. ACM TIS 16(2), 161-201 (1998)

8. Belussi, A., Migliorini, S., Eldawy, A.: Detecting skewness of
big spatial data in spatialhadoop. In: Proceedings of the 26th
ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, SIGSPATIAL ’18, pp. 432-435
(2018). https://doi.org/10.1145/3274895.3274923

9. Belussi, A., Migliorini, S., Eldawy, A.: Cost estimation of spa-
tial join in spatialhadoop. Geolnformatica 24, 1021-1059 (2020).
https://doi.org/10.1007/s10707-020-00414-x

10. Belussi, A., Migliorini, S., Eldawy, A.: Skewness-based partition-
ing in SpatialHadoop. ISPRS IJGI 9(4), 201:1-201:19 (2020)

11. Bureau, U.C.: All tiger lines (2019). https://doi.org/10.6086/
N1P55KJS

12. Bureau, U.C.: Linear hydrography (2019). https://doi.org/10.6086/
N1QF8QW4

13. Bureau, U.C.: Topological faces (polygons with all geocodes)
(2019). https://doi.org/10.6086/N19021TG

14. den Bercken, J.V., Seeger, B., Widmayer, P.: The bulk index join: A
generic approach to processing non-equijoins. In: M. Kitsuregawa,
M.P. Papazoglou, C. Pu (eds.) Proceedings of the 15th International
Conference on Data Engineering, Sydney, Australia, March 23-
26, 1999, 257. IEEE Computer Society (1999). https://doi.org/10.
1109/ICDE.1999.754937

15. Du, Z., Zhao, X., Ye, X., Zhou, J., Zhang, F., Liu, R.: An effec-
tive high-performance multiway spatial join algorithm with spark.
ISPRS Int. J. Geo Inf. 6(4), 96 (2017)

16. Eldawy, A., Hristidis, V., Ghosh, S., Saeedan, M., Sevim, A., Sid-
dique, A., Singla, S., Sivaram, G., Vu, T., Zhang, Y.: Beast: Scalable
Exploratory Analytics on Spatio-temporal Data. In: CIKM. ACM
(2021)

17. Eldawy, A., Mokbel, M.E.: Spatialhadoop: A mapreduce frame-
work for spatial data. In: 2015 IEEE 31st International Conference
on Data Engineering, pp. 1352-1363. IEEE (2015)

18. Eldawy, A., Mokbel, M.E.: SpatialHadoop: A MapReduce frame-
work for spatial data. In: ICDE, pp. 1352-1363 (2015)

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3274895.3274923
https://doi.org/10.1007/s10707-020-00414-x
https://doi.org/10.6086/N1P55KJS
https://doi.org/10.6086/N1P55KJS
https://doi.org/10.6086/N1QF8QW4
https://doi.org/10.6086/N1QF8QW4
https://doi.org/10.6086/N19021TG
https://doi.org/10.1109/ICDE.1999.754937
https://doi.org/10.1109/ICDE.1999.754937

T.Vuetal.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

Eldawy, A., Mokbel, M.F.: The era of big spatial data: a survey.
Found. Trends Databases 6(3—4), 163-273 (2016). https://doi.org/
10.1561/1900000054

Eldawy, A., Mokbel, M.E.: Spatial join with hadoop. In: Shekhar,
S., Xiong, H., Zhou, X. (eds.) Encyclopedia of GIS, pp. 2032—
2036. Springer (2017). https://doi.org/10.1007/978-3-319-17885-
1_1570

Eldawy, A., Mokbel, M.E.: All water areas in the world from open-
streetmap (2019). https://doi.org/10.6086/N1668B70

Eldawy, A., Mokbel, M.F.: The boundaries of all buildings in the
world as extracted from openstreetmap (2019). https://doi.org/10.
6086/N1JW8BWH

Eldawy, A., Mokbel, M.F.: Roads and streets around the world each
represented as a polyline extracted from openstreetmap (2019).
https://doi.org/10.6086/N1XK8CK6

Eldawy, A., Mokbel, M.F., Al-Harthi, S., Alzaidy, A., Tarek, K.,
Ghani, S.: SHAHED: A mapreduce-based system for querying and
visualizing spatio-temporal satellite data. 1585-1596. Seoul, South
Korea (2015)

Estan, C., Naughton, J.F.: End-biased samples for join cardinality
estimation. In: Proceedings of the 22nd International Conference
on Data Engineering, ICDE, 20. IEEE Computer Society (2006).
https://doi.org/10.1109/ICDE.2006.61

Estan, C., Naughton, J.F.: End-biased samples for join cardinality
estimation. In: 22nd International Conference on Data Engineering
(ICDE’06), pp. 20-20. IEEE (2006)

Faloutsos, C., Seeger, B., Traina, A., Traina, C.: Spatial join selec-
tivity using power laws. In: SIGMOD, SIGMOD’00, 177-188
(2000)

Fornari, M.R., Comba, J.L.D., Iochpe, C.: Query optimizer for spa-
tial join operations. In: GIS, pp. 219-226. ACM (2006)
Georgiadis, T., Mamoulis, N.: Raster intervals: an approximation
technique for polygon intersection joins. Proc. ACM Manag. Data
1(1), 1-18 (2023)

Ghosh, S., Vu, T., Eskandari, M.A., Eldawy, A.: UCR-STAR: tUCR
spatio-temporal active repository. SIGSPATIAL Spec. 11(2), 34—
40 (2019)

Goodchild, M.E.: Citizens as voluntary sensors: spatial data infras-
tructure in the world of web 2.0. IJSDIR 2, 24-32 (2007)

Gupta, H., Chawda, B.: e-controlled-replicate: An improved
controlled-replicate algorithm for multi-way spatial join processing
on map-reduce. In: International Conference on Web Information
Systems Engineering. Springer (2014)

Henke, N., etal.: The Age of Analytics: Competing in a Data-driven
World. Tech. rep, McKinsey Global Institute (2016)

Jacox, E.H., Samet, H.: Spatial join techniques. ACM Trans.
Database Syst. (TODS) 32(1), 7 (2007)

Katiyar, P., Vu, T., Migliorini, S., Belussi, A., Eldawy, A.: Spi-
derWeb: A Spatial Data Generator on the Web. In: SIGSPATIAL.
ACM (2020)

Kim, J., Hong, B.: Parallel spatial joins using grid files. In: Sev-
enth International Conference on Parallel and Distributed Systems,
ICPADS 2000, Iwate, Japan, July 4-7, 2000, 531-536. IEEE
Computer Society (2000). https://doi.org/10.1109/ICPADS.2000.
857739

Kipf, A., Kipf, T., Radke, B., Leis, V., Boncz, P.A., Kemper, A.:
Learned cardinalities: Estimating correlated joins with deep learn-
ing. In: CIDR (2019)

Krishnan, S., Yang, Z., Goldberg, K., Hellerstein, J.M., Stoica, I.:
Learning to optimize join queries with deep reinforcement learning.
arXiv:1808.03196 (2018)

Leis, V., Radke, B., Gubichev, A., Kemper, A., Neumann, T.: Car-
dinality estimation done right: Index-based join sampling. In: Cidr
(2017)

Leis, V., et al.: Cardinality estimation done right: Index-based join
sampling. In: CIDR (2017)

@ Springer

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

Magdy, A., Alarabi, L., Al-Harthi, S., Musleh, M., Ghanem,
T.M., Ghani, S., Mokbel, M.F.: Taghreed: a system for querying,
analyzing, and visualizing geotagged microblogs, pp. 163-172.
Dallas/Fort Worth, TX (2014)

Marcus, R., Negi, P., Mao, H., Tatbul, N., Alizadeh, M., Kraska,
T.: Bao: Learning to steer query optimizers. In: SIGMOD (2021)
Marcus, R., Papaemmanouil, O.: Deep reinforcement learning for
join order enumeration. In: R. Bordawekar, O. Shmueli (eds.)
aiDM@SIGMOD, 3:1-3:4. ACM (2018)

Marcus, R.C., et al.: Neo: a learned query optimizer. PVLDB
12(11), 1705-1718 (2019)

Ono, K., Lohman, G.M.: Measuring the complexity of join enu-
meration in query optimization. In: PVLDB, pp. 314-325 (1990)
Ortiz, J., Balazinska, M., Gehrke, J., Keerthi, S.S.: An empirical
analysis of deep learning for cardinality estimation. arXiv preprint
arXiv:1905.06425 (2019)

Patel, J.M., DeWitt, D.J.: Partition based spatial-merge join. In:
Jagadish, H.V., Mumick, I.S. (eds.) Proceedings of the 1996 ACM
SIGMOD International Conference on Management of Data, Mon-
treal, Quebec, Canada, June 4-6, 1996, pp. 259-270. ACM Press
(1996). https://doi.org/10.1145/233269.233338

Patel, J.M., DeWitt, D.J.: Partition based spatial-merge join.
SIGMOD Rec. 25(2), 259-270 (1996). https://doi.org/10.1145/
235968.233338

Pedregosa, F., et al.: Scikit-learn: machine learning in python. J.
Mach. Learn. Res. 12, 2825-2830 (2011)

Preparata, F.P., Shamos, M.1.: Computational Geometry: An Intro-
duction. Springer (2012)

Ray, S., Simion, B., Brown, A.D., Johnson, R.: Skew-resistant par-
allel in-memory spatial join. In: Jensen, C.S., Lu, H., Pedersen,
T.B., Thomsen, C., Torp, K. (eds.) Conference on Scientific and Sta-
tistical Database Management, SSDBM ’14, Aalborg, Denmark,
June 30 - July 02,2014, 6:1-6:12. ACM (2014). https://doi.org/10.
1145/2618243.2618262

Sabek, 1., Mokbel, M.F.: On Spatial Joins in MapReduce. In:
SIGSPATIAL (2017). https://doi.org/10.1145/3139958.3139967
Singla, S., Eldawy, A.: Flexible Computation of Multidimensional
Histograms. In: SpatialGems. ACM (2020)

Sun, C., Bandi, N., Agrawal, D., El Abbadi, A.: Exploring spatial
datasets with histograms. Distrib. Parallel Databases 20(1), 57-88
(2006)

The Common Metadata Repository: The Foundation of NASA’s
Earth Observation Data (2017). https://earthdata.nasa.gov/the-
common-metadata-repository

Tsitsigkos, D., Bouros, P., Mamoulis, N., Terrovitis, M.: Parallel
in-memory evaluation of spatial joins. In: Proceedings of the 27th
ACM SIGSPATIAL International Conference on Advances in Geo-
graphic Information Systems, pp. 516-519 (2019)

Twitter Usage Statistics. http://www.internetlivestats.com/twitter-
statistics/ (2018). Visisted on 15-Sep-2021

Vengerov, D., Menck, A.C., Zait, M., Chakkappen, S.: Join size
estimation subject to filter conditions. PVLDB 8(12) (2015)

Vu, T.: A learning based framework for spatial join processing:
estimation, optimization and tuning. https://github.com/tinvukhac/
learned- spatial-join (2023)

Vu, T., Belussi, A., Migliorini, S., Eldawy, A.: Using deep learning
for big spatial data partitioning. TSAS 7(1), 3:1-3:37 (2020)

Vu, T., Belussi, A., Migliorini, S., Eldawy, A.: A Learned Query
Optimizer for Spatial Join. In: ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems,
ACM SIGSPATIAL 2021. ACM (2021). https://doi.org/10.1145/
3474717.3484217

Vu, T., Belussi, A., Migliorini, S., Eldawy, A.: Towards a learned
cost model for distributed spatial join: Data, code & models. In:
Proceedings of the 31st ACM International Conference on Infor-
mation & Knowledge Management, pp. 4550-4554 (2022)

https://doi.org/10.1561/1900000054
https://doi.org/10.1561/1900000054
https://doi.org/10.1007/978-3-319-17885-1_1570
https://doi.org/10.1007/978-3-319-17885-1_1570
https://doi.org/10.6086/N1668B70
https://doi.org/10.6086/N1JW8BWH
https://doi.org/10.6086/N1JW8BWH
https://doi.org/10.6086/N1XK8CK6
https://doi.org/10.1109/ICDE.2006.61
https://doi.org/10.1109/ICPADS.2000.857739
https://doi.org/10.1109/ICPADS.2000.857739
http://arxiv.org/abs/1808.03196
http://arxiv.org/abs/1905.06425
https://doi.org/10.1145/233269.233338
https://doi.org/10.1145/235968.233338
https://doi.org/10.1145/235968.233338
https://doi.org/10.1145/2618243.2618262
https://doi.org/10.1145/2618243.2618262
https://doi.org/10.1145/3139958.3139967
https://earthdata.nasa.gov/the-common-metadata-repository
https://earthdata.nasa.gov/the-common-metadata-repository
http://www.internetlivestats.com/twitter-statistics/
http://www.internetlivestats.com/twitter-statistics/
https://github.com/tinvukhac/learned-spatial-join
https://github.com/tinvukhac/learned-spatial-join
https://doi.org/10.1145/3474717.3484217
https://doi.org/10.1145/3474717.3484217

A learning-based framework for spatial...

63.

64.

65.

66.

67.

68.

Vu, T., Eldawy, A.: R-grove: Growing a family of r-trees in the
big-data forest. In: Proceedings of the 26th ACM SIGSPATIAL
International Conference on Advances in Geographic Information
Systems, pp. 532-535 (2018)

Vu, T., Eldawy, A.: R*-grove: balanced spatial partitioning for
large-scale datasets. Front. Big Data 3, 28 (2020)

Vu, T., Migliorini, S., Eldawy, A., Belussi, A.: Spatial data gener-
ators. In: 1st ACM SIGSPATIAL Int. Workshop on Spatial Gems
(SpatialGems 2019), 7 (2019)

Xie, D., Li, F, Yao, B., Li, G., Zhou, L., Guo, M.: Simba: Efficient
in-memory spatial analytics. In: SIGMOD, pp. 1071-1085 (2016)
Yang, Z., et al.: NeuroCard: one cardinality estimator for all tables.
PVLDB 14(1), 61-73 (2020)

Yu, J., Wu, J., Sarwat, M.: GeoSpark: a cluster computing frame-
work for processing large-scale spatial data. In: SIGSPATIAL, pp.
70:1-70:4 (2015)

69.

70.

Yu, J., Wu, J., Sarwat, M.: A demonstration of geospark: A clus-
ter computing framework for processing big spatial data. In: 32nd
IEEE International Conference on Data Engineering, ICDE 2016,
Helsinki, Finland, May 16-20, 2016, pp. 1410-1413 (2016)
Zhang, S., Han, J., Liu, Z., Wang, K., Xu, Z.: SJMR: parallelizing
spatial join with mapreduce on clusters. In: CLUSTER, 1-8. IEEE
Computer Society, New Orleans, LA (2009). https://doi.org/10.
1109/CLUSTR.2009.5289178

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

https://doi.org/10.1109/CLUSTR.2009.5289178
https://doi.org/10.1109/CLUSTR.2009.5289178

	A learning-based framework for spatial join processing: estimation, optimization and tuning
	Abstract
	1 Introduction
	2 Background
	3 Related work
	4 Overview of SJML
	5 Model training and testing
	5.1 Feature extraction
	5.1.1 Single dataset statistics
	5.1.2 Combined statistics
	5.1.3 Performance metrics

	5.2 Training data generation
	5.3 Training set preparation

	6 Models
	6.1 Join selectivity estimation models
	6.2 MBR tests selectivity models
	6.3 Algorithm selection models
	6.4 Tuning model: PBSM multiplier
	6.5 Tuning model: plane sweep axis in local join operations

	7 Experiments
	7.1 Experimental setup
	7.2 Baseline methods
	7.3 Feature selection
	7.4 Training set generation
	7.5 Spatial join cost estimation model
	7.6 Tuning models
	7.6.1 PBSM multiplier
	7.6.2 Plane sweep axis in local join operations

	8 Conclusion
	References

